-
Notifications
You must be signed in to change notification settings - Fork 8
/
SWSH_high_frequency.nb
12369 lines (12309 loc) · 686 KB
/
SWSH_high_frequency.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 702170, 12361]
NotebookOptionsPosition[ 699079, 12305]
NotebookOutlinePosition[ 699438, 12321]
CellTagsIndexPosition[ 699395, 12318]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["\<\
Compare high-frequency expansions and numerical results for the Spin-Weighted \
Spheroidal Eigenvalue and Eigenfunction\
\>", "Title",
CellChangeTimes->{{3.741621588110874*^9, 3.7416216020021067`*^9}, {
3.746537140833988*^9, 3.746537141047653*^9}, {3.7467270397134733`*^9,
3.746727053126007*^9}},ExpressionUUID->"ad5c9776-3f88-4166-b395-\
b8b4b58217d7"],
Cell["\<\
For details see \[OpenCurlyDoubleQuote]High-order asymptotics for the \
Spin-Weighted Spheroidal Equation at large real frequency\
\[CloseCurlyDoubleQuote], M. Casals, A. C. Ottewill, N. Warburton, \
arXiv:1810.00432\
\>", "Text",
CellChangeTimes->{{3.746727061182938*^9, 3.746727096965963*^9}, {
3.74742980319987*^9,
3.747429827333346*^9}},ExpressionUUID->"b1b66707-b971-4ff3-ab27-\
d008ed3fea97"],
Cell[BoxData[
RowBox[{
RowBox[{"$PlotTheme", "=", "\"\<Detailed\>\""}], ";"}]], "Input",
CellChangeTimes->{{3.742400135023843*^9,
3.742400143238411*^9}},ExpressionUUID->"ab12252e-d172-46a6-a219-\
7cbf6e315ec1"],
Cell["\<\
Load the SpinWeightedSpheoridalHarmonics Package which can be obtained from \
bhptoolkit.org\
\>", "Text",
CellChangeTimes->{
3.7465370781836433`*^9, {3.746727110734964*^9,
3.746727117958864*^9}},ExpressionUUID->"b8945b2a-f6a0-4593-bb91-\
a0af9a59b6e6"],
Cell[BoxData[
RowBox[{"<<", "SpinWeightedSpheroidalHarmonics`"}]], "Input",ExpressionUUID->"4949740a-6980-4d15-9306-7f74dfab9a3d"],
Cell[CellGroupData[{
Cell["Eigenvalues for large real frequency", "Section",
CellChangeTimes->{{3.7423999639547577`*^9, 3.742399965807686*^9}, {
3.74653822677558*^9,
3.746538230094439*^9}},ExpressionUUID->"aa28c7f6-4dc0-44b6-b26b-\
dff253d09877"],
Cell[BoxData[{
RowBox[{
RowBox[{"maxOrder", "=", "30"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"s", "=", "2"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"l", "=", "2"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"m", "=", "2"}], ";"}]}], "Input",
CellChangeTimes->{{3.741621610266089*^9, 3.741621612973127*^9}, {
3.741621650393539*^9, 3.741621657143923*^9}, {3.7416219755519447`*^9,
3.7416219787009706`*^9}, {3.741622036572727*^9, 3.74162204201908*^9}, {
3.741622097277886*^9, 3.741622099765127*^9}, {3.741622146676093*^9,
3.741622146779016*^9}},ExpressionUUID->"eb95a2c5-1985-433d-806a-\
df6b842166c9"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Lambda]HF", "=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"SpinWeightedSpheroidalEigenvalue", "[",
RowBox[{"s", ",", "l", ",", "m", ",", "\[Gamma]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "\[Infinity]", ",", "maxOrder"}], "}"}]}],
"]"}]}]], "Input",
CellChangeTimes->{{3.74161942506896*^9, 3.741619464601976*^9}, {
3.7416197394204817`*^9, 3.741619739499217*^9}, {3.7416198720319433`*^9,
3.741619880270114*^9}, {3.741619978537496*^9, 3.741619995119398*^9}, {
3.741620114703722*^9, 3.741620141559266*^9}, {3.7416202682909517`*^9,
3.741620268722177*^9}, {3.741620910122364*^9, 3.741620910608508*^9}, {
3.741621372841824*^9, 3.741621373113556*^9}, {3.741621547050819*^9,
3.741621550673081*^9}, {3.741621614854025*^9, 3.741621617045326*^9}, {
3.741621659823989*^9,
3.741621661847765*^9}},ExpressionUUID->"9b80a1ac-c76a-48dd-b39d-\
c759967624e8"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{"-",
RowBox[{"6", " ", "\[Gamma]"}]}], "-", "1", "+",
FractionBox["3",
RowBox[{"4", " ", "\[Gamma]"}]], "-",
FractionBox["15",
RowBox[{"64", " ",
SuperscriptBox["\[Gamma]", "3"]}]], "-",
FractionBox["3",
RowBox[{"16", " ",
SuperscriptBox["\[Gamma]", "4"]}]], "+",
FractionBox["3",
RowBox[{"512", " ",
SuperscriptBox["\[Gamma]", "5"]}]], "+",
FractionBox["27",
RowBox[{"128", " ",
SuperscriptBox["\[Gamma]", "6"]}]], "+",
FractionBox["5109",
RowBox[{"16384", " ",
SuperscriptBox["\[Gamma]", "7"]}]], "+",
FractionBox["519",
RowBox[{"2048", " ",
SuperscriptBox["\[Gamma]", "8"]}]], "+",
FractionBox["8781",
RowBox[{"131072", " ",
SuperscriptBox["\[Gamma]", "9"]}]], "-",
FractionBox["585",
RowBox[{"4096", " ",
SuperscriptBox["\[Gamma]", "10"]}]], "-",
FractionBox["526611",
RowBox[{"2097152", " ",
SuperscriptBox["\[Gamma]", "11"]}]], "-",
FractionBox["96027",
RowBox[{"524288", " ",
SuperscriptBox["\[Gamma]", "12"]}]], "+",
FractionBox["587283",
RowBox[{"16777216", " ",
SuperscriptBox["\[Gamma]", "13"]}]], "+",
FractionBox["1171233",
RowBox[{"4194304", " ",
SuperscriptBox["\[Gamma]", "14"]}]], "+",
FractionBox["419534925",
RowBox[{"1073741824", " ",
SuperscriptBox["\[Gamma]", "15"]}]], "+",
FractionBox["18248187",
RowBox[{"67108864", " ",
SuperscriptBox["\[Gamma]", "16"]}]], "-",
FractionBox["335708823",
RowBox[{"8589934592", " ",
SuperscriptBox["\[Gamma]", "17"]}]], "-",
FractionBox["395170893",
RowBox[{"1073741824", " ",
SuperscriptBox["\[Gamma]", "18"]}]], "-",
FractionBox["67821141513",
RowBox[{"137438953472", " ",
SuperscriptBox["\[Gamma]", "19"]}]], "-",
FractionBox["9826998495",
RowBox[{"34359738368", " ",
SuperscriptBox["\[Gamma]", "20"]}]], "+",
FractionBox["201642365301",
RowBox[{"1099511627776", " ",
SuperscriptBox["\[Gamma]", "21"]}]], "+",
FractionBox["177645378141",
RowBox[{"274877906944", " ",
SuperscriptBox["\[Gamma]", "22"]}]], "+",
FractionBox["27276887972865",
RowBox[{"35184372088832", " ",
SuperscriptBox["\[Gamma]", "23"]}]], "+",
FractionBox["1746181377741",
RowBox[{"4398046511104", " ",
SuperscriptBox["\[Gamma]", "24"]}]], "-",
FractionBox["97983031410591",
RowBox[{"281474976710656", " ",
SuperscriptBox["\[Gamma]", "25"]}]], "-",
FractionBox["18022391804547",
RowBox[{"17592186044416", " ",
SuperscriptBox["\[Gamma]", "26"]}]], "-",
FractionBox["5092816038278091",
RowBox[{"4503599627370496", " ",
SuperscriptBox["\[Gamma]", "27"]}]], "-",
FractionBox["493267808474247",
RowBox[{"1125899906842624", " ",
SuperscriptBox["\[Gamma]", "28"]}]], "+",
FractionBox["27880930799380083",
RowBox[{"36028797018963968", " ",
SuperscriptBox["\[Gamma]", "29"]}]], "+",
FractionBox["15988982395587381",
RowBox[{"9007199254740992", " ",
