-
Notifications
You must be signed in to change notification settings - Fork 8
/
KerrParallelTransportFrame.nb
1255 lines (1221 loc) · 62.5 KB
/
KerrParallelTransportFrame.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 63799, 1247]
NotebookOptionsPosition[ 61123, 1202]
NotebookOutlinePosition[ 61461, 1217]
CellTagsIndexPosition[ 61418, 1214]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Example usage of the ParallelTransport subpackage", "Title",
CellChangeTimes->{{3.775887564111244*^9,
3.775887590613841*^9}},ExpressionUUID->"0f8adf2b-06f9-418a-baeb-\
02f8347c4301"],
Cell["\<\
Load the subpackage. We will also load the GeneralRelativityTensors package \
to manipulate the results.
The code int he KerrGeodeiscs`ParallelTransport` subpackage is an \
implementation of the results presented in arXiv:1906.05090\
\>", "Text",
CellChangeTimes->{{3.7758876295924177`*^9, 3.775887643439445*^9}, {
3.7758877664353533`*^9, 3.775887809792725*^9},
3.775887901868291*^9},ExpressionUUID->"e7ffcc21-2980-44cb-857c-\
bd4e8a0351cc"],
Cell[BoxData[{
RowBox[{"<<", "KerrGeodesics`ParallelTransport`"}], "\[IndentingNewLine]",
RowBox[{"<<", "GeneralRelativityTensors`"}]}], "Input",
CellChangeTimes->{{3.77580623320796*^9, 3.775806239739664*^9}, {
3.775883972509337*^9, 3.775883977483087*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"982310c6-ab01-420c-b52a-4393dc3a5d62"],
Cell[BoxData[{
RowBox[{
RowBox[{"M", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a0", "=", "0.9"}], ";"}]}], "Input",
CellChangeTimes->{{3.775884476325205*^9, 3.775884484195099*^9}, {
3.775889514028376*^9, 3.7758895143131323`*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"50414c26-8c38-47d1-855d-fc2374de1bb6"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"frame", "=",
RowBox[{"KerrParallelTransportFrame", "[",
RowBox[{"a0", ",", "6", ",", "0.5", ",", "0.5", ",",
RowBox[{"Method", "\[Rule]", "\"\<Analytic\>\""}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.7758062766434717`*^9, 3.7758063275122957`*^9}, {
3.775806382303049*^9, 3.775806414385291*^9}, {3.775806496041018*^9,
3.775806504453713*^9}, {3.7758069225978203`*^9, 3.775806923011384*^9}, {
3.775807695611638*^9, 3.775807695755473*^9}, {3.7758077458318357`*^9,
3.775807755368452*^9}, {3.775808039672263*^9, 3.775808040164542*^9}, {
3.775808083615378*^9, 3.77580810333395*^9}, {3.7758095687683773`*^9,
3.775809571252202*^9}, {3.7758163524154778`*^9, 3.775816352548173*^9}, {
3.775884486173779*^9, 3.775884487059161*^9}, {3.775885054491329*^9,
3.775885054592824*^9}, {3.775885833932067*^9, 3.775885834033393*^9}, {
3.775885916024225*^9, 3.7758859162456017`*^9}, {3.775889515842251*^9,
3.7758895179690313`*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"816a163b-9d02-4349-a80c-b34ec4e81641"],
Cell[BoxData["\<\"KerrParallelTransportFrameFunction[0.9,6,0.5,0.5,<<>>]\"\>"]\
, "Output",
CellChangeTimes->{{3.775806391811801*^9, 3.7758064146499968`*^9},
3.775806464035357*^9, {3.775806497546137*^9, 3.7758065049028673`*^9},
3.7758069233213243`*^9, 3.7758076961802692`*^9, {3.7758077462439127`*^9,
3.775807755583836*^9}, 3.775808040540698*^9, {3.77580808432472*^9,
3.775808103769692*^9}, 3.7758089815292997`*^9, 3.775809571667583*^9,
3.775812511635044*^9, 3.775816352769162*^9, 3.775816668578794*^9,
3.775826461117366*^9, 3.775884487502582*^9, 3.7758850548955584`*^9,
3.775885834278998*^9, 3.775885916490281*^9, 3.775886282228034*^9, {
3.7758895183934507`*^9, 3.7758895204140987`*^9}, 3.775889566961563*^9},
CellLabel->"Out[5]=",ExpressionUUID->"7c3c9ce6-123a-4cdb-aeb9-55617c8be11e"]
}, Open ]],
Cell["\<\
The KerrParallelTransportFrameFunction stores everything related to the \
parallel transported frame and the orbit. We extract the orbital trajectory \
using the same Key as KerrGeoOrbitFunction:\
\>", "Text",
CellChangeTimes->{{3.775887943722451*^9,
3.775888004552207*^9}},ExpressionUUID->"81a84f04-84b1-43ec-b833-\
df4f2b008973"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"t1", ",", "r1", ",", "\[Theta]1", ",", "\[Phi]1"}], "}"}], "=",
RowBox[{"frame", "[", "\"\<Trajectory\>\"", "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.775808794414356*^9, 3.775808834373847*^9}, {
3.7758104531330767`*^9, 3.775810456530073*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"3b773617-e347-4db7-9184-f637b68e2b06"],
Cell[TextData[{
"The frame can be evaluated at a particular value of \[Lambda]. This can be \
done analytically or numerically. Doing so returns a list of co-vectors \
representing the legs of the tetrad. The first of these is the four-velocity ",
Cell[BoxData[
FormBox[
SubscriptBox["u", "\[Alpha]"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"25ec65d4-d304-4828-bbeb-da976813924e"],
". We will use the second leg of the tetrad for this example."
}], "Text",
CellChangeTimes->{{3.775888023529031*^9, 3.775888117317734*^9}, {
3.775889033263839*^9,
3.775889058330714*^9}},ExpressionUUID->"02c1fcec-f59b-46a8-941f-\
a8c3a446fc03"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"g", "=",
RowBox[{"ToMetric", "[", "\"\<Kerr\>\"", "]"}]}], "\n",
RowBox[{"e2", "=",
RowBox[{"ToTensor", "[",
RowBox[{"\"\<\!\(\*SuperscriptBox[\(e\), \((2)\)]\)\>\"", ",", "g", ",",