SuperscriptBox["\[Gamma]", "30"]}]], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[",
FractionBox["1", "\[Gamma]"], "]"}], "31"],
SeriesData[$CellContext`\[Gamma],
DirectedInfinity[1], {}, -1, 31, 1],
Editable->False]}],
SeriesData[$CellContext`\[Gamma],
DirectedInfinity[1], {-6, -1,
Rational[3, 4], 0,
Rational[-15, 64],
Rational[-3, 16],
Rational[3, 512],
Rational[27, 128],
Rational[5109, 16384],
Rational[519, 2048],
Rational[8781, 131072],
Rational[-585, 4096],
Rational[-526611, 2097152],
Rational[-96027, 524288],
Rational[587283, 16777216],
Rational[1171233, 4194304],
Rational[419534925, 1073741824],
Rational[18248187, 67108864],
Rational[-335708823, 8589934592],
Rational[-395170893, 1073741824],
Rational[-67821141513, 137438953472],
Rational[-9826998495, 34359738368],
Rational[201642365301, 1099511627776],
Rational[177645378141, 274877906944],
Rational[27276887972865, 35184372088832],
Rational[1746181377741, 4398046511104],
Rational[-97983031410591, 281474976710656],
Rational[-18022391804547, 17592186044416],
Rational[-5092816038278091, 4503599627370496],
Rational[-493267808474247, 1125899906842624],
Rational[27880930799380083, 36028797018963968],
Rational[15988982395587381, 9007199254740992]}, -1, 31, 1],
Editable->False]], "Output",
CellChangeTimes->{{3.741619426026781*^9, 3.741619465073104*^9}, {
3.7416197233617496`*^9, 3.741619744895198*^9}, {3.7416198404476213`*^9,
3.7416199099316072`*^9}, {3.741619979581395*^9, 3.741619996226169*^9}, {
3.741620115296801*^9, 3.741620144002248*^9}, 3.741620269913418*^9,
3.741620339729007*^9, 3.741620569883504*^9, 3.7416208693644943`*^9,
3.741620911890593*^9, 3.7416213768448*^9, 3.741621410282361*^9,
3.741621556742587*^9, 3.741621877823921*^9, 3.74162198431559*^9,
3.741622045892434*^9, 3.741622104741446*^9, 3.741622158633239*^9,
3.742146894211347*^9, 3.7465371167607183`*^9,
3.7467255897809677`*^9},ExpressionUUID->"8608e278-a547-4c3e-ade7-\
fc8264d4be5d"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"Monitor", "[",
RowBox[{
RowBox[{"\[Lambda]N", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Gamma]", ",",
RowBox[{"SpinWeightedSpheroidalEigenvalue", "[",
RowBox[{"s", ",", "l", ",", "m", ",", "\[Gamma]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "0", ",", "40", ",", "0.1`40"}], "}"}]}],
"]"}]}], ",", "\[Gamma]"}], "]"}], ";"}]], "Input",
CellChangeTimes->{{3.741620927689322*^9, 3.7416209885221987`*^9}, {
3.741621663935389*^9, 3.74162166640783*^9}, {3.741628862375149*^9,
3.741628862478496*^9}, {3.746537128564168*^9,
3.7465371287304897`*^9}},ExpressionUUID->"0285ad38-c591-40ad-a173-\
5e55476dd830"],
Cell[BoxData[
RowBox[{
RowBox[{"Monitor", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"diff", "[", "n", "]"}], "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"\[Gamma]", ",",
RowBox[{
RowBox[{"\[Lambda]N", "[",
RowBox[{"[",
RowBox[{"i", ",", "2"}], "]"}], "]"}], "-",
RowBox[{"Normal", "[",
RowBox[{"Series", "[",
RowBox[{"\[Lambda]HF", ",",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "\[Infinity]", ",", "n"}], "}"}]}],
"]"}], "]"}]}]}], "}"}], "/.",
RowBox[{"\[Gamma]", "\[Rule]",
RowBox[{"\[Lambda]N", "[",
RowBox[{"[",
RowBox[{"i", ",", "1"}], "]"}], "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "2", ",",
RowBox[{"Length", "[", "\[Lambda]N", "]"}]}], "}"}]}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"-", "2"}], ",", "maxOrder"}], "}"}]}], "]"}], ",", "n"}],
"]"}], ";"}]], "Input",
CellChangeTimes->{{3.741621135123598*^9, 3.741621268039382*^9}, {
3.7416214349564342`*^9, 3.74162146087668*^9}, {3.741621505483753*^9,
3.7416215055707073`*^9}, {3.741621558161501*^9, 3.7416215595544977`*^9}, {
3.741621636153268*^9, 3.74162163759278*^9}, {3.7416218995780277`*^9,
3.741621914580328*^9}},ExpressionUUID->"958a156a-9c9d-4860-b409-\
e900fc41b43d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListLogLogPlot", "[",
RowBox[{
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"diff", "[", "n", "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"-", "2"}], ",", "maxOrder"}], "}"}]}], "]"}], "//", "Abs"}],
",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Detailed\>\""}], ",",
RowBox[{"BaseStyle", "\[Rule]", "25"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<c\>\"", ",",
"\"\<|\!\(\*SubscriptBox[\(\[Lambda]\), \
\(num\)]\)-\!\(\*SubscriptBox[\(\[Lambda]\), \(HF\)]\)|\>\""}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "800"}]}], "]"}]], "Input",
CellChangeTimes->{{3.741620991835037*^9, 3.741621032333761*^9}, {
3.741621279358345*^9, 3.741621314420333*^9}, {3.7416213630349293`*^9,
3.741621368368626*^9}, {3.74162147254919*^9, 3.741621472986781*^9}, {
3.741621513948225*^9, 3.741621523361362*^9}, {3.74162164108926*^9,
3.741621642248857*^9}, {3.741621925859523*^9, 3.741621965506268*^9}, {
3.7416220840000563`*^9, 3.741622089845955*^9}, {3.74162854561904*^9,
3.741628552094369*^9}, {3.7465378082191753`*^9,
3.746537814344727*^9}},ExpressionUUID->"1f4c9f6b-2b4a-4f1c-b98d-\
e496b6865fc6"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.002777777777777778],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwtWHlYTu/zrt59q3c5pxKJbFkTioRztyhZohWJhLK0SSKljwohaVWSSCIt
pIUUUoiKRJLKVkkhlWhPy+/9XV/nn3PNNfM8c889z3Nm5kzc5m7hKCcjIxMm
KyPz/2/S+s79LGe5oosx+z/VzHtfOP9Me59+0UDhxV1tJ2LaKqmJ1wuGvA27
CkcnLIq68KaZOtjQ0AmL9sLrz9qz1/7soH7pDo4YzGkpdKtT22My+IeyIAIG
MzY0FPpHkHPX1PZQ66jGyU+q3hUeXj14KMiwn5oQF1fSF1Ze+Dsi9c9H20HK
Tp878Xv/vcKICkioeUOUzL/HPPprp3HNMFVuvOQQ5ZRH+cm0+iRbjlJeMV9F
62xKqATaCzuD9TL4mN/oG/X8NZV/Rs7peq8MwhZI6h6frKY6KlUTVINlsTq2
sG1SVx1l5Kr1d61EDq+mTlMJJj5T3ZM0ZsdEySEilRjzfbCBkvf72MLm01D8
u3ZwyqsvFD/+7epwPxo2eS+dLgr+Sm2s9ffv+E7Dv3gpp+hgrxIzOtycfmzr
KvhGXTi46FPyLTrKHk/s4Or9oCbOK8ik8xnY7evB1rreSmmopOat2MFAiL0n
rYbWRpXlXrZ8mceA9//4pMoUotIbOUx8Uvz5ICSqg1JKyfZ9sZ6J1oJFv++W
/qIMhDv9S68wMbb1kbbFoU5qCyV3VeEnE2ILrQnynN+U48qdvZVzWeDRbvq0
RknlD/t89PazcOrG3TG6Kn+oZgefSs87LKS3MJlG8X8orxq7F5e6WThYgn1m
Kl1Uz4HFDR+12CjyYIVEn+2idM7XnlvlysbWpXfmmPO6qcuvmxsZ19moi/5x
+PZ/3VTI5kyHyfVsrGvmOnZ0dFMrzm67VUByMKVuLDHDroeKN/UKb1nJQYDH
tY1hz3qooeP5Gtn/cf7x10v1fh07ZV4WB3szsiU7o3oplThR44EvHGi+/j13
bG8v5b/jwIkwMRd9swtvH7bpo9pyAzSD9bmwGznTm3y7j+p33dLr6c7F+B8f
vXKE/ZSc3XtyYzwXN97fod3b008tfBbeb1TKhcHCu99eP+6nLJubVhl0cfGw
XEdWMGaASh3lCzep8nCMO/g1wHWASjP2T4415uHf+afefa/9THPnoWr9whNb
RIOUvaeP3LUYHpxS/nz6tnWQYrvL1x8t4GHGq7oN7RmD1MeW0VfXm3ho9x3j
7fd3kAolxCVKHD4umwf8umb8lxpOmmn1fjYfEhZ1xzP8L9X4yOVGjzkfuoWr
FLpq/1IPtyVlunvxwXXPSNCcMET9fTGna00sH3l/s9wXOA1RdFuHguh7fMhN
mDHISx+iaHddidUf+WAz6xcUdQxR3TN+FngN8xFQtuC8rdYwNWjz11BpvAD6
uRNnfd03TK04qjKwYJkASbRjxx1zhimdK1f+vtksQNrf5nctf6SyCVu357AA
bl8LfrtrjVA67Nq9CRcEOB2nvYbtPkLFCn0WVucLkBd6jHc3fYT6K3rUf75G
gKKi5pHAbyNUjY7pYGe3AOtt52XsUx+lNA3SN38SyWMgU2NjiN0o9SP+hPq2
OfKozHYaqo4epU5lu2gErpSHGzne2rpilGpNuzAXTvKYLGv0h0WTwWnDjPpL
AfJIyg89dHy8DLRWTCi8HC8Ped/ysmu6MujteLhsxV15bFNosnC2ksG6qTK5
5yrlsdQkwqXWTQY/cgwdI35K/QnS1v86KQOF2tEDCxkK8EzXo7KvyKBb7oNM
yHgFyGRd1Z30QAZLmLfpEQsVcLv5nKlRtQzk5eM8VqxTQIen0F6pQ4on/M7k
27sUEHVg4YZLTFlMM53UWu2vgJFOPbkP42Uxe9ljv1uxCjg4ZbzKKx1Z1OX3
nDbIVEDoDPc1h81kcUhglx1eooC0Mwy9r46yeN3k43/hswJqiq57sv1kYVTr
4L2jR+Hf/ZWFaDjxRC9DiJ07op+dTpPFDGf6+rEiId74nn/UXiSL3uetGyaO
E+L5+nnPRTWySLI10eFME0J1Rtz8gTZZ5DqlRlZpCZE12dj4mpwcsPcgP2CJ
EB+6N0JJWQ5vVkxdKjYR4r0BabNuthzCrFzzT5gL8TBKL9vcQA4b1bxFXzYJ
od984MC49XKocCMrJzoJofi/eoGWvqYjJnuFWK0WGCn2l4P2x8OJlj5COC62
peGsHEKF8XeMjwnx+M2QvF6KHCaVGy+aGCrErS93M+gP5PCfamdi0zkhtCdk
vb34Sg4ORRd2hiYKITow04XVJAdls9HBielCJOqWbTTolcOX+sTnl24LsW/1
C9+1HBoydAf1GQ+F6LNak6Y5joa2iNNl1iVSPAuP3G2aQ8MHjmxJ+GshZnd/
cHfRpyHsu8nF3DohGOItcc8tabidmnKj5IsQV7Ky+kccaVDu/GxR/FMIZbcd
JlxvGn7umfvzRrcQ+6dIlrWfoqHlfmBFwLAQss+iw1Iu0ODtvNfSkCmC8eLp
rUtu0hDUZ1fxW16EDSHn+tIe0mDDPhlxRkmE8PVbNne9oqHonVq74gQR/C5V
PVBspKH9pYVmqIYIgWNMc8g/0v32bb3aNVcEf9Gc951ydIhjU2NMdEV4WKtZ
kiKhw7Wj0CxYX4QlXRv4yybTEdi+X/LAVIS8kTmLshbQQZ/+ffoncxHid7+q
lltOh444urp9owjuLJ7rfGs6lDS3buhwEGFNuH+goSMdW18m/fm8W4QA5dxz
873oOLxwSVOhhwjmIVoz6cfpWO0RtTPikAi39MLz7pylY3ngjfuWASLk+F/M
W3GVDq7FHBXWKREMT+9KLMihI3Kc24P0cBEebdrYQjyhY1fgoff6sSIQvUb9
Zm/oOKs7Ib0sQYTaav/lLo10rNk+vN3wugiTb/TounbScTzYX/dWhggf3bQo
i1E62Gt7twhyRVB45P1grDwDH4rCmVsKRLh+v0bx+TgGtN3dHRKLRZiqOi9r
80wGts+5nlDzQoT+Fou2d7oMXD1n2ilTJcIJt79TdVYw8HO5S4DqexG+fvtd
4GvDwJY3mv6zG0VIclfgp0jr8vyoZ8pa30WYf37Nnvv7GDio5ntA45cIJUFV
mrn+DKjH5T6R9IqQECaXHRvKQNUz5oyuIRGMDgUabY9nYG3rpDfPaGKorVij
q5jGQI93b1MoV4yI9HsNWXcZYETHB60SiRHMOX1K5ykDhVvcG4aUxHCf/cf/
6hsGhMpspaTxYny+mCgeqmcgUXX52mVTpHL8m5NL2xl4lWt2s2KmGHnVa2ft
HmTA+OEFK6t5YiTd/8/oCIuJi5N7d75aJMbq+F1K/gQTPmZHOKDEGLv7yQ/n
iVL92tu2ycvF/+ovEyL6vsNyq8VghmifZ+gx8YU9EGplIYYvtX0gx4QJ1+jf
WfEbxGi0XmZvZsVEhI47/cMWMebut+FUb2XigUv3VQVHMaxnKGmvcGViZPaB
rMXOYuyRezU+5RATimvsTew8xEjZmCvbc5wJl2dRR/cfFEOB0aukGcnEaJdn
4FE/MUKe3IyzucQEP7Xe/tRRMXyODD5yTmPCTkd3YdApMdQdhordcqX6Dbsm
+YSJ0ZXzsc7+MRPHBZ+WOUaL0Z9QpU1VMBFoF5lkckEMbv5sgeA9E49Ghc4T
E8VY6WgeVdbMxCS5fRl/ksWYOq54cP9vJhqMHYLu3xDD4Yiml8IwE56jarzD
2WJYrnWaf57NwkeFE1YL8sSI09vtKCZYKHfg+HwtECMownmxrxoL66flRoY8
EQNlNQ1VM1hIFejdmVUmRtMfy6BxOixYbW3pK66Q5pv+bL21Pgspqql7rd+K
YcbdEPDfahauDSlrf64TQ1/38JzY9Sx827HP1r5eDOOWzlNXtrEwdmNcT+1X
MTIdigsuurKw1mrC2FWtYpzP29B1ypuFBBXU3/klRrLdTsudR1mI92uyHtMj
xqwcOlMnlIUK4mqk16AY9iFJ83pjWbjTWp7yfFSM9UeVZVKSWEgab5euzJAg
w+Ti2VUZLJT60m/acyWwqawiG/NYKGFoFiUoSGB7pCxl1xMWJvsO9dYSEixW
H/T48pKF2pfG23kqErj8sYg2q2XBIfKK4kI1CQo8tXVufmHhjONWdbvJEvQt
9zk40saCmWnoOZ/pEkQ0efoa9LFQ198fFDlHghdmv7cfkmXDZsFs2avzJSi9
CYskHhsb6IcUby2SQPud1s4ikg3XnrZ3OUslaCxVfvJajY1vqzZbZBtI8Eb1
9fG309nQnrs9Ns1EgmUO9ytezGejrWpzXvxqCZodyh7kLmWjOMzz0UlzCWZ6
HHCLNmEjfzDysZuNBNuiK2R3mbNxZNDzudkmCbIy3M/O2cRGwMvYbxpbJWgI
PW34YwcbEfJrNYZ3SHCG3joz1k1qn50Z92K3BHLvW3frebNRMHp19Vk3CVRL
T4ypCmBjmX/jqvWeEkRvtrGxP81GXnvrNcJbgo73p/QazrLhoay4q/ywBHtp
PU3Wl6TrS08m/BcggWcTb0+RtM82v7B448wgCZaENH9Ty2IjprYn8U2wlJ+n
Sw/uv8cGabIhaH+YBHdyD2g9fMLGlIEqseisBKmBcZrD5Wz0kZmWKbHSfNbb
BWu9Y2P6JY714osSBFweZ7tJ2rd3znyrXpIogYZec67PdzaYt96XmiVLMB57
88J+s7FncpFFZZoEqJh6IG6QDfWVMuVmtyQ4O6TOukDjYNSskyrJkeJfohUY
wecg/r/C/MV5EnTmVA77SeeA6B8HjVIfSPAtXDd863gOJnNHW8WPJPCzslqr
O03a5zsq5h18KsWr9HQdey4H36fZ5daUSfC49Fvqy0UcCB6v6pxXIYHetjfu
p/Q5+HJ42d5TbyR4q2JzV086VwzIu+DDO2l8YTLRXy2k+lk/92h8kIDfMk71
2CYOKhSzB/bWS+Npu71dZYf0UzjpXO/tJgkGZkUevu7CQbWxuXP3Nyk+GuU7
04sDs/PeDpptEoxcZ3km+3FQXBP0xbFTguPz/h5QDuIAX2v6znVLMJTQdj4g
lIPbBmlpT/sl+PjCs6MxhgOnKDX6ryEJdHd2BOkmcNDAXSogZAnsavX3Onmd
A69vPysWMAjkBSiVV9ziYPfXAXNzDgHPHqd4fh4HpWljEnYLiH/zh5Rfqumh
n4hAZkfXL7dSDgz3vc0/QxJQ7j8THfWagxcG5rHnxxCYGnNh4FYtBzJmV7cl
qhJojS6bVdzAQZTW6IRrEwkc3RdJvf7OQVynz4erUwiUjacM3nZycN9aOe7y
dAL8F9+MXvdz4GpZtCN2NoHh5P3ri2W42LTNyDBEi0BVwqVTmWzpHPZpy9LD
2gReqnS2nhVyYWqfY7tLlwBx42mwhzIXI+SrK+uWEpj53MzbeAIXT9Wmq2rr
E2jzC30s0eCC/lm9klxOQFPBzrtOk4tuU/azPyukcsb2lHMLuVA1EdLKVxMo
HDPNwYziYk23XVjiOgJ2BiOZw8ZcyP/96+FpRWBpq1LyNTMuzn9qydLfQGCD
gY+ZsQ0Xmw1pNnw7AuHHaHn1m7lQM5rkWGVPoDd4T6eHIxfpWYyWmO0ELHdQ
jGEXLpZutam32UmgvfknLWA/FydcM9ZLnAlcXnx7YNiXi/1BZ63L3Qjscb/b
5XmUi9SZfvUB+6T+hn+NfAnm4lH387/zDxCQMV+gsSqSK+0nKjK/HCJweu3C
wzfOczFsVkoP9SOwtu4ki5UonUsrmoe1AwhMWhnzzjaFi/iXRlfeHyNg35fW
c/0WFxGqf/p8TxK4kt65tyOXC331VrpKCAGnCXut5jzk4hJ/zKvbYQT2e4lu
7HwqnXvJTXarowjoJMcfjSvn4vftw9kNMQRow/ktz6q4MPq8uMYjjsCOY38a
2t5zcWS+4evRiwS2Hsj043+R8rd0QVJwIoHPqVTplB9ceCRetBZfI6A28vLF
ok4uDK1k2mNSpPbFzlHL+7jQflXhpnyDQMY0/ozVI1zQDFwbYm4R6I48Hrea
wcOLYi0TcQ4BQzLylzGfB/qpHSnBuQQOFL+aryfh4SoHHJl7BMaOf+QxXYUH
58W/3fYVEHjm9DJHNJEHj9xznxuLCBSx9Ond03j40r58s1mx9Dz9XOP6eg4P
gxaynXdLCFx4xxtI1ubBIOjxhfEvCEwr9s46uIQHSaCXY2CF9DwvPnTZwJAH
26cD5k2VBCov175ireQh20/dSb+aADPW1LRkHQ/FmbnJ8bUELpk6KQas50HG
0UO55wOBn/czob2Fh+Qy2aKV9dJ41KMqm3bwMHcL78rFLwRsZ219E+LMg2jM
1CftzQRMrCxXz93Hw4czn6fp/ZDqZ0asqPDmoVCc+/Z4G4GL16a9djrCg1+z
esXLXwQW7JBvGzjOQ+7acGVJF4GAkanXToTwkPZ8S551r5T/lUvpwigedqt/
zYoeIHAvkSWOOs+DZ6wzp2qIQOmMaTXCyzxpfdZ5IpAhMUlFw+5UMg/7hw41
LaeRiOkLSB26wUPM9+1uvkwS1g3nSvbkSPHNVdyVwSHhXJr3sCqfhyM2qW8/
80lMu692bmGRdD9iVh5fSCJQpXtDzDMeOP5JioskJCI+mfI7y3mYM5nXvVWR
RN/LiflGVTw8Ure2OjGGhHvx7p1n63gIXrdHL30cCbuvQ+Pr63nItJhxs1yN
hN+7pG+TW3hwu+9886c6iXQ5ssyxjQfLqUMUeyqJ8tLu54l/eBhrdXmX+nQS
lXnV3bX9PJDGxMzFs0j8LFtkxhvlQX0j7/RaTRIt4Wc+L2LwYbl1bsi2eSSy
vebddODxQRROmeepLeXj+/5Hx0V8DAUe9w9YRKI+KkL9mhIfi/0afc7okTgd
dbumUJWPS5ueTD63jMTCpIFv1ZP4MHh0I+CSPgm2hYvtt+l8NGxRik4ykvIz
n63TrcnHQ67XtmQTEr2C/IAhbT5W1Gq2J68kES7YZCSzRIpHM23RtTUkLv26
d2xUnw9m07IVietIuM6LMR004cN1hb7aBUspXwYXzneu4ePe6uGiSBsSg8m7
fb9Y8qF9+u7ckxtJ7J8T2fNqIx/vtt308LUj8XbMOfl8ez7O8sgTLvYkgkza
yi868rEzXXX/pm1SPjf36fznzEfvnl96KxxJPO1SsLT14EMuOL1x3i4SL+4f
mTbvIB9HPF12jXUmkZgWeI/hx4dz5fIqWTcStAkm4upAPmwvG01p2Uvik6Bj
weWTUnwG7g6lniQU1U5r7AzlozLqaXDKARKvPk3umn6WD/9BXA06RIKsux33
/Twft33fZm47LLV/Pm1KUgIfSeUuOUuOSPHkbY7deE3K347ODCKQ/Pf/ig+X
MCq59RgJQ5HVunuZfBz2WxD/8ASJB+tjLu/I5cPJJikqPJgE60JCJ/eBND+m
tmFbz5CwDxAb33zER+jFiZFzwkmYVx5PXlXCR+6T+5cGI0kwoo4ptZTzscWx
+W5xNAmhVuilw2/48PGybgiJJfE8VlFfoZYPDRSoWF6Q+rcNol/6JI3fp3S3