RowBox[{
RowBox[{"frame", "[", "\[Lambda]", "]"}], "[",
RowBox[{"[", "2", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"-", "\[Alpha]"}], "}"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.775884212635552*^9, 3.775884267949683*^9}, {
3.7758843466363277`*^9, 3.775884366641988*^9}, {3.775884596188518*^9,
3.775884596264531*^9}, {3.77588474870926*^9, 3.775884810706286*^9}, {
3.7758849519570093`*^9, 3.775884952034667*^9}, {3.7758850125624113`*^9,
3.775885023489299*^9}, 3.775885165115081*^9, {3.7758862657915697`*^9,
3.775886266820169*^9}, {3.7758863894724417`*^9, 3.7758864071713667`*^9}, {
3.775887616930901*^9, 3.775887621008563*^9}, {3.775888077631587*^9,
3.775888077700796*^9}, {3.7758881208538713`*^9, 3.775888150479527*^9}, {
3.7758886783483553`*^9, 3.775888686873611*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"cbaf0192-7af3-4934-988a-0c005aca6f94"],
Cell[BoxData[
TagBox[
SubsuperscriptBox["g", "\[Alpha]\[Beta]", ""],
DisplayForm]], "Output",
CellChangeTimes->{{3.77588423392523*^9, 3.775884268590464*^9}, {
3.7758843490739117`*^9, 3.7758843669630947`*^9}, {3.775884749398291*^9,
3.775884810976018*^9}, 3.775884953128042*^9, {3.775884990647056*^9,
3.775885074119338*^9}, 3.775885166484125*^9, 3.775885213712574*^9,
3.775885836658849*^9, 3.775885918159943*^9, {3.7758862672565517`*^9,
3.775886282301127*^9}, {3.775886389847103*^9, 3.775886407419433*^9},
3.775887621499826*^9, {3.775888122872382*^9, 3.775888150951827*^9},
3.775888199743582*^9, 3.775888241236277*^9, {3.775888678977317*^9,
3.775888687118998*^9}, 3.775889522729457*^9, 3.775889567022105*^9},
CellLabel->"Out[7]=",ExpressionUUID->"4641d05a-c6b3-499f-8811-4d92443451ff"],
Cell[BoxData[
TagBox[
SubsuperscriptBox[
SuperscriptBox["e",
RowBox[{"(", "2", ")"}]], "\[Alpha]", ""],
DisplayForm]], "Output",
CellChangeTimes->{{3.77588423392523*^9, 3.775884268590464*^9}, {
3.7758843490739117`*^9, 3.7758843669630947`*^9}, {3.775884749398291*^9,
3.775884810976018*^9}, 3.775884953128042*^9, {3.775884990647056*^9,
3.775885074119338*^9}, 3.775885166484125*^9, 3.775885213712574*^9,
3.775885836658849*^9, 3.775885918159943*^9, {3.7758862672565517`*^9,
3.775886282301127*^9}, {3.775886389847103*^9, 3.775886407419433*^9},
3.775887621499826*^9, {3.775888122872382*^9, 3.775888150951827*^9},
3.775888199743582*^9, 3.775888241236277*^9, {3.775888678977317*^9,
3.775888687118998*^9}, 3.775889522729457*^9, 3.7758895670267*^9},
CellLabel->"Out[8]=",ExpressionUUID->"0b1391ee-d8fe-4a95-b80b-2e2b4377ec74"]
}, Open ]],
Cell["\<\
We will transform to Cartesian coordinates to make a nice plot\
\>", "Text",
CellChangeTimes->{{3.7758888563525352`*^9,
3.775888866736306*^9}},ExpressionUUID->"8dfe7b3a-d1f8-46eb-bf3a-\
f423ba7fb7d5"],
Cell[BoxData[{
RowBox[{
RowBox[{"x", "=",
RowBox[{"r", " ",
RowBox[{"Sin", "[", "\[Theta]", "]"}], " ",
RowBox[{"Cos", "[", "\[Phi]", "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", "=",
RowBox[{"r", " ",
RowBox[{"Sin", "[", "\[Theta]", "]"}], " ",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"z", "=",
RowBox[{"r", " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}], ";"}]}], "Input",
CellChangeTimes->{{3.775810530782632*^9, 3.775810569753585*^9},
3.775888611570135*^9},
CellLabel->"In[9]:=",ExpressionUUID->"595fc978-3eb9-4798-92b6-22c418c3d623"],
Cell[BoxData[
RowBox[{
RowBox[{"transform", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"D", "[",
RowBox[{"x", ",", "r"}], "]"}], ",",
RowBox[{"D", "[",
RowBox[{"y", ",", "r"}], "]"}], ",",
RowBox[{"D", "[",
RowBox[{"z", ",", "r"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"D", "[",
RowBox[{"x", ",", "\[Theta]"}], "]"}], ",",
RowBox[{"D", "[",
RowBox[{"y", ",", "\[Theta]"}], "]"}], ",",
RowBox[{"D", "[",
RowBox[{"z", ",", "\[Theta]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"D", "[",
RowBox[{"x", ",", "\[Phi]"}], "]"}], ",",
RowBox[{"D", "[",
RowBox[{"y", ",", "\[Phi]"}], "]"}], ",",
RowBox[{"D", "[",
RowBox[{"z", ",", "\[Phi]"}], "]"}]}], "}"}]}], "}"}]}],
";"}]], "Input",
CellChangeTimes->{{3.775810577414403*^9, 3.7758106733191442`*^9},
3.775811603622123*^9},
CellLabel->"In[12]:=",ExpressionUUID->"338c3fb0-10c5-4303-a7f8-d282e4c804d5"],
Cell[BoxData[
RowBox[{
RowBox[{"e2Cartesian", "=",
RowBox[{
RowBox[{"TensorValues", "[",
RowBox[{"e2", "[", "\[Alpha]", "]"}], "]"}], ".", "transform"}]}],
";"}]], "Input",
CellChangeTimes->{{3.775810690126109*^9, 3.7758107345873413`*^9}, {
3.775810871738934*^9, 3.7758108749648542`*^9}, {3.775810947845599*^9,
3.775810949328321*^9}, {3.77581149310286*^9, 3.775811495574531*^9}, {
3.775812083179484*^9, 3.775812141339239*^9}, {3.775812173425873*^9,
3.775812176652788*^9}, {3.775812523618545*^9, 3.7758125491870193`*^9},
3.77588446445557*^9, 3.775884621258869*^9, {3.775884680091153*^9,
3.775884686850677*^9}, {3.775885205864543*^9, 3.775885206254013*^9}, {
3.775888228348783*^9, 3.77588823790528*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"c495b146-50ad-45cd-909a-3f1276ae0b5f"],
Cell[BoxData[
RowBox[{
RowBox[{"norm3", "=",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"e2Cartesian", "[",
RowBox[{"[",
RowBox[{"2", ";;", "4"}], "]"}], "]"}], ".",
RowBox[{"e2Cartesian", "[",
RowBox[{"[",