0iUSBSWLOzSa+DA0V31dd5nEIyKIlvldyv8hu3VxSSQe779lOr9DGv+yie0b
kkls0u16mt0l1YfLppKpJGZ1BvrNGeDDnAgNep1OYqn/ca/kET4S5lqcPJVB
gjBRylGhCyBQfZuJLBK22iv1TnMEqPl1Vq43h4T6zymSfnkBnqcL/VNzpfeh
6jrlQAjQtebhzE35JFL0nzx9NkYA1Q8KbN4DEt0nHdI01ASY5rpPKf8hifcq
2/4ETRZgJszsHB+RqE6Iu9I4XQCfQmadQjGJN6KawkWaAjhHDoblPSMxVF1n
FrJAALnUo0fty0jMeLfJ6qOuAC4r+u7Qy0kw4/jVGpQA5krJ01MqpOvtI6s9
jAQYnv6xwbSSRPOCYNu7pgI4yTd++lFF4p3g5K4BMwFotX3qJ9+RsPqsSF9k
JUDATPvsyXUk7mTmaXluFMBqpXlo4QcSCwpaetK2CKAynp6/4TOJ7/4i6/rt
Anw1TF3Q2UBiz9vLlsLdAqxTcqMFNZFYJNfds9RNgOAC32kqLSQqPjpgl6cA
4+b2XbnxncS+t4sWhnkLcMNE1nvpTxKl/MLP2X4CnHiWm1LeTuL/AAeOj9U=
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.002777777777777778],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw1WHk41V20Np35nMpQGqQ5EspYkn4ria8+FJmSIomiSFRKCqFEyDHP8zzP
hEXIEFFImlBKJITMdN3nfnf/s5/9rL3Xet93j2tvMbXRvsjFwcHhy8nB8b/1
at3CZ7lWXFUj2Tzd2+dJVTJPfk0frppFtMl121rFUbUluWLB4cgEllWcjzSJ
n8dbvb1joP0Lr02Xxd9PnsZRhbklZcnvWL6GS9AwbxK1BVzmsgx68WmXnW6U
6TieJPq217S/Ra3gCrK22xhuDgurn/ZtRsblh//Ujf1Co8P0LT9mytB0uN/6
ju5P5PivPLu/VfXEhkFsVj14mzAvISrktRpTJAfwRlA/70m9esKK5OFMd/mG
H0v7HNlNbcQqjV9y9pR+9JXl737+qJPo6KJ8Miz9guohOLxtoptguLXILvj2
YetOkfWPBT4TeYX0wUH3ZZypAut+zPUSfzPCx2wkerD297u5Ha1fiNV3Drq7
OX3CMw5Ku3gf9xMcHHJ3uac+/D9fQtBpK7n76Xu0Nh80nagYILxXDzKfqXdj
4/MtI3TFQWKAxVnDve0dXna0pUolDxFGnMbnAni70NvYjruLe5hQzk0erVj9
Fh3+T09C1yLio6REJ35a87Pcmz1CXMuN/vlVtwOHKvb/Lm4YJQT2LK0W8mnH
DUPVctq3x4gsRy9PzY43yKcttXkF7TfhUfbcfKvIG2RwZ94ZYv8m6jp1vlq4
v0bPjOJ1CuvHifyUN958I22Y/p1MVokYJyzKft2QNWnDW/VwXXP9BFGUtaQ2
WdiKVbYU78CACcLUVVZe89krNFEqlNRiTBJGg+s/7Ghtwe7AwbsF9yaJQeyy
1RhrxpPf6BdHRpbte50XCzc2447uDQJiRn8IR/fIACu9l+him3ja98UfIi0C
Jf1Dm/7Tb4o4ZCHXa/q9Ea9l5fFbsKeITzrn7XYdbMQ9bb/3bpiaIlYWftRS
DmvAaQksuKs3Tdz++D53LUcDGi09mUoqmCZMPQWWtl+tR+HBjzfyV80QvM60
az97X2DG+0LuMssZYs+R1M45wxeovK94oO35DBHg6Xz35/s6rGyW52StmyVm
XS8rnTOpQzf6XL/L1Vkinn47YX6oFv9b/0T5lLOU3Z1abNff9/Ac7xxROsKT
dWdFLZqnjH8aMJkjdNtHA1uSalCstdvgV9Yc8USu2E/8SA3+clzn4DQ/R0Tb
/5wx+vocY7RcRhNV54m3kg7XRB8+R34KUWjnN0/sTON3NpJ8jgr478qJd/NE
zQkfaHpXjXSbrOg9mxeIa+Gfmaoe1Vgyn2sja75A9K74qZgsX41cm8XmGOkL
xCGU6asfrEIquUe2amSB6MkPYbtFV6FLo2yoodQikb/XX6FcvwoPF20R77++
SIwUq7w/wVeF8dxu7hfzF4kpcvc3lSjEtPlvb7+PLxIlifoxUkKI1v0Vv22k
logaSlqndFQleoXJaVBtlghl/zTftdsrscTHjVGcvkQ4Gn8uLMyswKqqb0uu
A0tEj91cV8+BCtQ3lM66vvUv4c6eXbB+WY6zOaKnvY3+EvliWjeVjMvxdZ75
QmfgX2I3rbdIZOoZWq8W1tV99ZfY+PCgBNPvGW7nVBmncHNAjCLvlpfizzC+
1Oe2uzAHHOgl2KrNZbjCsbkxUYEDNBw8N5taL58bK79qW+lwQOgNl+9c/GWo
pPb0yjtrDth2I9hyZVkpvmal6Y8+4oBIK+oDmwulaJeuSOTFccCxKu/DzJWl
yJGboLCtnAPezUf0tJaXYMG34GMqnRyQbyaWkXilBEfsVhkLjnBAqlTG3G3h
EmTf3GcQReaEX2Nm/AfeFOPSmCLXB2FOSLj8YnvHw2K8tUN4fas8J2yI+ii3
jyhGHzEbjbuanHC/OG3dqZkiTHtCUuy/yAlCfuYX1uYXYVdVsh3ViROO/+ty
xsGm6L/9ywll01f+mEkUoYVZ4AuvtOXxcatetA0X4hvH0OpfVZyg/+DTXFZm
ITbpSzfxdnGCDt9trQmbQtwoFiYzO8wJ05/HVvrLFGLudlXVRC4uODN+dfH+
TAF+mDwNgmu54LfxuTN5lQX4Xnm13kkJLki/yuwR9ijASrZinpYyF/Dbhqc/
0yzAw99u3hTS5wKNrRfU768twDX/d1/ARGlctsnXfFTf5OrP58wFacXuW/Sz
8/HiAUNuCOCC3lR7NcO7+fj8zcIKxRQuqKrK2GB6PB+zvxRn8ZRzwY6z6wbN
1+Wj3ObcjshWLqgWs1I7P5iHvDd3X6F85YKHaZcEj5flYaxC42nlKS4INrW/
v947D6+rv3Q8QeMGlz1Hf7w8l4fTOhppe4S4ofpmy6y+dB6q77tf/FWSG27K
a4aUkPNQYvKDzZXD3GCwk9038CEXSXznwppOcYOYtq5Yb24uxuXmzixd5Ibf
NdXz4Y9yca21mRrdgRusObfyrjHJRfsd/Id+eXIDoZage2x/LnK+CPRNCeeG
sqeHv+zlzUXVA7uGDmZyw3wiztcP5aCBd/B0WiU3HLjSsopel4N++ufOTrRy
ww7G/pLx6Bx0imovX9O3jE9jX7aTYw66rjuWv3qcG5YmW7uS9HPQmVfy/RgX
DywUHN9nKZuDle/21Kfw88D2+MrJGt4cPDhhwDy0nQdkSUbZJj3ZWLIkuT9X
lgcell96oh+RjRGXWzu5jvLA+Lin90XDbLShMK7K6PJAu+HvkQfrslHDz9n1
yEUeEMjtkMjozkKXtUXBMjd4oGmH8nRXWBZqeUvt5nHngYlXK8Q5z2ZhtqJf
SWEAD9x59unTls1ZmO8cWfJPAg+Y6xzSkO3PxCNel2Ir8nlA4lXvgHRqJlaf
Of1doIYHgu71qK61yUSBKZUZzTc8wPq7QaJHLhPfdTofvdLHA2y+bHfXxQzc
nvFH4eoYD5zTszRdrMvAj9ZShPZfHuDqsJw77puBK6sdyjesIAEp+FmK+ekM
TH7WtaZJiASqDpSf/27PwJ0bpXPP7ibBhtOnTaZG03Hmu/bwWwUSqAgO1Z8v
T8eH1vM75f8hge3j+b+enunYP/C7wlGPBPsGkMdKPx3jbVYyU8xIYDOsPsqx
Mx1lQjUsn10nwbRa2KTanzSs92jfU+RMAoOUx2YH69Iw2pcrL8SHBGdmllLe
B6ahym1XlQsRJOA6NqGyySINN/2jobAmjQQDEwntZIU0fJpe1ptbTILUh9UU
H0YaPqZ5ecrXkcB5dVRa7udUtJEYd054QwLBuzfDrfNS8XNkLN9CDwmMtApe
VXsstyPePFL6RYI3fEoaKWdSsaTzhPjlORJEqtbLbJJKxfhn91TuU8hwV0k+
bxslFdUjLgk6C5Chd9cCPf9TCm64XDNotYUM2464+jcVpPx3/5LBMCcoy8I7
BcnecqEkRTLwzfV0PjRLQUfiwmy+Ghnu1er6iiqlYJ/uIWNNHfKy/pW2amtS
cK+9Hq3ThAz77khv+zKajLpignL/XCUDl3ycwVRjMlpytQqn3CbDuUXTTpeE
ZEw5XcT5x50MhQaVlq73k3ElaUpwjz8ZFDZ5TP8xTEbvmswwvSgyHNDNsHgv
n4x37s9VW6WRIaz2c74EfzJuPb9Qa11Ehg7RnX2/RpNwIv9jt/FzMnTVP+JY
15KEM9HtcsQrMtTq5EhmpiUhvVSCxXpPhsez/uyUR0l4/KIWu/EbGaLMN5nS
LJJwp1DtnP1vMmxp+tnVcjQJz9/fc2PlIhki/QYOTm5PwlMnzGVCqRQQerPy
6x2eJAxTvHyRT4ACZ7R27jTpT0SPp1YHHDdRYM+EpVVcbSJCY1dvuxgFQgL0
t0BiIn4dP+UhJE8BI9FzuM8jER/zvNDXPUyBPlJq3UOLRNSkG7jcU6dArPan
csljiXhY4a5kiD4Fuq73yO3enYiq38c840wpYHYltNGRlYg552srIq9SYJ9Y
zdpNYwkYWmIw4elAgQnvjJf87QmYZGRxyuIBBST20/wNihJQPJ+HLO9DgeeM
yq3DoQlo7B0vPRVCgS/7cxRbnBJQ/8FajpR4Cqj2B8bOnU/ALLXIgH+zKPDx
aMMmO9UE1HvdvrqvhAKRCoKP5HYnoOH9xpRLNRTwkI7Kg1UJeGDrnO2XFgo0
PAhzYv+Jxyvj2oGa7ygwOqHcIv4hHivs5OQzv1BA60mMF6M6HqeP3rm1NEyB
2dhLKZLJ8fj0q52j8jQFJKe61gY+iceXmr8v3OakwgGab5eSfTw2ZIJ2PIMK
0dds+kXOxKPcWymLqtVUmFO6o6KtHI99DWtr2jZRYYVZNmf5rnh8s7HNvWMX
FWwERsTMeOPx0Plnr17KUKGC8bb92GwcfjvfWF6kRIXw2lSBK31xuNv2pnWg
GhVWPZaiNzXGoWngK85LWlR4ZxLdaZoXh7lZNgGSZ6hwvdouQi48Dnt9vI4M
mlEhbP2FR4fd4vAJz9DuEGsqdK45WO9+NQ653g9dVnSgwkTkq8ec+nG4seHh
unYXKnh4tVMLIA4Dz+rpGXtRQX1N550IsTgcee+p2BtABZ9eQeEygTi8xv3n
q24UFeIz3WSYf2PR7ivDsiqZCvxF/n+fDsbiQe9vA5tyqbAQKN10vCMWG+qU
btmXUeFwW+lnOYzFwqKbUpU1VFj35ZWXdlosprqG7VlspsLuL7rbYgJjUa/H
6LHUWyp8Szo7t9ElFl1ihAzP9FDhlA3r8ssrsSiq+K3ozg8qJDDYTckGsSgM
10p8f1PB/D6vU55KLMKrnTfD5qiQv8Gvb2hvLAYsbKWEc9PgN2PozMmNsXjt
oJTrUyYNsrUrtb/QYnEs//Wi02oa3Jc22RMzFYMDfgp+JsI0kOZoOOv5NQad
dHROKIjQ4Kahm3pkWwymCtadpO6lAaM2/cqHihh83jCQ2rKfBtORr6SOpMeg
oukbG8/DNNC5N8jbERKDHev1ihWPL/vr03d/4hGDer4cgf3aNEjZW0+2sY9B
5nehjW5naBC9RYzfwTQGhYcLLqw3o4H4hYxdKSdjcFbc/27yFRpsj0x6uXRo
GR834bj7Bg0cy/3vOkrE4FIyxS7JiQYtjzmebxSKQXfp+ZtrPWgQ7/N42zd6
DC5ED4e6+NBghXmQbtxENH58aTfSF0SDVPOEF89fR6OCxYiHQjQNngfIForl
ROOlIecbj5JpEKeyRHT7RGOJi2Dzq2wajJAtPFuuRqPdH/MIZgkNjrvYFJM1
ov/LP2hQWhEz8UA8GnNGJkatG2iQ82vWUoUZjWtnngSy22igEvVZQ204CncG
hc9mv6PBIwNSm1dzFA4FNorX9tLAJtNclDczCh9c9yfaftCgJln86dsnUdgo
TCh3jNGAKyFO7YN1FDJfDqi0zdDA7NEOb+GTUbiYZK9fy0EHxbMCcdFSUdge
HeWZQ6VDIVS3nuWPwpb1Y0MBq+igV2h6zuBPJApk1D22XUuHFDVSmE9XJO5u
0nRQ3UwHmUdOr/+WRuKwk89zflE6SBga6qVHROKelUYO3XvokOnXddfv/nI7
60JK8D462H5oC88yjURcJ3Jek6DDQY5CJkk1Eo2Ul3IWVemQdPb2bvauSFQa
EkxK1KTDu6InegasSDRQvqOpqkeH1qNtI6d+R6CfG3dJz1k6bORz1XfvjMCp
x5ZjthfpwHysOPWzNAJPmRGkxSt06DnbJ/0wKgJ/ffvJ7WK/zC809JbegwiM
OVAwu+i4jHexau/pSxFoaVM8YfeADta+vc0+GhFosDi69OUxHcys48unpCOQ
Q0tW9F9/OlzqbL7utzYCvU7su5sRSgfqOUmzM0vheKL7EYUSS4cp+yiKfn84
bjse9NYwhQ5feUY7XZvC0Xg67U9yNh3CdPqPfc4Jx7j0sWsjRXTgXiveeyk4
HM03X9ORrKTDkVwdwa33wtH+Bm+GRR0dZmJrbWgXw1E+KeJBWDMdQnfnWQmr
hyP3Yun3F+100Bfa4GsiE45mbuO9w+/pENdYbty6PhxNbuY4Mb/QYa8s86Il
Vzh+TiUadgzSYb+BpKjUUBhuWmp5uX+MDu0JYzLb3oShSa0V++g0HaIjqwWg
LAyzRJhi6kt00IxNNXgYF4aT/u5h6iQG+L474jvzOAyPrPYfVWUyIO+f4mNs
uzC8Wdsqo8jPgOPMnPX6RmG4Qbjadtd6BohlGgQdORqGL8xb8nm3MMAm/pS2
gWQYVlEO80yKMMDtT8G3AMEw3P1T42qbJAMmp+d/zHCEYfhbxmySHAOE97Km
HgyFokitQ+6tgwwQ1BFPkesIReaB2zHKR5b7W06FsypD8XXMu1bKcQZI0I1s
GCmhSA45dqz+JAM+5oRXS/qHYtQx8zUu+gwIIg7K3Lobij+f5YDcOQYkelPM
+81D8chW9uuvZgxYwU9avKEViobiJm+8rRhQU24fsftgKKrpnFLfe50BkS8a
B3lElu27n/7zyoEBdZWJXpx8oRiZKNJmfp8Bp8Lbd21ZDEFZsxXDs+4MEB9U
vnrhRwi6LO1MfOjNgEv83BwN7SG46bgSzyo2A3qqDz3RxBAsi6XwsUMZYKS5
r3oqLQQbxES6VsUs208sp7BBIbhtvaiRZxIDZA4+a09zDcGgaZfUhQwG3BHm
X1VkHYK6vcH1lvkM4LtQktVnGIJWDSWV7aUMCCkSOi+hFoIizzYF76tiQOlc
VneITAi6rp80CHqxzE+96+W2zSH49NMx5ljz8vxsnvjZwgzB6ZYtpSrtDOi/
ojUaNBuMNrWXLQK6GfDyp6T3ve/BaNS/INzTw4Bblnm33dqD0elt/MD27wzI
FR+0SakKxnSu1Y0XhxngYFIjMpQZjM0Nk02x44zl98GqM8fCg/F1Sefku5ll
vE/v1tY9Csafjfs1GX8ZIHXDa5PxzWD87vfk834SE2bHg0RXmwVj3g3pzPMM
JtS/aooY0ArGbT/sq915mVBWteXAWyIYe9hPtyYKMsFK1xR7JYLRi13QhRuZ
IPl5wzBZKBj3xc8OdG5jgoVNvPM/9GCkal8xHNjFXOaz6lDiTBCKyFDlJ/cw
YXTjwe9CA0E4xSp1WZBbjv+5VDG7Mwj9WGdUOA4ygXm8m9OoNgijRsvc/h5m
QvZCzMLW/CC8Kh10bE6NCVWmzWPccUFooxweOqbBBMNVjfFLfkE4l3TZ8csp
JoTuKPjA5xyE9pL+f1pPM+EB6huDTRB2rAteUWq87M9OdMrjXBB6qA03R15k
gnGX8qXvGkGYfnZa/p4VEyx5L987pxSEdRMrTxnaLvu/xcE1Kh6EL5/dF5G+
xQQv2ZUVwUJBGJvmWkZyYsKreYU7Bswg5N6sxtfpygT+mmoeqYVA/MQakY15
xARnTxfRLcOBuGaTl6iFDxN8dw7nin4MxNZP2yd2BTDh+ja6tVpzIK7uLgj7
EcqElIhbYk7ly/2bRHbERzOBkDQtbMwIxLqSsyGnE5nwecDjk3hk4H//V0xg
Hd97PelJIB7h1TlZlrPMR132iPy9QCzXD4oxK2LCaavxzR+tA5ESHj1GL2eC
D2p9DDYORGMXPtXMaiboCaHq5ZOBqPXaPenfeiaskN8tffJwIJLYboLfm5nw
5DXVVl06EFdJ+UTdfcOEhNnjb89uC8SmkDWHV75jgofSBTk3geX4hh48UZ+W
/f8hTJEUiBX1B0ZEvzLhne9xqZXTAVgt4MGd84MJ375evGX3IwCf22cfkxlZ
1s97mDbcHYBnFCbq8iaYQPk3u9LhZQCKj7k6Sc4yYeOVCat1FQGo5Ox+I2mJ
CWYKtj9asgJQQE0wfz0PC45e1WYExQSgodxxRS8aC/7J2pth6x+AW3/u4J9Z
wQITXoF4E7cAfN2eTJwXYAF/rG2D6c0ATDlcU/diHQvsf+76c+tSAE4+Op8m
uokFPYEPuWIMA/D9etNxj+0suDel1PRePQA7o8Pi+naxoDnPYqcoEYBveLtw
/x4WVJq5/34oFYALnd2a3rIs+Kpylzy3LQDF3p7R+ajAAs/uALi3JgDJYcxO
UYIFt9JvOwrQlscb+3faqrBgK4c8u3yejd9kHxsWH2OBQ4is2c0RNr5lPbo0
q8mCc/aHXh7uY6PO5zU8+3VY4BVxO1G4g42FOSVSdqdZQB61aGPWs1G24vuf
tHMsIMa/7WKWsfGHM69uzwUWdKTv8hPKZKNlR8ypVZdZwHm3uk8pho37uSb/
KFmz4Pai/6INm42vPp6HS3Ys0B7qfp7nwcbrHfv3+TqwQJNHhJd8h40NTPyc
58QCf07jhstX2fg/yzUztQ==
"]]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[0.002777777777777778],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw1mHlYzc/7/09nP6/lHGmRrSwlQklFCa+7EFmSVqISFZKSNSoqQklFSoXw
FmXXpt25s7WISkJ4t9BCkvZNy6/f9f5855+55pp77nk+HzNzzTUzdZunhQub
xWKFy7BY/79WsE7PSd7NRm59x+CkrsdSnXO/e42wX7pY9YBD+XuUTk3MG/Re
1imtfpm5/C9VJD1cW9sGFr+lTWW3DheEl0n/GAwMG2s2Si+/DXrTefK91EI+
YODhxlqplUD/VI3zJ6k5U6f6vOKDFKumhsVofpVOiYsr6A0vkV5/M8PFoa5G
usWImPqjL1v64/SjPPOndVLW/0pO0XYpy/+7tMRk8RHGNZNJMC3cekuvQXow
ul7W3KaAURoftd+gplH6NavOJ7K4jCnROXWy2PeHNFxXrurZmUqm6PC3/EPi
ZunaGGnL9M4qRnq8vMTt4i9p6Qz1CSHy1UyB6rngGvFv6fk78uN/DNQyOiUL
RsYda5W+aP80oFb6jVFrOmPl+O2PdLP3klmyIfXMioDTRzjxbf/nl1mXFb87
ZUW71MP157bOvCZma4CbcNePdmnRs6mthOFPZmO6SbbVqQ7pLh8voXZiM3OL
JWJuqnRKQx33cz5yWpjOhG6twLROqfd/PBmtlr545RVd0n8Vf+WGRrYy03PU
ChLKu6TNefrtGYV/mAEdq7eMXbd0YnO+nsWRNuaPcnrU+Jpu6VgL7SliUTvj
dYO5ZLe1R0pyHhxtjmxnYo+OvJlV3SMNvp8x3mBCB+MSfSDx/sZe6b1GPn/5
lQ6Gfdl5kF/WKz1cAPvMJnQypuGPJZuX90nRSxAadbGT+WDefr4ovU+6dUm6
5gayi9l55nWSl2q/tCrqp2/asS4mXU6xf29Ev9S8gXBpbe1irOvlUr/390vV
qibKa2zpZtJ+Tr9ev3VAGuB1a1P4q27GqdxV+9zLgf/x62EeeHeGdav/le59
mCK3I7KHKdVYlah75q9Uq6x93sSeHuZcXObSrY1/pb1zpWm+Nr2Mt3XicKjx
oHTL8Lme22m9jEa8y8m3Vwalyj+/Hkwd08eohcR7LuwelN7/nM7Jdutj8kwW
7a1aMyQ1XpjRVPasjxG8v2/58vqQ9GnJAhl6fD9THJckS3YNSU8SA/UBe/oZ
qyXan7JWDP/f/mccFcXjaqOGpRW2C087yA4wuVrxIWfrh6WuSR3/Nm0dYEBf
1qRIe0SqUVq18ffDAWZ4GZF3y29E+ttnvLff3wEmjJNSMqdwRHp9Q8CfWyZ/
mcl2Kt/ShCyUEzDp+yP+Mve1fZ+kzmGhgXSNpPPTX8ZbtVaoZM5CwvPhNa0p
g8w0tuzzxn0szPyb7KnrOsi0ZhyNVo1iIXuKxgB5b5BZ8WbNSOUTFgr5NbrY
OsjQ8VtXjnxkYUCRbqyd9hDTb88KTuhjodGTqXPq9w0xCSUeyUVKMniTczLI
JXWIIeytT+zTl8G7fxs+NHYMMe3u/Nh/bGXQoz6v3VN7mGlnX3W1PySDZ+P0
1gk9hxlV57+Gty/KYGbYSTLj3jBj/vCuiX+KDCI2DAc2DTNdx69GtpbKoK3d
/If7po0ws6M/julqkcH+xzM3hW4ZYcbPHAyLFLGxPMV1sDJqhFl958WzUjU2
eigoW1u/HWEKjzuZ3DNio6rM8g4BhwXRKq/iZtqz8WZW2JEgZRbQ9XUzV3uz
UexTUnTLgAVVTa+Mx0aycZvku8VuKxbo8VH1xAM2Lll53v2TBwvcJtr2xBeM
zkfftf1zhgXGp9e+3lHHxv33DJmUf1iw9pt/Qs0AG1nJCQbTc1mg+6p8r1Ce
g2kNl0yXV7Ig90gzXT+Hg637xziOa2XBd2OR6YEVHIw8tHBjPF8GKPnsmmx7
Dg63GbK/KMvA58Wn/bMOcvCwmvKE0gUyUJVz/bXXOQ6GaXiu8zWTAfvnRy0b
Ejh49xzPsN5FBtQHtl9VyOXgR0zcL/STAf1euWncCg7+d35l4KTnfLOUnxzc
4Rz16uxdGYg7+TFwKouL73xi83+jDKRf5ilaKnKx2HZ+sexHGZBRnmy5ag4X
J2vE6fS3yMBp39U+bGMuJquamNxis2FBSevLQFsufunaBOOU2DDflONU7M7F
z8YKNuZz2bCF9Pb6HMDFp5GGKRuM2bBaO0wuLZqLRg2HDk2yZUPSs7mbN97j
ouJ/9wVkn1poVSjl4lqVwAtj/dnQKahg895z0WWRHQcusmHGQOZ2yQ8uPns3
KDZMYsNWvaPuP/5y8dG3jIfcXDb4HXhOnpfwUG9K8vurpWxI5cTPIqbzUPbQ
bHfBdzacPPMg0WoBD28YFG0y7hnVT+x28jLl4b61r33Wiziw3dF+jtMWHvZa
rburNYkDzPT1n1Q9ebh24fGM75ocYFkGauUF8HBu1xdPdyMOiFLqejQu8pA3
1iGu2JID4bLzWj1u8/Cf5OS+YRcOEJf0yoIzeajk4byS8OZA2YRfFr7FPDyg
Jrf0dzAHdDNuqq/8ykOZV1HhSZc58Dxe92/zbx6aLJrVvPgBB2D9xEM7R3i4
MfRS792no/n1/lmMY/gYYetg31nKgYpKzp+OqXz0i6/IVazjwNvg0FkyOnwM
HG+aqtDBgUeN2Sd/LeOjv6zm5zY2F459dohKseLj009aBUlyXDgUkdFi48LH
xZ0bqaWqXKjXiFCqOsjHzGFN/WRdLszduvmmwSk+XtlVWslewQWJ0Ez+SDQf
PQXkHh1rLhy/5f3n0m0+rovwD1zmwoW0vpr06Cd8DFB6cknnIBfiEi42HHzF
xw2h2rO5QVxQ7Cjq1/vAx0eGEZnpF0fz5/xy+9jAx1T/q5mrErjgdTr1oV03
H5ed3XkjL5ULb74t1keuAPM3b2qUf84F9V4lb6G8AOV7lveZveOCwMvpq850
AX6q9F/hXseFjifFZcbzBah6v9tgTxsX/j2a/lTPSIBfPbQZixEu3LrP0LS5
ACX53rkTxTxY9t5qapGDABNzPioWT+IB+3OevdseAc6YPD/ZfjYP3hrPm97u
I8C+RouWDwY8MG7cUmYfIsDTHn9nLFjFA77qcP7jGAHWN7Xn+djwIPFqg0Xz
bQHe9JRQSc48+HxE9JVIF6BO7Dq3nH08kFlwPm3scwEWnKrQeuLPA0vimza7
XIDXwtkpMWE8mNRwN7GqWoDLjwQu336FB+Nk2nbEtghQZdU6A8W7PKifoPjc
aECA5+9l1yZn8MDc9LegQiDEENHZ4AUvR/X45pxYpyBEz7kd/gnveKCaYBKY
PE2I1VdvjB2s4UFDcPW6Ea3R9pV3Z5b85kG0havWwiVCzKxcP2fXAA+Ksuw9
Nq0W4s2cY8uPC/hwj9Vs7morxLVXdo7zl+fDoujqiQ7OQpy46/nP3VP50Hn0
5VgjLyH+d//yIWRb02HJMSHyQ/VieYZ8EEZbhhaFCNGH2d6fupIPN2Oawj0v