RowBox[{"2", ";;", "4"}], "]"}], "]"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.775888434773445*^9, 3.775888484313249*^9}, {
3.775888540714685*^9, 3.77588855512696*^9}, {3.775888601284801*^9,
3.775888601426361*^9}, {3.775888723952763*^9, 3.775888726398494*^9}},
CellLabel->"In[14]:=",ExpressionUUID->"af80d39c-5765-4e34-9033-f202bbeb191f"],
Cell["\<\
Create the vectors from the spatial components of the tetrad leg\
\>", "Text",
CellChangeTimes->{{3.775888876024743*^9, 3.7758888924473763`*^9}, {
3.775889410635564*^9,
3.775889412859489*^9}},ExpressionUUID->"04d8cbf4-8968-48bc-8687-\
483b50efb793"],
Cell[BoxData[
RowBox[{
RowBox[{"CreateVector", "[", "\[Lambda]0_", "]"}], ":=",
RowBox[{"Block", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"a", "=", "a0"}], ",",
RowBox[{"\[Lambda]", "=", "\[Lambda]0"}], ",",
RowBox[{"r", "=",
RowBox[{"r1", "[", "\[Lambda]", "]"}]}], ",",
RowBox[{"\[Theta]", "=",
RowBox[{"\[Theta]1", "[", "\[Lambda]", "]"}]}], ",",
RowBox[{"\[Phi]", "=",
RowBox[{"\[Phi]1", "[", "\[Lambda]", "]"}]}], ",", "vec"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"vec", "=", "e2Cartesian"}], ";", "\[IndentingNewLine]",
RowBox[{"Line", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "-",
RowBox[{"2",
RowBox[{
RowBox[{"vec", "[",
RowBox[{"[", "2", "]"}], "]"}], "/", "norm3"}]}]}], ",",
RowBox[{"y", "-",
RowBox[{"2",
RowBox[{
RowBox[{"vec", "[",
RowBox[{"[", "3", "]"}], "]"}], "/", "norm3"}]}]}], ",",
RowBox[{"z", "-",
RowBox[{"2",
RowBox[{
RowBox[{"vec", "[",
RowBox[{"[", "4", "]"}], "]"}], "/", "norm3"}]}]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "}"}], "//", "Re"}],
"]"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input",
CellChangeTimes->{{3.775889234910513*^9, 3.775889321609116*^9}, {
3.7758893552722816`*^9, 3.77588941726024*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"964fccb8-927c-4741-a823-60cff6f81c67"],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"line", "[", "\[Lambda]0", "]"}], "=",
RowBox[{"CreateVector", "[", "\[Lambda]0", "]"}]}], ";"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]0", ",", "0", ",", "3.", ",", "0.1"}], "}"}]}],
"]"}]], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQA2IQverGx6snFd84mgY/vQOiq4p4HoJohwvsz0H0nZtn
3oPopI51H0C0eIpH6Ckgve7ItDAQPSP6ZiKIVtPLSALRrWpFFWeA9JSXOVUg
uoxD6/1FIF1RafQJRBcseVd/HUhnxAv0gmi1+Hk7QfSvGtU9IDrAv/UFiD40
//obEP300pOtb4H0t6l3t4HoLA3NqyB6+0NTMD2Zwe8piDbQZnkJoresZfkA
ooNMznwD0cvaRf6CaKs9h1nfAWmea6s4QfQuyyvcIFpvXYQaiO684KwBolcs
n2EAogMebAfTz5crWoBokwhzMN3ySGzteyB9xsFyE4jm1ZTZBqKFryaC6Q6m
COYPQPqasy0riAYAnFi57Q==
"],
CellLabel->"In[16]:=",ExpressionUUID->"c2563600-fcc1-4207-acea-0e866108ee14"],
Cell["Create a list of the position of the secondary", "Text",
CellChangeTimes->{{3.775888898415064*^9,
3.775888902199085*^9}},ExpressionUUID->"bb1e5bff-0a39-48e7-8a91-\
0a0eabf0b04b"],
Cell[BoxData[
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"pos", "[", "\[Lambda]0", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"r", "\[Rule]",
RowBox[{"r1", "[", "\[Lambda]0", "]"}]}], ",",
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"\[Theta]1", "[", "\[Lambda]0", "]"}]}], ",",
RowBox[{"\[Phi]", "\[Rule]",
RowBox[{"\[Phi]1", "[", "\[Lambda]0", "]"}]}]}], "}"}]}], "//",
"Re"}]}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]0", ",", "0", ",", "3", ",", "0.1"}], "}"}]}], "]"}],
";"}]], "Input",
CellChangeTimes->{{3.775885986437292*^9, 3.775886042956089*^9}, {
3.775889476317204*^9, 3.775889476890774*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"92f43a06-c588-47b0-9446-21ed59f1044f"],
Cell["Make a nice figure", "Text",
CellChangeTimes->{{3.775888904614904*^9,
3.7758889065268087`*^9}},ExpressionUUID->"cde5d825-3cc2-478f-ad7b-\
d79147f913b3"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ParametricPlot3D", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"r", "\[Rule]",
RowBox[{"r1", "[", "\[Lambda]", "]"}]}], ",",
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"\[Theta]1", "[", "\[Lambda]", "]"}]}], ",",
RowBox[{"\[Phi]", "\[Rule]",
RowBox[{"\[Phi]1", "[", "\[Lambda]", "]"}]}]}], "}"}]}], "//",
"Re"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "700"}], ",",
RowBox[{"Boxed", "\[Rule]", "False"}], ",",
RowBox[{"Axes", "\[Rule]", "False"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"1", "+",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
SuperscriptBox["a0", "2"]}], "]"}]}]}], "]"}]}], "}"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"pos", "[", "\[Lambda]", "]"}], ",", "0.2"}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "2", ",", "0.1"}], "}"}]}], "]"}],
"]"}], ",", "\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Blue", ",", "Thick", ",",
RowBox[{"line", "[", "\[Lambda]", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "2", ",", "0.1"}], "}"}]}], "]"}],
"]"}]}], "\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.775808836287239*^9, 3.775808921539468*^9}, {
3.775809117866908*^9, 3.775809118640538*^9}, {3.7758092647700853`*^9,
3.775809283602697*^9}, {3.775809555246554*^9, 3.7758095560205193`*^9}, {
3.775809588501877*^9, 3.775809589534458*^9}, {3.775809629923607*^9,