CbHOeqmjmRUfzp63yZdJEOK8Azaiyq18yPSd5+D/WIjWGuP0Vu3hwyfVn//8
yhWiG7tUOekIH5b8qC5eViTEpE1PZLqD+JC+2mlMcKUQJbyecVoX+EDbZNzP
qRNi6PMHcTbxfBguVvv05bcQjx4fyN99lw8zVbuLfvYLcZrT4AuPJ3y47344
s4Enws7Ur1WOz/jQ84uuKpUVYd+1Cj3mLR+UkjS3Jk0WIZE1l6Y/j/rHXQGe
s0S42mVDZFEDH+yue3iq6YlwxqQXAwfa+ZAlkd1SDCJ0Oq51UDLEB8OJZt4O
a0Voud5VJ1YogDdfzbvqbEUYZ7jLZay8AFSmHh6x2i7CU+d3L/JREUBKi3Vh
hocIoehjbYWGADbU5fkSR0X4vcPy1KQFAhAESU3XBYkwhPvK1tpIAEd2P9rs
HyFCM2JjwLG1AnhorFF987IIjQx8NWNsBTDlhdJgxm0RmjS2Bf+zTQADIak1
uckifOz0Iu/qHgE4lZ1KSckVYWzmxs5gbwFcFB+6GlsgwttbdljuOCGA9LPS
Qq93IpyTyuUvCBPAz5KRzYb/itAx9Ob8nhgB3O3QPdbTJELbE0qspJsCqB7O
t77ZIcKHK69eXPNQAH68fULjIRHalFco1GUKYPMqn5x3AgLtjhcl7XwugPyl
gZHWYwlcNG3A69sbAewJvpJWPIlA9w6LKLNPAoipsDSer05g3n69BQ++CSDo
RpJjqDaBvSuOHh5uEcBCWkGrypDA89/3+xj3CuCFV/g7JRMCX5u1bz8iI4Sv
vHO715gTWPgALG6SQmhy4U70siNQ74P2DlQQgp14r0yIM4F1hUrPy1SEEPaq
bGm0B4HvJpcFvZ8lhJTBRx1R3gQudcp5+1pHCHPkpi0ODiSwwako98kSIVRf
KzTYG0rgbK9DHlErhZBz9b1oTTSB26LeyuzcIIThCGHx+OsEJj/0vKi5WQjH
4rMvfb1DYG3Y2WU/nYXgGP0hPDKVwHPc5tkxHkK40FHzdmkegezPzbsMvYWw
t6hzb/UrAicXnh5fESCE/LTi8/vKCIyyt7FxPCuEiAfZa/9WEdj6Odiw9qIQ
uP9m5np/J3Avp/u7dbwQkrZtHmxuIXD/d9INE4WwZswXNYseAheHNjSpJAuh
ZqKC5cORUT4vlxw+kC2EwILQqyNCEtOfHNJ++lwIYtYeZZOxJN4JjNMaKhHC
xo7g1oCJJNrUbAnR/iAEr0vbZqSqkhhwfZLd5hohTNKfVl01l8SZhg1Pjv4Q
QmrTjbk9C0hUhr2Z4e1CeNmza44QSIS3Mw7FDQjhjH1qu8SUxIuD0wSXOSLY
r7zrIm1B4t7F2oHnKRFMuTFrtsxmEttSy4f8FESQzltV0rydxKYIg4ityiIY
2PvmXLE7iX5WVusN1EWwccPRoOsHR/WOe2kunCeCX1cKCt2PkfissOnOG30R
FAt/uGudJtFw2zvPYCMRFBoUnfoRTuL7CTYZhqtFkNcqPzsmZtRfOCuq3kIE
F1Tneyy9QSLVOGnyyc0iWKJr4vzlzqiflrTtE5xFkNmsN9UzhcT+ORd8E91F
wFy+ndmfPaqPw/jMPiiCj7NHlvg8J3E4UbD/tp8INk3a9aLzNYlB8/8eUjol
gglnyh22vydx8FpLbECYCNZPa1Yp/kri19f7W+uiRWA7V2PCzAYSDXa0njK4
JgLOnlJHv98k7mz2P3gmUQSDcjXs4m4SMwPGlbx9JIId92coiIdJ3N/teoXK
FEHT38VJpnwK/3t/iGDM98A3vmIKH7d2/vEoFIGnvmp0oiKFSn3noiLLRGB0
TUmuWJnCGdGX+x99EsGfTarW9TMobI4qmvOiVgS7larcezQpPLHvAlP2QwSn
n0W7sRZSWKTMGL9vE8HmpaEObIZC6nXT8rK+Uf/zMzcOmlA4dPuA7QsWAVGv
fu5sNaOw4lp88GMhAX12+fGfbCh8M6Gt+eIYAp4vSxblOFAof/9liJcSAeo+
w5lRrhTOLjbzNplCgItFfs5ODwpb/MKeyc0kQEWlcYruIQq1JFu8q7QI2Now
t7fXb7T9cHvSpYUEeA5rrksLolA6Xt3JjCEgNNdae9c5CrcYDz8eMiHgEtmQ
rBhF4ZLmcbdvmRGQJ+79mnuFwo3GR81MbAgwzvHDzQkURpzkZNbYj+bfu8yt
8x6FPSFubV4uBLiH/mo6kUqhpTPDG3InwGCkw4TOofB3wy9OwAEC3lQ9vhj+
jMLri9L6h3wI8P1iU00UU+jmmdG5/wQBRwbb5x0vH51v6M/wtxAC6rrdYls+
UcjaoDtzzQUCbApOqVrWUnh2/ULf+7EE6Cxqqk5ponB91RmB4AYBe7eRleQf
Cqevjv5gl0TAvMnmcg49FDr23u1OfETAxHNtt+4MUfjPvba9rU8IOH6RH9vK
pdF1yl4rzacErFt3tm8OReOBg7L3d7wkYPCYbZmzHI0Lbl85EVdCgN1Y1TnR
E2jkDGU1vqogwP5EyLj8qTQ6n+yobflMQKc5L75hJo1bDz32o74R8NutrZgz
j8bqO0yh2k8CBq4G35m4kEaV4Tev9dsIKBtqWz536Wj8i92RK3pHeayblaS/
gsaH6pTG2mECOlyUqpespbHrQlDcWh4Jn+JOty+2pHGZwoU/JhQJNyar/taz
o/HQi1IdQzkSeh2Of5npRONE5XyvWRNICPSQFCjspPGV65tU2akkKG7Syh70
oBEFRtwudRLWBqlI/z1I4+xf6/aUaZJwQcyvzfSl8fIHsv+2Hgkpyn9mhJ2g
Uf2Fd/LhxSTUr3hz1T6ERmrRkevGy0jYVX7ETP08jeXXP5UKVpOQMyXd+Ncl
GvkxpqYF5iSY9884eSeexnhTV8UAWxIkVQ6Ttt2i8VfOY9BzIMF25Xt5hfuj
fqZFln93JqFYtenQsxQa7eZsfRe6mwTsr1njlkXjSivLtfP2keCzrG10N472
zz6/6q03CRNx/v47r2i8eku9zPU4CY5Z9z7CGxp1ncUt/UEkaJqZVryroDFg
eMat06Ek9Gd/93D8PMp/9RLumEgSOq4vSW2spTH7hmBsZCwJGmu5d3Y20Vio
of5xzHUSQvpKNzb8pnH6hJlbgm+TkKeg+npLF43RvQF3Bu+TIArxFJYO0Ghd
e6nALZWESV3U+MUyYtxdmPm0IouE17+MeQkCMarnqFxaiCTUGi2v5IvFGDih
a2P0KxI+L5133llejOf/NaXaSkh4WjvWKG+CGHvfTM1aXkFC17iGljFTxej5
YteOi1UkaHPOXXFUF+OW+kHlmhoS/DSqbe/MFaPfh5tNqo0krMqKndGqI8Z7
bIUilxYS7mV4jNFcJMaSwq7iGx2j62M8MGkXiLE8s7LrUx8JY18UWF4zEeOv
In0zcoSEAzM35JatFWNjxLlqfR4F9xRG7IcsxJhycP4DJ5KCMJVZoLZJjNN/
HMgPkqXAZFDBbZWjGGsiz0+7NY6C/Iy/31xdxHg2Mu2jdDIFuxpHkv13i3Hh
zf6myukUjPu4sDrKS4xCC3e7plkUrHuR5HH78CgfHeGCLi0K0rir3FL8xNhD
ZwUM6lHwbdHfj1knxBhBb17OWkzBvpMxT3ODxRj/J/vkiBEFrkmNqjnhYtwz
P9p0YCUFjcuvyqZHjfIyvhzbto6CFYPOZ+9eFuPA7V0+3ywpOHDjY8zlG2I8
oHmhu3QTBdLt/nAmUYzvx18SZzlS0N7/5czeB2I8tbKl5KoLBV9KNnpbpY7y
tO9dcGw3BYun2iroZonxZafE0s6LgrFGs1wlUjG+zjmuPv8wBeYJcl6NL8R4
425gNs+PAmL8usVZxWLkTFk5tjKQAt6v4Teny8T4L92qe/0MBUismGPxQYyK
Kmdn7gij4KeOpr3SVzGW/qvaOesiBdZyua6f68SoUJUW9yOWAnv372YxTaPx
xepqN69RULAkdKLF71E9mfYxm25RoNp4/p2gU/y//ysKHq58fiSrT4zLZK3M
sx9TcPPXN8Udw2LMtY2+7vyEAk21xEdjuBIUXL7WRuRSUKiTbfpEJEHHgLEm
D/Ip0HDJbraVSHBDedDtNQUUPFuwKKZbXoK8yJPjGksoyDuEtuETJDhGOyze
9x0Foc6FmmpTJFgco2gk+UQBXZ4/LUNNgsvsTnHj/6VAZ6mswYrZEswrWNQ6
8/sor2HJ4dJ5EsyXP8V5/IOCBgvqm/UCCT478MhUp5UC2bOmxz8ZSnCzQefL
lE4KYqayrGyNJDinLdBPs58C38/2Lu9MJLjEP+jg7eHR9akNyjRdK0H5leNS
J3BpSKiNsMjbIEE7vdWGZ0U0LJ91Tn+urQSn/VKT6xPTcPL5Mc/YLRIsr0hk
nORp2BjhOCizTYJJRs9fvhpPw6XtKvWuOyTYdcbp7kwVGgaVE2YXukvw84Rt
HadUaZCWFH1U2yfBymtx/9TNoqE5a9vv44cl+E72o1Rfi4alEQu9PvhKcLCy
yixUl4YqT8HOWYES1Piw2eqrAQ0HhWc+eJ+WID+OqpzJ0OCU4pL/InR0vOOF
Sq/lNKicXjaXviDBBt0QuwxTGlKP5ChbXJLgB/rMzn4zGhI9HOIir0jQqlqR
q29FQ7ZlWkL5DQmmP87U3r+JhhULFxtTiRLUzWvsvutAg42j++Fl9yX4w1/W
umY7DT5bU1YdTpag2/vrlmN20bBKd3924hMJ6rO7upd40BC+nix/nyPBt1+d
YOd+GjZlvo0YRgnue6+/MNybhrCJomHVVxIspKTVKX40OH4bmrTqtQT/H8pD
edk=
"]]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[0.002777777777777778],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwtWHc4Vv/7x+Px7ErZhGc/UkkhI50bpSWVjIhIoUSySsknVFoaUopKGhqE
rDJzV0ZGKCn10bAbVkZGxu/5Xd/P+eOc677e93i9Xvd9rvd5H7a7n42HlISE
xHlJCYn/f8rb5RZm7pHCD413wuVVp4glZ3tGzHCsxM4pMpnZ1k+w7xdPhFgM
lvCVzTNGz30jDnz71g82PSWtZ/SJP0r5RJ/R+JT5ws6SlyaF96Vd60ts5CLG
07d8K1E5c8WNrdVaspFo4b1seF8i9XbabafOrxLNhISKkfM1JRsyHBO4Jb9L
nM3o7O+jBSXKb4jgsRvDJRL/XbMNYoKpZmMlNZbLDhKeeYTO5XPjmzMnSoLj
2mU32lcQ7sfNB32Gp0ua81tCY6vqiZQVIX3sU5J4Xm/OxxcnG4lrC5XgPZmE
VldLurmDHwmXqt6XjgHSWCcQqpyW+0LcIAsHf9WRMeahnPL38W9En5XO36sa
FCz93TTOr2sl/ipz7Va5U3FriKmW7Ol24rVN9brnV2n4H1/C+N27rMKXdNzr
+cN9sLiLeDX28t6nNgZWvmD30k1+ENPe5T9yxpi4O9Sfqnv/J5Hz2XTle/IM
jHYNJH0gdRPnF38xek6diSH/05OgPEtRDpGchZ8VfhVFx/YSEtuqFu85NAt/
Fhv+fvqqj2D3HF+6r28Wqv58rm9zsJ8orE3eXeAmi7NtdDVn0H4TS9SbFxyq
lUUGKe3Qz9jfRMB085LPhrPx1KOnykYqA8TC/O3xM5JmY2qnjMyK6wOEyQoB
fan0HDxQAQHWKoPElIboy2GPOYj+lOjLlwYJSnCrgXTpHHQzzV24iTFEyF7o
VO3TkMOPl38czvlniCibHIxzOSiHGzvoHr29QwQGna/zrZdD/kdVuXnOw8Qh
irRgGV8eI/yTHc+XDxMPPDPXtx2Q/0+/P0Sb80nPw6/kcV961hyv2D9EnVW8
vIaiAurU/16k+ucPMdfzxvWWHQo4sqAk57D9CJGqtbu/KV0BnafO/rmXM0IE
Ni2rVRpVQPUfzcHZs0aJdGpPXTahiI8+5ZIKvEcJfkzrP4XHFdF86dOu+hej
hAV/2AOqFPFZjYEkS3mMsNgi5NiwlPAYfbw9wneM6LBbHzBtrYT/zT+x9sTD
lfbnlbDBYemJbbLjRFrKmcodtUro+WDgc5fbOKGUOx2sx1TGeXUft/SkjxMl
pgnK71YrY0+ockjY33EidPW+9vXHlDFpU0RfsuVf4q7K6oBHz5RxDoXIDbwg
tvfMejc2ooxGJetmDjb9JerLUq4Si1SQ7pd+U0dzgrjvIN8Y5aWCeX8z/fQ8
Jwjh22ntphsqKKU5b5yROkEorHz/zqRBBakyX/Wwd4I4YWJ1O5+iihGVevFO
upOEfpo/1dFEFc2esOe3B0wSFzKcOOy9qniHdOy4R/Yk8WyB+1OlJFVM+dvx
vnNgkgizmQmWb1Rxb3vxbz/dKaK54O7PDEk1PJOgv57qN0WcnnS9uVVXDfPO
HWM8TZ0iNl3wk97gpoaIHVORXVNE9bW7EefPqaGD0+L0AM400dvcYcEpUsOx
xyLHaOdpImHdLmD+UMM3WZ4TjZenCbXPmUtt5OfiXnl1O7vaaaLazTtvFOYi
T3LFAIUkAYu4U2xpn7l4J//cwePqEsDJl78fEjcXZ4TWVCYbSYDmzM4NTjgX
3We22eyxlQDVhK0Tj37MRdNVMT5NeyUgyYrrGTRbHd+wUhz6TkrA8mexnBxj
dQxMNSGybkuAyouQu37u6iiRedeIWyQBEmEvTVNOqWNOx5U1KxrF9Vo12V6P
1bE3cJarYq8EmGwJ2fHwvTrG7l+6JVFGEkBgOxk4oY5T/SZS/6pLglCoX1PJ
1sADfHWVOgNJ2CVsiE2z1MBz8/zWH7aWBDm9ddPsPRqYcpZs0u4hCXSG6W2t
8xr4Ae8HUsMkwa6saaw8S+O/91cS5PGz70SjBnrtvFx+JkUSvHLPbKoZ1cC3
ofHPe1ASkgMsAq6zNLHKYXGV7AdJ0JnZpHVbXRPnzktYMtYtCc3Zo84hOpqY
ybO0TJaSgvPTR2Zpgib+O+QIikpS4KlFN0vYqImfzOXtNy6Qgr+rrdq63DTx
WaxJ1iZzKbBZ7NVO89dEs479+9UcpKBLZDBPMkITFf63X8DlB/GxtRc00Uoj
8uLscCmQPPJsNCBJEz2MnUhwSQp4Ptu1+zI08cXbiRkmD6RAPmzmiEWJJma0
Pk2XLpKCso072AG1mqivmfnuRp0UmAcS3oc+a6Lsfm0fSpsUrB8jR7t0a+It
o0pH8z9SYHH0tYnaX00MsKoO3UAjwUB1rNZTGhtHbNen6KiRIK3DV0JHiY1W
S488bVtIgoyVTzyPCdi4YOhfPx8zEowVGk491WMjefa2hKrNJJAKct5ZZc7G
25mZo1MeJHisZLW4aCMblfbuXEUPIcE9PbXJs9vYGMSfs7znFAlsOvvswIeN
kuWXzz+4RoLSSdWqhoNstDTW+rksjQRq8avbVp9g45boKyMpz0igsDlGmHSJ
jRcctrkM1pGAoXBX+dMtNoYlNhQptJCg+e4Xw5F0NkYqr8mWHxDj++EtOVrI
xnDZhZ/6paRhpppTd/MrNj5r0ql4MEca3pc/87vXyMZlg1uYy3nSUFhWNmXb
ysa8qYWGmXrS4GlaS/vRy8bru+sapVZKw4ak8Cn3v2z0ozB8l9hJg0RV+6qX
FA6uvxAeaeEhDX0mB6zpchyMUHpyZUmwNNhGmYYYanJwU7SutvRxaSju/Ciy
ns/BDJMLebmXpCGTn/h8nSEHs8Nv5K2+Kw28ohu3dFdw0OLMrlvF2dKgsqaE
L7GRg8+3OnbKvRTnc3394OlWDsr9WTFq/VYajmZFHd3ixcGmxvCVPi3SIEhN
Y7YFcJD3aNjIt18ayr0U4x3+4WDzXl3CZloaBnQLQp+c4uDM5yFFqjPIwPYt
JEtc5uD9wg8KVWpk0CKHReklcVAwd3GmizYZ6renrLNN5eBop033eyMyFLev
uOX6hIMn9v4VGKwmQ+KfjDf2zznY3vW7ONSeDC4PivjGNRy84zeT+WAnGaq6
c9ppHzi4JH69d2EAGRh+nrblLRysiGrQeRJOhhbagny/bg7ePC+VdfUcGR60
TdjJjHBwxcHIFTuuk+HpYh+f05Jc1Fi93kghhQy5aUXLJhhcjEkt+Jb5lAyG
qe1kZwUunqadOWVQRoZvg1fIKZpc9FswEH73LRkk124M6ZzHxS83bs2e+EqG
Vw/t4mX1xfb1tydNe8hwdUX5bW2Ci3mNG+bvHieDm3Hia701XLxT+M+KIxQZ
cJxTsmnBZi5aXd+lGC4nA2kTfzzkXbiouvvljz1sGdhcRYEeT+5/+6/YH9Pk
cvdxUSZaP55sIgPZ/HuKvoe4GErsGMteJQMpt3ND5Y9xscVuuau1rQyU+aQH
pJ/l4qIge1qjmwyom+9fYHiFi3bzFPVX+8rAe31mc1YSF72l6tQfHJQB/w3n
0tRTuPjA8Ynk8HEZeDi1vD40m4szyX8UdS7KgL3Haf+qIi5Gv0xLsE+Uga4Q
xjN6ORcPHRl/vidFBj5OXGhZVsdFzvaJ0r1PZOCsA4eyvYmLg9nNH11fyECz
ubTjgRYujt5s0CdqZSDWsVgi/CcX6fkLWKxPMqBzVEUYOsjFtR6bYis7ZOD7
8iVDuya4KFArHQ/6LQOmdb7n15B5uP2ITvDMSRlgrDqqMXcGDzdv8FwST6WA
8cGjVW0KPEww2e0xW44CEjVNuTc0eBgVs8c4VIMCj/rXyawT8RAqP3xrmEeB
jnDKt1+LeNg2sDlKzYACZpHXPMONeHhautzBzowC5DcSxVRzHlrTt0T8Y0WB
voDr5ONreWhmdHjhVQcKFL01dx+24aFlZ/+p2+4UMO8wHnLcysPH20uLb/hS
oMrQrDlrBw/j87YMngqhgEvfaWMJHx7ec/ba7HWUAsV3Xy00D+Lh/GxpGYNz
FLgBWk0hh3noGn1n8Z+r4vhcZ7u7x3jocFRJ4sEdCjSkx5WWRvMwfdWNS+vS
KVAhirH4dImH9m8a5FvyxPET5/rar/PQ6Ujlg10vKVDtsK2j/S4PjTnj/q2v
KRDN22r26REPfQZsLls3UWCHu79GWQ4PiwP1DdJaKWDlp3EtuYiHIysPHZjq
psAs85C60FIexrQFhpqPUMAojv9hVQ0Pq61/7zgoSQUW3buG9o6Hr9LA5g6D
CpMLuZXP/+Wh/ntdL5SnwlB0dadfGw9bXim9rNegQvPVw8vlfvHw7dz64++0
qFCX2P89fYCHy7cX1lYvocKypGNTxDgPO7ZXFj0xpYKnwPhKhSQftf337728
igoxtPyqlTQ+ul+uldy1iQqLF2x6XDCLj5npfpcWbqWCj+7ENoESH7+dO2Px
YycV9FRce05q8PGs9E/tq3up4NZd7d8q4KPUp5+7TUKo8BMspJYs5OPcVyeU
GyKokFUbnHNIn4+XXeztXc9QQfJX2Y38ZXzs/XTK5NslKshKrmnos+DjPtJw
m10iFRokKnfPXcfHwDaGN96ngnlZWbC5DR+XRXd0aWSK8QfsZ7g68vFVmemB
oAIquFRXLQ9042Puk/26z15S4VS4D/eIFx8fRiboTNZQQXs/1kTu5aP9V+fT
uu+pEE/6vv6fYD5GJKk5bf0qzq/9It//MB9FJh1PDn2nQnZ1N8flKB/VYV/e
+d9UqKgsuwan+Qi1gv0J41Qw0/MxUIvh46UJDuUaiQYdbs+l+6+I8S/TjYxh
0sCO5K1UlMjH/uw3k2HyNHhhWhcZnszHrgtGF9zUaZCVqmFn+oiPYba2G4yE
NBjz3Jg0kCXGq1i2kbqIBtMy6sFJ+Xx88arr4WtDGlxJYLVbIh9N3N/6nTKj
gdd138mOcj6+U7F/arKWJv4+s38T9lrM77zE5XYbGtyKSvOb8Y6PzE61uce2
0mBOHfv7lU9iPt05O1R20mAFQ3etSgsfx+ZfPHzfhwbL/AXJl7vE+EhEqHYw
DYghVSq9l49T9ymB98JosF7xb8SBIT4eX/x3v1IUDTYWhrG/jPNx4mZ3fMQ5
Ggx/XzhsKinA5urA3pY4GvjG7WFcoQjQyKs3yugmDRR37wj4wRLgrp/hwSfv
02BJoLKhvpwA8yIUa2ozaFDas9P7kIoAA4c9rzPzaHCn97dCvqbgv/MHDX6o
mK/7LRDg497Bvr2vxP52aXLcBQJUGj17ObaeBrV73MOtlwhQEHdtLKOJBoMF
XtcCjQT483Ll/NJvNCB/uBZwkRDgUfG9/jsNZLWfzE5dKcBKdcL8XT8Njl1Z
dbJ4nQCZ1V0r6kfF+FiFXys3CXDyXpBDqQQdtvLt+fUOAmy4mXjqMZUOOU+M
POpdBPhapf/npVl0iPVyT63aIUC5R2Wn/ZXoAKYPSSW7BahdZR1iqUmHU6LS
g2l+AuwOO/dijogOd89bKscFC1BnpnPIRx06eDfe6gkJFdvpOx5cWUoH0he+
lH2EAEuUhdutCTowYyTdF5wQoLP51ONJSzpYOVooTUcL0PSn4r1kazqM3fqo
U31RgFvMD1lb2tMhY1NsdsxVAV44Rsr76kKHGRaa6TaJAvxz2rvf34MOWoWy
82bcFeDmnQR50ocOWZ8/6ZY+FGBPxy9SRBAdZmq8qQvKEGCScc7YZCgd1uXM
n6GZK0Bvv6eDgUfpIClJGykrENeb7JtqPU0Hc5LHJU8UoMQmPdG6i3Q4Uszt
lywX4JkNSw8/iqfDpUSm3NVqAW74eJJCuUWHlq5qmtYbAXLXxr13ekCHRNnB
TznvBeg6kjJ8P4MOGxeMXTBpFuDt1P59vU/ocMbSRL+4RYCemvtsFz6jw9Dz
iXqjLgEGBcs+8iqjw9kCL9/MbgEa3Lt+NKGGDrtdzs7hDQiQNJnfWd5Ah1wL
z5qYEQHuPDbwrfsTHRZVv00anxCg2/7HYcxWOqj5XovfJiXELw+JV/wf4v7M
8S8ppghRY+p1tWE/Hcp9e1SUWEJ0K90Tu3KEDnVmsTm+s4WYLmTOs5qiw85n
tZeeKQpx6OLxBCsyA0RVwy/pc4VoIX+xz5LJAKrN6rU2HCHuL61bYjJHvB7X
r3NZKERV9ef+WioMOBtMCmuYL8Ryz9fZsmwG+OeFG7EWCxEpZtJDQga4Om72
NV8qRO1f633rFzKA9XqTZuAyIV57zxi7py/Ov2a5000zIQpLQzIPLBPnp1Vw
KiyFyDQ+mGRuwYDW2KiIn+uE+CapqY6ylgEHJkn/0DYJUebqmjUVGxkgNS9b
g2cvxMQ1ngoRDgzYO2PY13irEH8VPgb9bQxw71fcZ+Um5sOJfdO2kwGKyQ4L
nDyE6DTf7W30HgbMr/v8aIe3EFfZbrZaFMCAINUXw7v8xOvaMatrQxhQf5g+
0ztIiDeShfWeR8T1vFKnPQ8KUW/njO6x4wyIp56sdf1HiBFTguQT0QzoORoQ
aXtUrP9aU+lZsQzxeXI+Z+VJIRbcosyOjRfrc8cjR/esEF/NE36YlcQAI4sS
QuWiELkqIudT9xhwR6OyaipOiHEjEQ8nHjFgjh3J+es1Idp9u1Lhnc2AIYMv
Y4VJQtzzKu9ZQz4DEiMLUi4li/Ur1LiyFBkQGvMjaHeKECNVhrbElYv1P522
zThDiDGf1zD7axigctFoLyVHiCOv2fkrGhiw+m/mw/o8IfqV7va69JEBXsHz
FeOKhejcPqH+9SsDFpk8LnJ4IcSw93e6eJ0MMAaDJPkKIaZKyVd6dDPgh8vD
irpqIda8Gqq6NcCAlCOdhlH14n7lNQ41jTIgurZozLBR3I9KQ2vGNAPYzT0z
v38UYueFs18MyUwor1kQEftFiFnBi9O2M5hgHMHdbNIm1uN70PPjsky4U7Lr
zNcuIX6NjeEkKzKha+tpnfBuIZ6JzflQMpcJ+12pK+f+FuLSO2NdjVwmBCyy
f/NkWIhUGx+nLi0mWOZ9+mg1LtZnCdVgSIcJj0/17/g6JcQ/rPyICX0mzJfp
DNpLEuEF1tYVEsuY0BY5KTtOEWFiX8GxaTMmTPr4QiRThL6L49aMr2JCmK8b
mSIrQj/za/H965kQFT3scVJehOP3doe2bmaC0Ba8ZFREGLTw4nCdIxOSBlbP
iFAX4TvlKzPyXZmg5cx0G+WIMGpVd80NDyaY+hze7iMUYarLiME/e5iwRyZc
8bO2CMsGZ2528mfCPYPBqLWLRFhdeES4+AATFmy6n5OjJ8JbKZEF5DAm9Mju
SFY1EiFJc9XsxkgmRBS2uhwxFeFnVq9e0kkmZOk3tX41E6GCxhmR1zkmxGn/
MjS1FGHdZ96g1iUm6Gnl77yyVoTyH3MSvsczoTqv0bvXWuxfJeTfucmEu0eq
NphvFuPJc7nqmCzm66SoFOsg+u//FRPyDi5+9W2rCC1kbTcWPGZCxuGTO7Xd
RFjkEJe08wkT1p09/Dtgpwgp127204uYUHBoV+DTXSJ0jZhtmfacCX8brveO
+ohw05vj99ZVMIEitd1rqb8IybHHFDtrmBC7fbAlIFiEs3TPJR5+y4Rjzqfc
Uw+KsOqqgtnMJiaQjm7o+RYmru8UJZ34WTw/d3dHzYkUYXGFca+ojQlFnQO6