3.775809636963284*^9}, {3.775809693530932*^9, 3.775809741848132*^9}, {
3.775809817227396*^9, 3.7758098353600683`*^9}, {3.775810461439712*^9,
3.775810490945319*^9}, {3.775811309591457*^9, 3.775811314629722*^9}, {
3.775812004214822*^9, 3.775812019647921*^9}, {3.775812374215816*^9,
3.7758123748797503`*^9}, {3.7758164226176147`*^9, 3.775816476693122*^9}, {
3.775839293498415*^9, 3.775839298912146*^9}, {3.775839343680253*^9,
3.77583937290158*^9}, 3.775884520684779*^9, 3.775884982989596*^9, {
3.775885484493878*^9, 3.775885604848728*^9}, {3.7758856624947033`*^9,
3.775885696181349*^9}, {3.77588573915667*^9, 3.775885745026841*^9}, {
3.775885783894753*^9, 3.775885786115513*^9}, {3.775885824341737*^9,
3.7758858244990883`*^9}, {3.775886048948475*^9, 3.7758861206536713`*^9}, {
3.775888794895192*^9, 3.7758887959725437`*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"67dab8a6-9af1-4637-ab43-36d140743019"],
Cell[BoxData[
Graphics3DBox[{{{{}, {},
TagBox[
{RGBColor[1, 0, 0], AbsoluteThickness[2], Line3DBox[CompressedData["
1:eJwUm3c81d8fx6/tusbFvfYmZZQRpaLPKYq+IaNQRGWVRIQklZGsNEhWRpRK
KNmjzkHZm0TJyt57c3+f31/38Xg+zuOc9/t13uc9Po/HlbziamJPTyAQGBkJ
BAb8985BuvGHj1Yh4ZS+4Je/21iPnIcV2YCM9DUEeV/PrcJFCe34e2+2MaOF
xlNmZ8joSw7fbOqFNejV/uVNldM2duTik7e+xmSUsJ/D9Oy+dZju5+zdtryF
aUinWjidIyNuj/Gpcx0bEK2++a+baQu7EPThYbUlGcnm3a8O1tqE545OH42r
2cT2m+8r47xIRrmTjoGx6ZtwR/OmWHfYJnbzkdwPdWsy2k+/65Cp9xZksyUP
d3NsYuoVcEfqEhllTQC/zf4tyDfwzy2haQObPbKfOI7zNvnj2g9ObcNkkrV6
75MNrI6zKfbJZTJqtZD48DdnG9Z8FwxKNdzAblUXxPNeIaPIxOUuqtAO/PW9
rnCMYwMTclTYuo3zGWPaumzADqQd1dqV07COLXn4Z5TiPDMxaT95YgeyBJ2T
3Qpbx4TIslG9OCfyns9qMaZB4Y9c1Dq9dSyMLimtH+fbOt1PHItp0Evpgb4w
8zqW0BRUW47z2c+rtGtkAup71bRnrmIN869/vuCP83//9F6w6RDQlhLGcurB
Gqaz7wm7JM5r6l0Eom8T0P37e07KHlnDRiVtmJJxv/JSwyWIHwlIRXRNJ2Rl
FVvqJtRv4joUR/8EDr0E1KOtYueas4pJpAefPojzBmIMRyY3HVL1dmbqub6K
+TBLeBrbkJFvHXln9jYdqvHNPa/bt4LFzX72lcTvJT7+uo+BNj3yT71r4YaW
sa57f9z3mZNRf42r1pAnPUoe2P306e1lrLii0egifu830w+YXHpPjwaiXO8e
2LeMVSun6zuZ4noeOfuDmYMBPZVnlpaIX8I6sf8uiOFx5bbRJEP3kwFFT8dl
uTgvYh4P09amdMhIvKgk29CGCS0xTu2x2pzDghzVZqnyZPQbBB2/doEVdSgJ
rMWEj2LHvY/ymuZxoetjKkaVj1lR5YRjolTzCCaCnTCfTudChx0tfGa+sSLM
vNmgmHsEO5PA7rI/jgttPK/gLZAiokOiGTfJL4YwPhWX0ApfLjRDfT2/OUpE
0mmoMiJiAKu8OwnHMC4UkMD/YvYqCfnn3DwqktGJ+YQO3dEo4ETnk/OHxgAn
apl14UyY/QhFjuh0ka9woGL3uvfXnDlRQ9Qhk/nCPJhhhgLHTnGggdIcs48x
nGgpr9FG8n4p5BagnLmqwoFi63g9XafxfQoV1g88+Q473zmN2NDY0VT3wPhU
NBdan7hxu253Kyy8IBetGMOO9pkdtNp9g4xUTRiyhRT7oLSvtrRcAQnl//ja
kfaSG60vdZ2f5pmBkecc6vfmENG7XvPhjnRuFLTieqV9dgb622oHaj4jIifm
k0X/CrgR4P0VrNg4C8+d18zfciGiZj/X/rhObpTyYfpt7Pc5qHxA1uG5AhGt
b537e4XCg2ofnBOSD1yA36jlsqTXrKg42PqfZigP2mfSr1pCXIHv8qdzD99j
QX7K35agGS96jt06Jn8Af3+96zy3NhhR3KO6O6ev8CK96lfa3BnbsFjHROp9
MyMKnOQtz77Bi5iWEk0pYjvw+vFRmydvGJF+ZN6fzUBehN5HvnFipkHrhRpv
FwOch5xQ+JjNizjuuBHEnAloTOM9upfAgHo8QhvUt3hR+CWH3iqMHjWe3lTv
20OP/r0riijzoqA3MfLLtRNMyP2Tx9l17h14N2GEq9YX54/55s1kmNHMpXvP
h3G7Mo8t3foQQEESIXzSAxeZ0acpFT0t7W34O3lLcziCgmSV5VgmW/D1q9JV
Su5bUM7HylwnlYK4vs9V/ChgQRsGbGW7ajdg5C1v58l0CqK/4e+wd44FPc1+
5eV+cQPyWL4Wsf9IQRr2AjMRcqzo5UAol+L8OtzX+SqzOZeCbrsBr4OvWNGF
tqU3I3zrENrkyt6roKDybwsjIv5ExJaqLPrAchX25q5l5/2goNG5EXnNEiJ6
6eHnrzG5ArdOUSO/1lBQPbm598wiEZVyDnpc8lmBu60b6443UVBgko6JiT0b
mjg6tbb1chlevXGjhO8XBZmESDjn6pHQn9gtQ9faRRih9Keho4uCFEVaDzr4
k1BG0/hm2tlF2Il46Wx/U9DrVoa/rCUktMC6c+hU3wJsXX+tNttDQT9qXK2F
FdjR5SWWhyML8/Dc3l2jU38p6MTjCM4wW3YUzPJWou/uPJSmb5Ys6aWgMtkV
bCSBHRnPfnU9xTgPo4WDv5n1UZD7K8xSqYMdnVLe9XXX4zn4QdospgLnx2w9
auzYOdDMDwEzD945aLXP4dE2znOO8c4G6XCgXQ/CeK6rzcLr4gwOLP0UtKHA
dSDSlwNl1z43aAczsJA7gdyPr2+QbmYIzeNA0hU3CFL607hf3y4F43yZf9+3
a1McqGFMrdXcbAp+W5JU2cbtPFflU7dfhhMdtFy66mkzCTtnEqyO4fxg8u2I
EUtOpGNUcOuu4wS8AoaV1XAdZiwbqxnqOVFsROBrbY8x6OIp8GwQ100sZYrp
Bj2ev0gtCix3RuFHPoVC624KYkvUCyk7xIXmurJX831HoNFxk3r4k4LEzxwc
IL3nQhHcP3S6/IbgRlW3gGQDBdltNmlmHSMjAw/HDR3ffqh8U73yUC0FNZtH
H1qwIiPGAy6Bs3O9sPmZOp94FQXZg9au3d5kdG/aZOfgaA/U7Q+TOwMpqEcx
ttg2m4y89nI4eTd2wZbh7weOfaIgfulb3FQhbhRy7+qNUb8W+MjMm/VMEAWF
0QkmUGe4kWhb3UdqyX2MX447M+4+Bf31eFzowcaDPkYuSplEpWPchpz2b29T
UB+vakypLA8i1viUUHPysNyRBXfaVQpy3nSZ2LHmQa9exh5ab6zEHO+1PCvW
oyDV7MX2M008iP2BH0HCux0L1RS+Ko2/6/EUX3LxO16Ulvr0h3HgP2xH3vlb
vQqeTz5cjA45TkX3DleuW88uYumar57NSvEiP68sEpMlFTXezK0NeLmEfQPk
jWZePC+92Rq8cIuKFpYvJkoeXcYkzzwRrVriQbtHr7Y8S6Oiu3GvuBqerGCz
F5kjHubi+U3lnpkAPR9a2RMUk6++jonseTioKsOD2j44PJAv5EPhFCGWP7E7
WE665GRRKxk56KX9ntnmRyNjYkNtPxmBcWH8YnspGZ2cPDd0lUsAeXt+7hyW
YwK3x21oOW/JiMol/iZXQgCJMpW6iNxnAoufM2gF+D2t7EQkFx8XQED1DMuC
LDPI2Cn/80+YjJbNV+buPhRACYLHvyv6sIBOOo6g0CxONM6SP+G7I4CC9gHK
f7JsQJvlQYGQDyfi/pz5tIVdEBX8vvlP15cNVFwWuaVykhNpnnpzfEZIEBGS
frlat7GB0JLOV7M9HOi8uMauRwcE0Xv7ieq2+yRwymLf9U+MHGjfTU8RkeuC
6JKji3ZlFzuoOTEZr6tFQjPvjuQH1AqiPUlThbzPuMCQsKzBAXoSMhQ42anT
IYgUL5ragVEuoPXIyONjFRtavturX9criMzuhYdqipPBYOnfKDlDNqReJREh
uiiIivlWA4K8yODdfRTnbU5E00zfk7oFhJDUU1VL/V3c4JlnZn6gKQuqNogL
+M9CCBmr8R7QC+QBuUe/NE+QWdBgen0nl40QMp3nGGP9xANqes03fjcyo+8v
ijqf2wsh5WkXnZrfPIBam3Pd/CQzGrmxoVbnJoROfvNkOKbKC2J/pcdVqzAh
jbqRFUKwENoMWo9kH+AFf4qzme5PMiKaquH+lHAhVMacHpPHTgGXT/NHQLxe
PXS50rX2VAhVXTA6bK5BAVTXEyLDVEbUc80JdcQIoUjlVSzsKQXIFO7frlig
R8cLP/1UeCOE9g+H2MRqUUHR0vK3t6n0aNZ0Ja0kXQihl8nt752pwCa67zS9
CT3aLCdVLrwXQtOuYt1ZCVSgIisv3E3A91kMzG3PEELvizNK0uuoINbS+p38
Jzo0Px++YpUphDoa/Moj16mAJ8DKZdWKDrFdm+V4kiWEwp96qLvt4QNWM3bz