FlEifC4XRXr8nQlXv00O+p0W4YugjDVLepmgmnGpPv6cCLcaDZZlDTLBYEZ+
NV4U4fz+yLCFY+L589v5oz1OhKbhx4PvTYn5yZ5cIHNNhHKrFLNVpFmQK8+6
zrspQif9tSZnaCxwiHtnCHdEyPnFnzM6gwXbi59SHO+L8E3DfWK7HAt2fDzB
9EsV4QOzl2XlyiygBM5YF5khwqGT21NEGixQdWdVXMwW4ScV94EoHgtsWpcf
S3oqwsabCbdbtFhQft8uKrVQhG9lP5QY6rBAe3CiPrtEhBONH62j9VhQk9zk
lf9ShPPeb7VtNmKBvt1x66IKEcokMBtFBAtStl09WVQtjne92Oi/ggV24zeV
C+pE2KF32unpGhYYWXPJuQ0ifM86uWvMmgUt4bet0z6I0PaLgrShLQveV8eN
3f5XhLmP83QDHVnQdDaAFvdVhHrFncMp21jwyflWRFSbCL+Hy9p93cGCF4on
PYK6ROj9LmnzrN0sGBg5luf6S4SGUkPDpntZcPl2X9jqPhHWNm+HXYEseGKk
nL9wUIQB7wyXng9hgaavle/sERG+YpZ8yQpjgcyZ1zcGx0X4fxbBWkM=
"]]},
{RGBColor[0.528488, 0.470624, 0.701351], PointSize[0.002777777777777778],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwtWHc4Vv/7x+Px7ErZhGc/UkkhI50bpSWVjIhIoUSySsknVFoaUopKGhqE
rDJzV0ZGKCn10bAbVkZGxu/5Xd/P+eOc677e93i9Xvd9rvd5H7a7n42HlISE
xHlJCYn/f8rb5RZm7pHCD413wuVVp4glZ3tGzHCsxM4pMpnZ1k+w7xdPhFgM
lvCVzTNGz30jDnz71g82PSWtZ/SJP0r5RJ/R+JT5ws6SlyaF96Vd60ts5CLG
07d8K1E5c8WNrdVaspFo4b1seF8i9XbabafOrxLNhISKkfM1JRsyHBO4Jb9L
nM3o7O+jBSXKb4jgsRvDJRL/XbMNYoKpZmMlNZbLDhKeeYTO5XPjmzMnSoLj
2mU32lcQ7sfNB32Gp0ua81tCY6vqiZQVIX3sU5J4Xm/OxxcnG4lrC5XgPZmE
VldLurmDHwmXqt6XjgHSWCcQqpyW+0LcIAsHf9WRMeahnPL38W9En5XO36sa
FCz93TTOr2sl/ipz7Va5U3FriKmW7Ol24rVN9brnV2n4H1/C+N27rMKXdNzr
+cN9sLiLeDX28t6nNgZWvmD30k1+ENPe5T9yxpi4O9Sfqnv/J5Hz2XTle/IM
jHYNJH0gdRPnF38xek6diSH/05OgPEtRDpGchZ8VfhVFx/YSEtuqFu85NAt/
Fhv+fvqqj2D3HF+6r28Wqv58rm9zsJ8orE3eXeAmi7NtdDVn0H4TS9SbFxyq
lUUGKe3Qz9jfRMB085LPhrPx1KOnykYqA8TC/O3xM5JmY2qnjMyK6wOEyQoB
fan0HDxQAQHWKoPElIboy2GPOYj+lOjLlwYJSnCrgXTpHHQzzV24iTFEyF7o
VO3TkMOPl38czvlniCibHIxzOSiHGzvoHr29QwQGna/zrZdD/kdVuXnOw8Qh
irRgGV8eI/yTHc+XDxMPPDPXtx2Q/0+/P0Sb80nPw6/kcV961hyv2D9EnVW8
vIaiAurU/16k+ucPMdfzxvWWHQo4sqAk57D9CJGqtbu/KV0BnafO/rmXM0IE
Ni2rVRpVQPUfzcHZs0aJdGpPXTahiI8+5ZIKvEcJfkzrP4XHFdF86dOu+hej
hAV/2AOqFPFZjYEkS3mMsNgi5NiwlPAYfbw9wneM6LBbHzBtrYT/zT+x9sTD
lfbnlbDBYemJbbLjRFrKmcodtUro+WDgc5fbOKGUOx2sx1TGeXUft/SkjxMl
pgnK71YrY0+ockjY33EidPW+9vXHlDFpU0RfsuVf4q7K6oBHz5RxDoXIDbwg
tvfMejc2ooxGJetmDjb9JerLUq4Si1SQ7pd+U0dzgrjvIN8Y5aWCeX8z/fQ8
Jwjh22ntphsqKKU5b5yROkEorHz/zqRBBakyX/Wwd4I4YWJ1O5+iihGVevFO
upOEfpo/1dFEFc2esOe3B0wSFzKcOOy9qniHdOy4R/Yk8WyB+1OlJFVM+dvx
vnNgkgizmQmWb1Rxb3vxbz/dKaK54O7PDEk1PJOgv57qN0WcnnS9uVVXDfPO
HWM8TZ0iNl3wk97gpoaIHVORXVNE9bW7EefPqaGD0+L0AM400dvcYcEpUsOx
xyLHaOdpImHdLmD+UMM3WZ4TjZenCbXPmUtt5OfiXnl1O7vaaaLazTtvFOYi
T3LFAIUkAYu4U2xpn7l4J//cwePqEsDJl78fEjcXZ4TWVCYbSYDmzM4NTjgX
3We22eyxlQDVhK0Tj37MRdNVMT5NeyUgyYrrGTRbHd+wUhz6TkrA8mexnBxj
dQxMNSGybkuAyouQu37u6iiRedeIWyQBEmEvTVNOqWNOx5U1KxrF9Vo12V6P
1bE3cJarYq8EmGwJ2fHwvTrG7l+6JVFGEkBgOxk4oY5T/SZS/6pLglCoX1PJ
1sADfHWVOgNJ2CVsiE2z1MBz8/zWH7aWBDm9ddPsPRqYcpZs0u4hCXSG6W2t
8xr4Ae8HUsMkwa6saaw8S+O/91cS5PGz70SjBnrtvFx+JkUSvHLPbKoZ1cC3
ofHPe1ASkgMsAq6zNLHKYXGV7AdJ0JnZpHVbXRPnzktYMtYtCc3Zo84hOpqY
ybO0TJaSgvPTR2Zpgib+O+QIikpS4KlFN0vYqImfzOXtNy6Qgr+rrdq63DTx
WaxJ1iZzKbBZ7NVO89dEs479+9UcpKBLZDBPMkITFf63X8DlB/GxtRc00Uoj
8uLscCmQPPJsNCBJEz2MnUhwSQp4Ptu1+zI08cXbiRkmD6RAPmzmiEWJJma0
Pk2XLpKCso072AG1mqivmfnuRp0UmAcS3oc+a6Lsfm0fSpsUrB8jR7t0a+It
o0pH8z9SYHH0tYnaX00MsKoO3UAjwUB1rNZTGhtHbNen6KiRIK3DV0JHiY1W
S488bVtIgoyVTzyPCdi4YOhfPx8zEowVGk491WMjefa2hKrNJJAKct5ZZc7G
25mZo1MeJHisZLW4aCMblfbuXEUPIcE9PbXJs9vYGMSfs7znFAlsOvvswIeN
kuWXzz+4RoLSSdWqhoNstDTW+rksjQRq8avbVp9g45boKyMpz0igsDlGmHSJ
jRcctrkM1pGAoXBX+dMtNoYlNhQptJCg+e4Xw5F0NkYqr8mWHxDj++EtOVrI
xnDZhZ/6paRhpppTd/MrNj5r0ql4MEca3pc/87vXyMZlg1uYy3nSUFhWNmXb
ysa8qYWGmXrS4GlaS/vRy8bru+sapVZKw4ak8Cn3v2z0ozB8l9hJg0RV+6qX
FA6uvxAeaeEhDX0mB6zpchyMUHpyZUmwNNhGmYYYanJwU7SutvRxaSju/Ciy
ns/BDJMLebmXpCGTn/h8nSEHs8Nv5K2+Kw28ohu3dFdw0OLMrlvF2dKgsqaE
L7GRg8+3OnbKvRTnc3394OlWDsr9WTFq/VYajmZFHd3ixcGmxvCVPi3SIEhN
Y7YFcJD3aNjIt18ayr0U4x3+4WDzXl3CZloaBnQLQp+c4uDM5yFFqjPIwPYt
JEtc5uD9wg8KVWpk0CKHReklcVAwd3GmizYZ6renrLNN5eBop033eyMyFLev
uOX6hIMn9v4VGKwmQ+KfjDf2zznY3vW7ONSeDC4PivjGNRy84zeT+WAnGaq6
c9ppHzi4JH69d2EAGRh+nrblLRysiGrQeRJOhhbagny/bg7ePC+VdfUcGR60
TdjJjHBwxcHIFTuuk+HpYh+f05Jc1Fi93kghhQy5aUXLJhhcjEkt+Jb5lAyG
qe1kZwUunqadOWVQRoZvg1fIKZpc9FswEH73LRkk124M6ZzHxS83bs2e+EqG
Vw/t4mX1xfb1tydNe8hwdUX5bW2Ci3mNG+bvHieDm3Hia701XLxT+M+KIxQZ
cJxTsmnBZi5aXd+lGC4nA2kTfzzkXbiouvvljz1sGdhcRYEeT+5/+6/YH9Pk
cvdxUSZaP55sIgPZ/HuKvoe4GErsGMteJQMpt3ND5Y9xscVuuau1rQyU+aQH
pJ/l4qIge1qjmwyom+9fYHiFi3bzFPVX+8rAe31mc1YSF72l6tQfHJQB/w3n
0tRTuPjA8Ynk8HEZeDi1vD40m4szyX8UdS7KgL3Haf+qIi5Gv0xLsE+Uga4Q
xjN6ORcPHRl/vidFBj5OXGhZVsdFzvaJ0r1PZOCsA4eyvYmLg9nNH11fyECz
ubTjgRYujt5s0CdqZSDWsVgi/CcX6fkLWKxPMqBzVEUYOsjFtR6bYis7ZOD7
8iVDuya4KFArHQ/6LQOmdb7n15B5uP2ITvDMSRlgrDqqMXcGDzdv8FwST6WA
8cGjVW0KPEww2e0xW44CEjVNuTc0eBgVs8c4VIMCj/rXyawT8RAqP3xrmEeB
jnDKt1+LeNg2sDlKzYACZpHXPMONeHhautzBzowC5DcSxVRzHlrTt0T8Y0WB
voDr5ONreWhmdHjhVQcKFL01dx+24aFlZ/+p2+4UMO8wHnLcysPH20uLb/hS
oMrQrDlrBw/j87YMngqhgEvfaWMJHx7ec/ba7HWUAsV3Xy00D+Lh/GxpGYNz
FLgBWk0hh3noGn1n8Z+r4vhcZ7u7x3jocFRJ4sEdCjSkx5WWRvMwfdWNS+vS
KVAhirH4dImH9m8a5FvyxPET5/rar/PQ6Ujlg10vKVDtsK2j/S4PjTnj/q2v
KRDN22r26REPfQZsLls3UWCHu79GWQ4PiwP1DdJaKWDlp3EtuYiHIysPHZjq
psAs85C60FIexrQFhpqPUMAojv9hVQ0Pq61/7zgoSQUW3buG9o6Hr9LA5g6D
CpMLuZXP/+Wh/ntdL5SnwlB0dadfGw9bXim9rNegQvPVw8vlfvHw7dz64++0
qFCX2P89fYCHy7cX1lYvocKypGNTxDgPO7ZXFj0xpYKnwPhKhSQftf337728
igoxtPyqlTQ+ul+uldy1iQqLF2x6XDCLj5npfpcWbqWCj+7ENoESH7+dO2Px
YycV9FRce05q8PGs9E/tq3up4NZd7d8q4KPUp5+7TUKo8BMspJYs5OPcVyeU
GyKokFUbnHNIn4+XXeztXc9QQfJX2Y38ZXzs/XTK5NslKshKrmnos+DjPtJw
m10iFRokKnfPXcfHwDaGN96ngnlZWbC5DR+XRXd0aWSK8QfsZ7g68vFVmemB
oAIquFRXLQ9042Puk/26z15S4VS4D/eIFx8fRiboTNZQQXs/1kTu5aP9V+fT
uu+pEE/6vv6fYD5GJKk5bf0qzq/9It//MB9FJh1PDn2nQnZ1N8flKB/VYV/e
+d9UqKgsuwan+Qi1gv0J41Qw0/MxUIvh46UJDuUaiQYdbs+l+6+I8S/TjYxh
0sCO5K1UlMjH/uw3k2HyNHhhWhcZnszHrgtGF9zUaZCVqmFn+oiPYba2G4yE
NBjz3Jg0kCXGq1i2kbqIBtMy6sFJ+Xx88arr4WtDGlxJYLVbIh9N3N/6nTKj
gdd138mOcj6+U7F/arKWJv4+s38T9lrM77zE5XYbGtyKSvOb8Y6PzE61uce2
0mBOHfv7lU9iPt05O1R20mAFQ3etSgsfx+ZfPHzfhwbL/AXJl7vE+EhEqHYw
DYghVSq9l49T9ymB98JosF7xb8SBIT4eX/x3v1IUDTYWhrG/jPNx4mZ3fMQ5
Ggx/XzhsKinA5urA3pY4GvjG7WFcoQjQyKs3yugmDRR37wj4wRLgrp/hwSfv
02BJoLKhvpwA8yIUa2ozaFDas9P7kIoAA4c9rzPzaHCn97dCvqbgv/MHDX6o
mK/7LRDg497Bvr2vxP52aXLcBQJUGj17ObaeBrV73MOtlwhQEHdtLKOJBoMF
XtcCjQT483Ll/NJvNCB/uBZwkRDgUfG9/jsNZLWfzE5dKcBKdcL8XT8Njl1Z
dbJ4nQCZ1V0r6kfF+FiFXys3CXDyXpBDqQQdtvLt+fUOAmy4mXjqMZUOOU+M
POpdBPhapf/npVl0iPVyT63aIUC5R2Wn/ZXoAKYPSSW7BahdZR1iqUmHU6LS
g2l+AuwOO/dijogOd89bKscFC1BnpnPIRx06eDfe6gkJFdvpOx5cWUoH0he+
lH2EAEuUhdutCTowYyTdF5wQoLP51ONJSzpYOVooTUcL0PSn4r1kazqM3fqo