GBsdOoCJ+TpkC6F4lgWrY+Z8QMNRIp+xkIDCT6p+H8a5Jv2OL/0jPnDp6ftj
J20JSH9n6RrpkxB603qgOzePD5w79UyKiYuALlwdnu/E1y+K/8w9+48P1Kl0
NQZ60ODsvNaALs7ZfmcaDHHzgzfrecc3andgsOvG14u4PWzK+0YuA34AgwRa
XPA+4IhiL6cAbr9OtkNpgws/yMmK+zDotg3DSD6WXri/XDfo2WQS+cE2G5XN
/PsWFICqit64Pi3nDTgc6/nBWS/FmycdNuF5tc4HdmlC6MqmrkDWbgEQ7OVO
/p6/AVlOjfAbpgih569Kn2afEwDHxXbf0GXcgNzVTtbdr4SQ9aNrCbGBAqD2
FTZkl7QGp02vKbS/EEIDIzJAuk8ABIas7peuXoaPlHJv6PoJIa2lu3JbLwTB
auSCHrVrFrLNKDm36+BxW0kMY9gUAvrDpolq52eg4g8lgzdHhNBjcW4mxd3C
4OFD5oHIrilIMa9SIqsKoY/GguVKpsKg5UbnOeG2cTgXluxTKCqEwpj2+v7I
EAbf396Jqf38D5pdU6IdmhNEB5XsjnJbiIDuP17ZrP4NMDasI63CXxBZdfyx
uZQhCvgmQ9fd+P9hxU853v89K4DMXjt3ZvNKgKl3bELLX4ewck71w71HBVBe
lfMTTVkJQHkYcSfKfgRLS46S9twjgD6baahmaEiAYxcNNtiKxjGWquy79hv8
6Pd5NlvpixLg4Qlu6RS1OWzDe/aYQRw/in9+9JrfGwmQ69+668vmCrbf9ZeU
XCUfWhu78NZXURI81uNEBHt6IMegpi1cTUEi08mhh8WkQJq/zuNLHfRAPW5S
pyuNgkJREFOfghR4FBQz16LNAGzH4p8r+lEQZffvuLOHpEBcZOPbP1KMoHet
firhIAXte8SE5ZhKgRqz89OXBpgAmoAPX73mRefNaZvSj6TAvuennC5ZE0Hh
LXKzwxUe9GQ2nz1iQAqw+Y/8FydDBp0+Z1LL9nOh4GBrWz9XaZDwWaYjyZwM
Lo0bPG7+zYk0ErNLdzylgdclmZiIMDI4Tb0Tq+3PiQalTUb1fKWBeaYdg/Qc
GRzVFzAwbeBAKjzhsViINOhn3u7nKeEG4+OSzUqW7EgmW7coO1EaaF2x/aA7
xQ0iA1X0nbZJ6FyqzUZgqjQ49dKE01qMB+gxffzHmUxC8Xs1xqXeSYPp2z9+
KgTwAA30SCehnw1pNjo3ln2SBqQdThtlPV4gJ/JBcciKiGTFrs2e/yYN1AyY
ec3v8IJhjL4gcoMVrS18bvYslwZinpc+mmfwAv7n9Bn5Maxovemaz/nv0uCE
jNCHQRIFXPz13dq6hQXFsx86e7tWGtTO7xe7rkkBWwO0hZHrLOjZ+xGBnHpp
4FqkEVPrTAHxB2tix5lZkM1uzfacRmngm+2Qx9hIAZqfFteuHGFG7uvjl1la
pYFswM2rfVsUELYt+bmngwkRzzB0WrZJg9ymw+CxIhW4bdq5d95gQrKxhg+8
2qWB0jUeHTYrKjj7sbXOmBnv26vXlc07pAEt7q6vRTgVBJz2P2WUxIhecD6G
2zjn8NZc8CyhAoGnIYHt6oxIrGCc4PRTGhwzccy+PE4FHX4zPH8bGNDKqHlD
As4t5O1LhAT4QBhD2ksXWwb0x8lvIxLnb7UIEikn+QDLvMeX0HV6VGHoaX8G
5z4JLuNzHnwga4CFS/kpPVoLzRtrwc9Nq7GSZE/jA+2RtedtZeiR0iOFy/w4
vyOySUza4QMPv4Dg2wZ0iBJUlLmA6+BAl9/Go8gPRKpteiwHCMghYxkEt0gD
t2r+w4bn+cGjPdcYOzwIqOIO1O9vkgYBLCwi1Fx+MOYsUcuhjs9B218u9tVJ
g9RRWm5SHz/oOrHLMez8DnQQYlIOqpEGd/97tmuSJACmL1sxa93bhhIVhymz
P6TBjtvp7hpbAXD2pDejacUmjHr44isnkgaPfeki75EFgQDD8E6G9hr8wFEV
fzdHGvxkWqAxHBEE0UMyV8GVVcjQorqGZUkDT93osRP2goCnK1Na3m8FSn+U
G61+Lw0sD+s/XSsSBO0sl0zYSpZgcADFQipZGmTu2oMRLgoB1WVbrxuy8/BM
5aMVQqg0EFol7+18KQye5LidyKj7B+mcOaUdjPF3wR2IdUFhEGgoOZfUNABf
mykb5+pJgx7Lv3fvjAkDn8NS0RppfXA0taewGJMGbBmGF6I1RIB338Gqkg+/
4L2/+U8WFKVBy8fOV3wdIoCmbhIcFfENsla1POJnlAYuTnPCV1dFQXSO15mG
1C7s+SHiizNvpUDr1eddo4Ji4LlVdZf6px6sifjYA8Ti+YHZ7PPqETFwxaDD
kWzdj6nQNiSmw6QAZ3Doxe/3xUCSe+7HJ9eHsNPt6j99XKXAzNVh+c0dMcDW
8M3zafAU5mbhtOCiLgVYd5OfHhgXBw+anG6+t1rB1MkeXzfzJMFDt6XevfQS
ICq65CqzzSrGN7ckWZ8mCSriqnMDuCSA8yGpO7KX1zDlX8qHLCMlQTvZZMRN
TgKoyipbRdttYKlrFczQRRKIdjvGWl+QAB4xLoxhjjsY2wbUTpGRBAJGw56H
PkuAdJ5ODStFBpBxI51XLkgCTNCUi1uKJQCLATx5NIMBTEvbfVS/ief5vp5b
spUSQM+rU7R9NyM4j7Q3iJYSwIXmkMH+UwKQSiJniFJMIEBcH5GU8XWSsvxo
WQK8VbQ3sOZhAcdWBsoZP4kDwe7PuzPkJYGxCoMV6GcDZPegjGuHxMCZXqVa
qCQJ9tKr+FGMSCDsRiNVjV0M+ByTWYhXkwQqj1TnHkASEMrKj//YKwq+nfaq
ea0lCS6tfnGjJLKDQ8I7rW8DREHdo5+O8/qS4GIyA++mCSfwfDTtN1glAo7N
SAntN8L3+bweaQQ5we69o+oqMSIgM7TH8rCpJHhav6a7V4ELDEpVLKo5igDl
zzY5cRaSwDEnSb+EQAZ2FhMpNswiQHg7YPPVJUmwXmQ8Rd9BBmKJXDnWx4SB
4VsrD/YrkoD2O2ZOiZUbKM0yRbpzCQPNj10zx2wlgUjUHaqgJjd4kmXYqP1X
CNxLeuSnZScJTrbWe3115Qbt1iXueL8GouoeAxrO6eMWVEXSuEGdpFKUlLcQ
kMh4qxtsLwnOsY45qXVyA7/yBKB6QghUa4t+/onzDmXt40xEHiBePxHBwCME
Hrk1RU/gHBUe7Ys4wgO405afxPQKAsAtwVeF87hT0KnxBg+wTrxtMZshCIIk
6Y2u4jyy+Ty5MpkHbPDTEdhvCwKjmgnbVtweae/zOzdaeYBY/ETCzHFBAE+0
36LD+ULwD/tGel4QtaarHcspCKra1NLWcB1OLjv49O/nBW/9/nCw/RYARGcm
/sLLkmCludE93Y4XfJAnUk68FQCnQ/OWNXE9oYdZiFg0L7j9s9blv5sCgMeu
8EWylSRgKDq/I7nMC2RaAkOKmAQAnJD/4HtBEpy1Kej7KEMBEnTDd6Vb+EHP
7fwWSfy+0pvp+odMKeBh8VPFi/H8oPd2P/mHiSTwZmiyvpxDAcE6sarH9vGD
2YBLHzxOSAKi+K3Bm1epQEoqrWvClA/cT5dXfyeBxyfltLhFFR/Y89OG42sM
BYwe9KoXFZYEj6YsFgPn+EDZfb5fsTZ4P58wPWVDlQRZX+0qzwrxg9MEgsC5
3RRQqOf9W5coCW792Tr4zxnP041HHG8V8AKfUs7erBkJ8MbrwLG3HAJAs8Ju
xb6dB+iz+M1y4+9RKtEaM9MSBA7pPa/5iNyAr+JJ3pN3EiBmK61q8JIgENvm
Yk1uIQPDE+v3/iZJAI1DPwncDwXBVvt4uWAsGez2MjRdeCwBTuke1DGuFQS/
qvbJTciSwSsWh/d0jhKgfS39lcUZIbwPkvwiE8IJeCxjDHd4JIC0dPg+vVPC
wLMrxuLLBhv485qJHBUnBoK5kx9eWRQBUdObxqFDDOCYJmXFGM9veadJOkVs
osC64/jD37cYwN8f+iF1V8RAbWzhzQxJUVDvgrhPMzCAZ+ktSZPyYmCfigKX
naEo2PpPvO6ZFD1YJ1jspS8SBZNeJxoU00TBzv776M8VAvi2Utomi79Xq4Me
bWKHxcCbSuXjcb/WscSCaBhSKAScDlXM64iJA4/HCUb0b8ew/arKNhvPhcDv
1oLGw/LiQDuwvCa1ewRjkj1tqu4sBHSnn6xBdXHQ4x57NItrGPP4RKIjSQgB
Tr1p9zunxQF7bBWbgN8A1m7U2XwmSBCIH4xazXETB9UBJanNwx3YLgeLW7LW
gsDL4qaGgo84+K51bH7FoRWTzV+YbjwgCNJc/G8cCBAHZbITnAmd9VjR4eti
UaMC4MpvBkXG5+KAZa1eqWGlFAPXko+SdQXAr0lCevAHcRC/ZNdF6CyBn6If
ugWLCYC48ReyCdnigDA+fN5n/3fYHGTQ0bnMD5zEa4q0c8XBb0GCxtJSHXx3
PKeK7g0/eJbnj86VioPO+8xxhiodcMXig1SfDz94VSrJjb6JA7/XM2Omwb9g
TqOabqwxP3g4HCBXXi4OTrm9zMvr/g1lGJ57v8b7kDPZrN6hVeKg1Pw3XW5x
P9y8ovnfYgcfsGdceWFcIw7OWZ6oNrk4COPuyLrIfOQDPKsyul9qxUHYS2TM
RfsHj0Qe+a7uzwdIIVZMmXXi4AWmEz2UNAzjxWwU9uDzYr/pJ12sXhxcOPs+
rklzFF7UcPTfUuQDcWduBTvjfMIuzKe2awxWnBBIy6XnAxVRhzA1nK9nqTq2
uk/A4TIJZ8MuKth9uGriJb6/Z6B36iDbFCwhUgsbs6hASZ+VJRq3p144PWA9
ZRqei7x+UTWQCi5XcPMo4fbb5Vi68ajPQq8e74P3LKjgczRXuD3ubyVL8fIL
2zn4SOq/wRp6KhCTWKr5gOvjIHXCKW1hHrLWT12s/0UBofaez4twPbEk6abU
ogVo/GXrSmEmBcxXk5vtcf2vqRi2xN9bhEpkRpMzZhRQ2+xXmojfV4o2t6sL
4zLEjoO/W/IU4NEc5SmH17+0vXfodauWoZvWDbUYGi940buv9FyGOCh/nSHJ
E7wC30w/uBv9nhfM9Y+xRiaLgzuVtLM+TGvQoq8vpmmdB8gSKovfB4mDRtV7
X52XN+BHnvSCtUYekF998afufXGg8upaYm72JrSVmh+npvIAoudYc7gXrtuV
v88HHbaggvW7OMX/eMD1CddYRgdxMP9xRGKpfRsedp6V7o/jBjsHWqm1QBww
/3e40taIgLTCOt4xaJDBmzlNM5ERMSDefwMq0DMgjUX7B9mcZEANSOmR/y0G
lo25V44aMSCLjbGjn+u4wM3DdOPzjWKgnePLTGsiA9JXrflluosLoMlQz495
YuCRYxWP10FG5GDT8DXrNwegN8qM6sbzSsXvnoOf7ZiQmKfqasxJEkj8cHEj
nFkMVLNLiHxNZ0ECT/jk1eSZgTl91t1XIyLgT32+pnYNCd36mHNBvZsJjEbv
yktvEwHTumYn15nY0Ycr4idNQ5jA6TRSvPc3EVD1dnuPgjY7ErF78W5shBE8
7Y8z9IwWAQ8jFyLoy9iRLw9DwrO3DIBRkuDRB0SAqfnjJr93HEgu6erUIzk6
sP2Z2NwbIQzIfp8rauy5kC5Pv8K11DWM/c2tua8MQuBb9ElvGcCNAnPecnVs
r2K0r7HHXEcFgbBFSlaBBTfycbk5VnR+FWsk7Q6frRMEFdU372zf5EaQVhWz
wrOCqZzbjdk8FwSvt30vfkjhRlJu4cXXwxcx4UO60WwigsDHwP/4/S1uVGL7
+8Ca/DS2lVGWxSYnAPj0E/WOpvMgilh3OfvFDizwdRy77S4+MPz4ErdeJS+S
krHzUedpw679Odi2xcAHfH6EvCtr40Vl/BJuzVHNWO5tBlOvQSqI+Kl8aXKA
FyWUCJ2e96/Cnuvc92FLpoL31bs4vWm8yCo+Kh25pWJpE3lz3/moQK9v6uRZ
fM4+TboTr6fUBL+t8clPEyjAyCjzi148BdWVfs4RHB2FKj1S77UrucGL383k
gn1UlHqs5SRXzxg05R6iOSZzA5/08vxSdSqyHWsLT2gehwtFwwZ373KD2bYX
jEGaVFTF2VV/68skJF6ftru5nxuk7AkOsz1FRWl7h/8wOc5C14MaT5JTyaDD
bfmD2SUqemLei07tmYN/3jzKOHmfDD5IHOTys6eiEbXVTvNXc/BkvN5A33ky
4BgTXnVxoiL3sOBF3YB5aLRssXuCTAbOzG5aSbeoqDZLNOz6iUUozxLi3brF
CQqVNZVPBVKRfqcP4VLeInxRzpdplssJ+qyQ+ttHVHRGVkIvVmoJrkwGS1Zd
w+vrydjEmlAqurT3AmrbWoLvEuyqHTo5gHdHepDDUyq69t5SpePqMnSNOnYz
7jEH2Iwqvj/wnIq6hzyW+DuW4X6NkdPFxznAa43OepkXVDQ3okmyf78CP5yE
AZXZ7KCmIfQsUywVDR+ozLnBvQo9623PfLJjBwvXXIlpcVQEupiNCu+sQq24
LyrhQuzgiO0GI1sCFdm944w+NrAKY/o1+81bSEDnwEzg4VdU5LqHX5Vdbw0+
Ti8m8z0igbsEgUq1RCqizkX85stegzJbzN5VR0igLdGAtoZzDhEOncu861Du
oELdtXk2oNbg7BmchJ/7x0x28vY6jJI3KyG8YwPBpheu9OPcdcvoSN6fdeh3
eXAj3IoN7FKlY2BMpiJyBAErO7oBi86babHzsAH6JuMXC/j6h0FBs/SvN6Aa
tFcNqCaCU/LHTDNx/vcBH0cI/SY88n4hdMaXCIQka3xVcB54b+v8adtNqNHK
uWisSgTdrwcNAnA7WfOfxOtXbkLj31vCWaOsoHDxCUMy7u8fz33R4VJbcDhA
5QshkRV4bjX8Dsb1MShS7ynv3YJfoHZXFAsrUHhHN/gN11m26AYsOrINGWPI
sKOMBTz8tx7OEUNFNH39sKmYbWjFyVROdmcBl/ODTstFU9FZUQMhNsMdqLUr
vdS3hxn856dPq3mGx8mPYgeBHBqUvnxj+EAOE4h8lzj0KQj367557xoDAb2j
i2e0dWACGhzHR24EUJGOx4XzDEoEJNcS4flUmAn8/I9heOM+FaUrX30wH0hA
93tbuieDGEGv0NHGgNtU1BQkuqMsR4cOv5i8+P0CAyiips0YOeD3OP9BZ/9l
epRyixj+gIkOtBrahQgfoaL47Gzv1UB6xP90k5UOEUBqxBlrE/w9vrvHW26f
To/i3oxbhfsQwAFO7j+XlahISK8iGEzQI9Oi0DHvPhq2f/PGY5I0/k5F03pm
bjAgDtew4CP529ixyI/ST1mp6ArhtISyPSOybilGj+3XMdPk5vf+DRTU7HM5
3pWXGUn6mUv96JvDwpyO5tsfoiD6HlPqfQVmFJr+M7zWYg6b8rGW41KiIDep
3JCD2szo9ss5s/W0WezRLUW9GBkK4tg8Hf/RjRlNct8dHgqdxqbvVx/X4aKg
zLNCxvF1zMhIy+KW44VxzND0vinfP150QUt1J9WZBfm7hHg/4RrA4u6+n6l8
yIvMJQ7IMbizIkXLOxeOFMRjapnFFmE5PGjPl3PxZX6sKI/Z19H23gN4AIzV
K6XyoNdw73PqU1akJl1L16L0Fs7qy/XmRfKgbS2TvPQMVpTi859bR3UplBCw
rba+xYN6Wgzd//vLim4WutpELTTBpdncrYP7eZA/8czcN2Ui+qJP/5FHsh+u
yAUoqWZxo5e85oZBh4hIrKWn+YD8AHw+bBs2lcCNhPlS2GeOEdHiuMiPSNVB
OF5LEQwL40anTC97vTMmohWe0sUJMASrHhnnuTpyI9vrDYXQmYgaRS5HTpiO
wdG5f5yT4txop7GoIcmdiIzPll1MMBuHnl9uq//g4EZO1S8mJL2JqC4+sdXT
YgJyRhSYPNwkoyAwL0ENIKKfwcmVKeen4GClivGXTjIa+vaqKP85EXmlX7do
xvPuBY32O+3hZMSTtte49AURKRIiTxWkz8EWly23P95kdEynv9whhogMP8Vo
KMjMQ43QbrE6ezJilQwT+5xARF2vjheWii7AI1EGHlYYGe2UXAsyTCSiLKvG
Vz/jFuCYbFA4QZGMvkseKYlKIqKrgfSKPtRFSOH6ovZYgIzkM8c3HyQT0Z2y
Q5Hvny1CrpCVdBojGfXKroTyphARYETbNqQl2M38Q7VgkAsVPPB6Y4jzrppf
iclBS/CG92iQVikXknKnPlbBuRV7caoDbQmuRivkR0dxISNVnoAyfH/tmOda
ed7LkOihsw9e50IPhEHNLG7PN+mglOD5ZXhGtdy6RJsLHbBifl2P2/8+IWun
79oK/CjNkRcszIU03ticMXpFRFfOCj8uG1iBDcuuCbsXOdHRtOgj52KJSDil
m0hrXoUSb0c7+l9zoj3WJ+k7o4mIOVjU0fbkGmRn+kPY9OZEwkEqnwlRRHSC
FtGoV7YGi2NT3cfPcCJWy/Tus4+JKKnXD6/c6/DTi4lunW0OdPSqlTzhLhFZ
35/P4PXchD9OuT+lM+NApqeHO1P1iKjkuXMEZX0HBiwQRudoJHTKlifbCY+3
ufSfsMeGBuee+207/iKhkhTL4Ek8Pns3qmcVqmiwkOls67dsEjrIWgUE5Yno
/gkVn2w9AuoM0SZxXCShComucQUWPG5XCEVbZDr0eW39sHoRG7ofeOnk1TxW
5DMo8qcpmh4xTOxtpl0lIsplLjaZvyyIM/DxAzsXJvSwqYq5vYAZaX8LF3/W
yIIq05ruf4pjQldkYcloGDNyMo2h+/aVBYlM2N3I/86ExGt9W0asmZHjcSmb
S4ksSJl7U3JekBltcL93fcvMjHa/+k6rPs+CvGZzjkuWMyOGgZOv9p5jQrVi
N7ivVjMjhYvRr5TpWdFFfxfrLzMMqMj/xMs93kyoZ9yw7qEBGyKa1BxsotKh
JKWvjv42TOirfoNljDsbUhJUalz5R0DToSbmiSeZ0Bv6nQqjGDYUaTEuwPOF
gASMpEwlKEyoKW1VqrCPDfFwpd2QMiSgcotBWZtMRmTIJlZx2pmEEl68vONE
osGiE/50u9oY0JXm2fu2HuyoTMKSfX14E/Z++rvBsYLruFj+evwoJ8qX/2WQ
/nwZ/vHYHs7spEMux7rGXC04UZs4g81exWXYcQ+1ihbSocmCiL8v3TjRYbPo
jS9VS1D0Zc7r27fpUBvx5ZGqVE408JFjoGxzER6uUVoSWCGgJFvW0XQCF7J2
T6vrt1+AFYxZzIy/aFAsdpeTaQYXkkRtm7u8ZmARy0L3sscm/O5+c97wAhld
7xB48rVnAGpI6xus7d2Eu0FlysAlPC8QVRRp/APwm80br/KRDUhZcOnRcSSj
9vKyleum/fCe5/zIR/MNmKHO+M/3FhmVX0/hiYv+C3uCnqltH1iHYd8sMr6E
ktFsp2do8u1fcOBIoZX71Ao8tP/BWdUsMpr5pvlGLaUKNjzguWaRugLvX6tk
a/hMRuTQKZdn8ZXwRkLiMarFCtw39EX6QB4Z9c2YUGajEfwzTe/IX7kMDw0S
/e+WkNHgEz7hF+L5sODZyPb5mCU4/cxQoP47GR01m3S9svoIG5tuH+LRX4IU
p19cY1VkJJLmp1Oe8xpjcSJ8zSAsQZ1Y57s/a8jo4M3hgZWULCwxRtH87rVF
2C8gACUbyMjm6SHeu0UlGD9brEyBKJ6nBC+l+DWSUf958Nr+LMKYRygb7a0L
kMomwPq5iYyi9buN9U9XYjtb4T/LDi1AQ5Y8f78WMuop16UB9VpM2Wl+NHR6
Hl5gIKVItpLRpU9eP3T2NGAFloeEj76eh8HMRRejcK7WaFG4INiMfZXs8Px9
dh7ONayX/8T5mYtKA1JMrVg21NmxYZ2HouW3O8Zwfv1kxfVXvm1YDiZW2lw6
B6d5jic24Dzu/UdP28V2LJ+BLlfedQ5aNrbK+OO86eS2j+e1n1gJNXbKTWoO
Nk2wejDj/MbAy/Xm3k6Me0rxr/7HWWh+VfWFFW7/ndU9bjdNu7Az9VcfRHLP
wlBz+qeBzWR0OPig7dnqbszN/nxjwe0ZSD8b7XIX1+F9s4jpncN/MHrWPalp
2tPwDVM4c289GdX8R9H2FevFmE98eqv7ewK2P/zvtyt+XyaH/fKfzQxgUpMp
wmXYBPxPdllDvIKMHmkKStu9HcQi7ou8E387DuvuiPQkQzIKFC472mT5D6Pr
V1Mpc8XnFInnu6l4PDQmdHy4XD2EKRbbOz5kHIEHhlZcWzPJKFyVkGEbN4qd
nbDjF943ADfjmFiT8fhk2lx0qts9jcmViXN2JvZD16ys6e8PyUjudF1Pbv00
VhfwOzaJox9WuqZzVz4go8p/3joqrjOYpsGfna+//0KFlC0zPU8y4lY+oDmU
N4txXl0TfGnZDR81lBd7W5MRWGPwDBGdx2TskxZ8HVsgRiSv+cmRURlD69We
2EXsjgujogTvC2y75NojvxNcaEHRM43p8ho2cCxG7SxKxVgd5qZ3q3Khxb8w
68LHNazjRV0/062P2Ncn93YFiXGh2/yE+OvLa1iSJ/3YiH0BZni18NflFU70
pvCGOwxZx9wlSnM42iqxSYcDShl43vB91fxFOnMDU63aU/7bqQ0bIdxufDfN
gWSFnd0fDm9hg/FeREn3ASxG6p3BjiE7uikgXr36lADkVvjOaG0PYIJyGgEu
yuxoOct59VAuARyaYnHqCB7EvJa+Rj/jZkfmDFr9+p0EwJU5PXg94R+WLcTx
fbKNhNjt/Jf/CdMBq17/VI6yYSzJScKI1YSE7PpS1lre0AF3DpaVZwPjmIWn
hOTe42yIK2a+wzOLHvA7Khb87JrDkopf9w5OsaAdd55t71hGkJQsN2VLmcfi
s3xE9X+wIAlGiXvX8hnBgWFK0osz85j/j5XxW3g9SWcSUpVpYwRHC7vsf3+f
x97W/JghGLAg/ofuAatsTED35LOLgxkLWCmzlrjoB7xuWSVWkX2YQPWd0vWj
dkuYpT6xuxKvNz9k/14eNWAGwfbYg/+CV7GyPO4T/A/p0bJU8nPGehbwZBgN
5X5ZxSKqaV7nLOjRGumG3e0+FlB2WSa36O8qNj0d/NNRkR51SnVMFSyyAA/1
V4mRqmtY4ohXOVsHHbrnqvQpQZgVxJQ/cPX5tYZJ7k5iPSdJh2q6YmlrV1lB
So83Tx7HBkb0zVbLu0qDJpdLZybXWUEwdrKsd88WtoZy4y3vr0NDInaatEQE
AX0nRnpObmHBPkq14aLrENRwOg/RsQHu3qQL1+y2sC+Jl2T88D5EMCnULJiL
DUQ/+d6qkLSFtQQY0xevr8IOqZSj8vJswOBfAYch+zamEvpv4KHbCjSL/OAw
iM+FbzyvJHxv28aGC04OmpgvwuLZe1c5itiAzObNlbfMNOxI2b7Sl4wTsPL4
hRNjOiRwYuTyyxgqDRtc++ecdGQcrqkybBSfxufUN4kaFBkaZnOD95az+xhc
DU4bOWdCAk6FriNZGA17Ih6dfaVvBK5n1Z6YsiaB4WmtPms3GubtlGg2UfAP
ygnvaEZ6kgAT9sDvjS8NW5nQEjWfGoTtWbUteT4koHm7hOgRTMOY7xWkx0oO
wks1GTavH5DAxot5688JNCz3/mvwOrwfer12O9cVQgIDrwR3J3yjYce3JrNX
Sn/D08k1tLJYElCTYeXZW0XD6hTggr9MN5SmkWr3vSKBUt0nwnqNNEyurvtH
++NfMHOH44pTMglEm7ZrCf6mYeeffXvfbdUBjc92LRx9SwL/0fvsb8bnMYY/
jHTR39tggQf13693JNC+N4SOc5iG6ZbdvbNLsRUert+IOpyBz/fUTzO7ZmjY
77Jl+H65HrIdyFS4mE0C4bsGl3bmcR2yIlSXKmsg56wYh+hnEqBF57y+tEzD
5s7e5mGJ/AGZ5ILfpOfg51r8mfxvjYYFSB3OHLOpgPtbRmfXv5AAP2ZX/3WD
hkWeCY4Dlt/gLa6wab48EuDkjj1UvEXDFo1yApxWCmGI0XbCNs7l4ogqWjs0
7Ppp0qeLz3NgrCb/RlY+CVjkRmadotGwq5nAw9giHeqXLTLvKSCBFLOzmb04
f/FYg3ZVOApqrS2VX8f5UEKBwhbOPdMDtBZG72AjFpXyd3D+vvyqQur/ubDp
hw8sKVjXI4NjRjjfUbyc2YKfe3mY6YZyWyZW4VTDNI+fy+D493PwNg27sHY1
63BTHma895O3Jc5j+K9oVm/SsKe73yTu3V+KCR6sjH+K28+0XWL6dJ2GtSXM
qs/XI+ymMvuNiFxc/+C7WPEiDZtqbk1QUK7GWFtKdo/gelqk/ZUWnqNh2UcR
YftyHTZI/5T32CcS6C5mzWOaomHdNyQkI6MasfdangX2WSSg+ryYyXOQhi3f
gqrLG60Y09PzCuwfSODX5tzq11oapmD987q2ZRdmdJAk25RIAt+fUUsdKmhY
vSznWsdCN6YawiF6O54EjvXvfhdbQsM2bDg1FcL+YEseLCPjL0kgdK7LKPYD
DbPPNL/EX9SLje8JJ+x9SgISEUPPiAE0rGjTTV0nZBCze9cwLnePBI4aQ/FG
ERom4mvLbdw1hgHDCwyMZ0jg0P5Z6RZ2GrZmznz21pdxzKkqxr9IlwQKTz96
cWprB1tTcr5t9HgCey6rX7IX4PpE/Hye0r2D3T2re0AVm8JSVx6FXlAmgYAn
l48OR+xglAz2F6avZ7E8zvvr3zhI4OFPOR66v9tYdNyEQoj8IrbW/kQJlrGB
Upd8GMe/hQmWYQsX8texfW89TbmniEA4+1bNwsompuxm3DMuvIFdYar5vtFD
BJcVS9Qafm5itMDRa6oBG9hQTrrIu0YiMB24NUIXuYldzB8QnjLYxCr72nr1
sonAn1m++SHjJlZvll74b2AL6xf2PJ/rTAT9SpEbhm3rWJ+xIHUZj3eeCZvq
w72sQLdEXPEOZRVr/lXMIL9MD2Yb9kj2vGABTkMKPbTRFSxsldq7Ks4AZg5d
Ofn7AQugS4/N3VW6gt0z6P0c+x8DOPnAyDHdiQXA0OSfRpdWsJC9uz4YJzMA
o/BJrg8YC3gxYMm5P30Zu+bD1BN9khGIcfCrW44yA45HUTyvJJawhqE9RuTH
TODD61C/iL3MICIR5PS0z2E8I/UHFeZYwI3rv2Q4XzIC3n3ewbqZg5jr9e+6
l4js4LHHhu7DPgLYvTdT8rDkIGa9z+qvxx52oFxnv2JWRgDWfuuzb6MHMOHc
tdLDuuyArk9zeD2WADSUAoPnfPuxH9WjY12BOPdqcMkxJoBdi0iHFN6DseRo
aJ1bZweUFVvrP/40LE5433qGXztmOVd+iP4nB5iaWBxN3ruNLXXnHPz7MAw7
z7j1ZEOfC/hT2R9Maq/heUF+8Rz5NlShPJaMucwFKkRtxZ4vrGISX16OZLXH
wrB3Kbv+eHKBBh1p1dGUVSzcZs+D8Eef4I8Qs/sWiVxAq51zIH1rBfuj2aKg
5lsOH/HrBkmOcQGjtYH0wM/LWBp/5MS9G21QvERmt9UBMrh9XFdBiW0Ryw32
m9tD9w/+s1MIAbFkQDyh25PCM4mZPOn7LyLhH7TcDXeVvCKDZaGXp4MuT2DD
bdJ7VtWHYJPc+DLTazJgf1O+uvhpHLPU+HW23WkYso6BUd4PZMCj4J3lcXoM
Y+To/u7RMQq9M16qsxSSwchRipnMvWGsIMA0uMFlDNZoxz8ml5BBI3eX892a
IezLcNtLQeI4vONuGDVZhtuZur7bgXcIO5jywjdcawKOfaJ48VWQgXPsD+PN
d4OYfsYJr+i3U/C3Nz3laB0ZZMY1Kz6O7cNmr//Mt8amoU9M3NX2ejK4z2zS
VbinF6uRubXN3j0Ne4p4GA83kgF/4A6/WFEPNkM55kdmn4W28nT/fJrJwCvY
RPRNRzfm943zw+W3szBifhf3uRYyaL1wrqHmchf2myH2t674HDz2NNyS0EoG
zI77B1VmOrH7fiUGDdfnoNtwRJEvzhnW5LsG7vzEJpcs5bSK5qB+7ZxYHc6T
pvTk/jB2YPD4/NU4xnmYPt8XhM8jQHXb3kTiaRvmkL/O0m80Dw8NzQz9wrkJ
s0xbrkAr5vSRjp6cOA+vDwioxeK8MqnTWFm7Gas59NZkz/g8pDaj63I4F8to
zkk2bcB8miOXd6svwDnJnIfhuP0CkhwNJVdqsUO/IkY4/Bdg2Q9h72+4vxFB
wx8f3azCbgarpoYILEKd64o/X+L63DXh2tQJQdgRn392wnaL8N3nw/s1G8gg
zjlGJlCmFDuTnm//7NMi1HsZdfYLrr/HuZ57zAfysePSyryiJ5fgQvOVJnI1
GVx6f+LAh7RUbGhzH3rjtgwdlhNUXn4lg84uluNpMllw6TyBN7x8FV4ZFExG
eFzNuDh9P3WpGU4l0l2uYVuDhu/G2m4mkoFuTVh69f5WeN+do/aX6Rq0u4Vl
zeNx+4KuTaO3sA3SB38buTq8BneF77Wyf0oGj5NPylqV/4R60wIOGswb0DA9
bJTiQwYtInRORt1/oFHFt60srS1oDz3FYk+SwQPzb0s2HEMQnVP2/Xd/C0Y7
fJ5ow8igrCl+c/b7ELTgjzb+B7fgwrJX5ZAGGdwsOJ2d7DsMb+8faj16bBs6
eE7mRsiTwTW1Xannp0ZgioE505ljO7C87oTxMokMsLtjtwQax+H3udBdPMIE
FGZwcEjnCRcovkl69SNyFr5TiGxLWKFDzqoqAp5HOcGOJX+1W9QytI32+yHE
S49mfO+OtMhyAu/LceHCc8sw0WjwubsSPUoqbHX7y8kJgsrm/1Tor0DK1NiR
j470yKnilAaxlwMY5RRUszCvQqovDDrQSY/+hnHNZHtzgBd18OwF7zVYHCJ/
1vYjAzrXdn79TDI7mDrq1p9ouQklm80jYvYzIZYnBo0TX9iAqGVimMZjAuJ9
lsfjrM+E/rsVp9P8hA2EF+w/nvmVgGR/LKsx2TOh6Z/bAlZObODuH/ejvLME
JF9BeBUYzYRSGVMqXSXYgLHoumexMR0KOLRf4u0iE9JN7MwKCiGC5r+e85Z8
9Oh35eVe0TfMyPmNnnGqHl5vLv7d//oVA/qCtRVT21nQuk96qXsYE9jI3405
xjOj6/pOJrn/WBBvi6R0vyUToK/ZWHlQy4zi/7HWsy6xIEPlpw47ikxguigf
e7DGjHSepAx387IiiodGkWETI6Co6w0rmbEgzn0riWxGrOjCvVhZXQ5GYKPx
R9qQzIp8Z15+NSthReZXK9f/+uL17mmYhPQDIkqTVnt5+CwRMUz65E2e2sF0
dIf2G+qwo+lDenL5F4jIv6Fo7fPANmaW/bfhmTM7UtZaiBq9RERJIXRbO97b
mM2Fr5U5L9gR8fnoirszEbU2JqUfTN/Cogu3nSOG2JEHz6kjon5EdCCz+ZHi
5gamcOAZJTWAA32+xtpy5iERKab+KtJ7uoGFqfswNn3gQNvqauc0Qoho75OL
4QtSG5jdEf2ony0ciCZpe0L+KRHpRv99Nq+3jh2T1FL0EuNEWgfM7cPjiEjz
lzrKfrqKufCmJiwWciKee5+lHBOISCnHO+qUxCp2htTWvvCXE52lG2BcfUVE
k1UPBG5/XsE0jtoN1zFwobemzh2Hk4jIPK9m6SBYwZTrlG7fleNCTZdOXlBN
JqLG2oimx83LWNvXOSXGM1woO7Pd5i/OT3T+0PeyXsZst3QL7Dy4UEzEePaR
FCJSX5HmX55awnQlSz+/iuNCNPsmbgOci13n7yTeXcI6bfN+fPzGhfgGDply
41zQtV41n3UJ++MTkPD8HxeS2nvuaAi+vwT/7l+r0Yt456U4JctIRtkHS5Ny
cDu7lRpvtEktYlrjstw3+ciIecIb7yFw3aREUk98WsAGt7O53uwhoyo7jjkh
3N/2/r0SJkcWsCi9vJKKw2RUruXkcyGeiM41/3qxVjWPDYcLDNfrk9HhssXM
07FEZFySkXXIZB4rv/XpMvz/94w8q+PHo4hI5nZh0BPHOYxX8N4ruwB8f1ud
47rPiOid2m1d3X+z2I0jFALfCzJaSb0ms/2YiBjLNk5mrsxgyp+SCP///8y+
RK8mnyAikisvEFYUnsbOvf8slVZDRrcWzB4XuRNRSmK/przlOBYFo2bcObhR
3M6vH9SjRJSp90XdumgACwp5GRUbyY3I7MIY7wEiuj7Xy9iL+rEubsyiKZUb
cU+u13/bS0QRalN/rZ/3YZ0v4Z+JL9zoxBuZe+IieNzmD2zEZf7B9g/m2/9q
40Zjw+199MusKGb/xq1D7e3Y61xh1zvcPIiQP3ZaOYYVLUZMS1HFPmFsUMe9
KJQH9YoS94MwVmSs9ubi/fdJmMP512qbMTwo7YKTJM2XFWnafFB6n34G2io3
DEql8yB5/YWXoZdZ0X5Kit898c8QU+I2kqjgQSX9ZVGNsqzIpdgpYIlYA5Mj
v4c2rfGgqnTUsPaaBbUWL/e/UO6BHS/XZVov8SKJrfRSxQvM6Cn1zavqhBlI
ivpmqCJEQZFyxi3jx5nR4aMNPO7vZuFGyl26EhkKCqvAJkwUmFGK4aL21/Nz
8J3J3jlJJQo69unRzJ5NJpRXZGZzxmEeelPeVj/RpqCfr4fiBl8yoWhjrtgA
/0X4XfiM7i8nfH8+mqb/N0ZUbVMUbQ9X4clA9+SNLxQkfUtZcF8TPSpUKxDy
kSMg4/nlj2APFZFqdTncP9AjJHpw70UPAnp9MzSxax8V3eE8Q2fykB5pH0mS
OQ0JaGP5BL22OhWVvyleHNbA86Wq8bkT5+hQadiw0pNjVBT4PeCudSIdyrnL
nPTanx69+/vMdtWcilybqwYDPOnQWz2VsroGenSVkHpA5CIVxWvaemob0KGL
/lHt6/wMiE1n/Bn3FSqq9lg+HrdJQFs2+U6O2QzouJX2kPN1Kvpoxfct1pSA
wkdKfFz+MKKOWSGdvrtUFFkSVpS8h4Cu6E+8y5dlQrb/ST71f4DbKS8R9GiD
BkfWcvO23ZhQ+8Uy94UAKjqxd+c5+o8Gq+ZE2yJYmdFkWBUJC6Wi8C/XL44N
bMMts7S8BHUWRKbcKfONoqLGuGGryqBtKO+l5fvLjwW1JL1niIimosKvpmVd
e7bh6f5b3ZwNLChUg7x4LYaKFrPqLuU6b0HjlKaUG1dYkRQ9pS0knoqkUr9x
3OHYgkYCO9lRWazo85D7iboEKnp1JGjiTtYmJET9jf+yxooyo59d/fWKiujD
VJUL9Dehn//1vFptItq9Y7D9KRH3V3tGcN/kBuS17fiv6wn+7iUifpgmUdE4
bXVoIGQD9t1zy/zbTUSy7SqBFTgX8v3Y0rprAzbHVst2y7AhECC1tonzrZmH
Yjvl69AgP4i5zpUN3V3QG6HhvMZxF4/jxXV4sDYw5lMJG7rJFsXVhPOFo+bz
7GtrMMG7XCaUiYQOpCyqO+DcP4yHce75GjzUZrd2zoiERv+zFa7B7XTI9H9B
VliDkcRiS2oCCVkcGvBfxP0i/WOadalchWP798ZUDZPQOQ4PhTFcB+rEkSsk
y1V4ldl04aoyO3Iolf/9FteN7jMBG5lfgUmRf3M3fdhRhauokWIcFdkGszy0
EF2BvW6P/Wa5OJCkyun4SPxeOJQWhjSuL8Hd/2vpzOOh+r8/bt+yzJgZZsYy
w1hSWihJ0j2RtIiUotBCQptKi7K1UET2REll/WRNypLlvi1JskXKnqWy72Tn
d7+Px+/f5+P9uPd1Xue83+e8/7nXuzBlYSvRP/bf/FvoT0MWGz/r1S9O4pXM
gBTR++KI2uAhlu9LQ5f0rVtSH0/iBQsuqkLV4mjLFkzcy4eG+s6xb6mmTeDJ
7gaP808R57vYqaTjnjR0jhkpsaNnDE8vD7f0MiAhfvpjn2MXacj0jY9QuuUA
/jTvp5KSAxnda7RKBaCh3Te8DFqv9eP57rcO/PUlI9XMGH/ebTREervrwZeg
PnyhzCwlKpmMTtVong7ZRENvclW/DhX/xR/ufJNVP0xGejderRNToaGvQ4rN
jtI9+Ig59YW3iyS6yBstcEeIhrQXw7U2kX7i/B3U8uduFGTVI82rVkpFG4X/
llzuKMZK46oaFd1pqOvIsJSBOBXtf9H/vYavHDO73Kt3ivD9BGP4izA3FQ3d
M0XBGyox0ofRh/c/0tCFbvHsJ5MUJCrsMEXZ+w2rqqfr3Z6lIXHthuDFnxRk
9OVj0O1PzRilq+KanIsUUip1KeGOoaBIsbMph0P+YBqBM9TfttIorVc3vVye
gjY6oZK9jZPYG88WmwQ1BkrQN9HTnCAjaZU9KW43prDsbapUjhEDGZr4lAW3
ktFlXvtHG+jT2J+7I71XzzDQ3IeC2vgyMjIQ6D4hbfMP2zD9I+9BDAPlbCe1
Dz0hI2NJ1/zCoVksf5XaG2cSEy21KQ7MbiYj3745KyHFZQwpZ+lUDjBR/jbd
tb/PkNDw0FVL8wt8oKv90DzpuixSvVG9JU5KDJ1Ya/TpRikf7F9d0moWIItm
O8LA7Ico6k55q1vE5IelplrdglhZtFBWdPnME1HkMNgtlfuFH8JucqnU1Mii
ZAML+keyKAokJyTqqAmCxL7IiUaOHOrYktWlwLsKPfgtOu02LAwDM/kGo0gO
nWLlcnorhJBrWnhlwj0J+HdR4BG5VB5FqF+V4O7iRbQ1h5OxHxLQelD2cUqt
PLLMurqdO4wXwfMIniEqCfrN+/8stsqj9itG4p67eJHqebtqL0fiPhYmkVQ6
KY/Sa7CykQQexDiu0ectQQaNTzlNDSwWesRdIP3BlhtVxaV/9rKWhE5+S4cw
Jxbi9nhtt8d3Ce9zniyf85GEBCW04niFhS5GYaz1bYs4WuNo65QhCddGLfaM
uLIQqhfjYWxYxCFw5pcKDwXE/BvEBB6yUES+IYWnfh7X+dTSLJREgUQduTs2
L1nI9mxTjp7oLD4lqpMoV0eB/HnxtLh4FupY+7Le0XIGTw3ialKco4Dj1+2/
nrxhIdY/zyuv4/7ha6KECxf2USHvS7Gv+zsWctHpHca0p3F5ZZPA78NUqDVP
8N+NWCg6KvWQ+eEJvGf18cBjUjSY5/W81VnCQlMpXjVikeO4+9g39y87aFCT
Z9Kv+ImF+CbejXS0juFrdz1I5DjQYA8P7yWxz4T+GDP6F/kx3KnguIVDEA0+
hB59/rKChd6Of3F+XjyC59nvaQnLocErait/8xcWymxfuddmMIwX3z51679f
NDBYWtLPq2ShLSPhpy3LBnExrVqPeEEpcLki3o99ZSFLd4akpMEA3pnVseHh
BimY1zIIukBwVd1ryaKoD2fPzf0wtZCCh2moegfBj+TNmO7X7cWvLGXkLXlK
AdYdo5dNPP+1803tb+//4Dyt2XLBiVLw9tmoaz2hx++4dcJr9d+4n8SokUCN
FCS6lTHDCP0rjLxhPLYb92g8635yWgr2amnhM+Us5Bhqc22DdBfeEG6z/ExW
GvCP9rxchD/jnO/Heim/8MSquskP56RB/e/s7zmchQJl3OJIjU349Lbu/rAQ
aXhylFEyUMBCObKz/fjbRpxfKl7TLFcacnruFnnksdDP/Y6Xtfzq8VfXNfLO
8tNh77DNa99MFjrUKjGjeLoCl3Jttul7QYdrcky11S9Y6D0xMU+VeGPHK1xX
oj4z4JOth4WBLQuZHOmVT+1qwRT91jQeH2RA2M4fVVbHWIihZV0hrtyB9bSU
nhsTZ0Kgayo/7SALbZ4zOub9oRMTUae3RRxhAtdcSI7jdhbKyvu4bLLSg9XU
vxvN72TCZVc3tUASCynx23yKfz2AMZ4MxBYNy0DNw+uDMYnEPtpbV+EjPoXl
TRZqW7fLwWbx38WvfOXQwcN7X1tOcEHKm49j2LwccBwTTS67yKHspElKoi03
OLntPdgpJQ+hhp0vWm3kkMydkU/MBm6wb70qaG4qD66Ruk4+GnKobtPEDZf3
PCBHe/Z4okAe9qnY3VL+LouSzvZvfO/KB3LJ4OPwiAU11clWLwRkUbV4R+Ms
vxAke/ZfeXaNDQ2WlzfKKjBRqUwAiaoqAe3LaVljnmxYtnTHkxYZqFXg5aug
WAlgtNxnSvqxYSXdZKD4JwN9KIlInhcnAe+l/IL30WzwOzgRGhfAQH7+4z7b
HpHAnDV0+FIxG6wf8D9QHaejaJm10iteZFgS0Q86waUAl/ytnaISpFGE3pWT
txwocEe847COoALYvpz7YHBbGgk4haYOx1Hg77V5y2YxBRi/QD3tbSKNWr3X
bdPvpICKQ02TA1MBWLLkA1+npVC8Kgs9sKRChG7Y8IeNCnBwSDHzLiaFMm2z
/1kY0SAgm+rcaKYAvFU+mzYgKuqRmMgfJur1nb+FR6e5AmTY3v4VEkhFJNrw
fNlRabCRrT2YaqEA1HP3oyKsqajBu2H6bLA0rJPXtPOxVoApja/JfjMUlPHE
o5Cflw54ceDm0BMKEF45VHarjOhzi4YtK7p0SHsrOnbilAJon26/KhFCQRFT
yofxa3QQORJ/QttOAZ68q9+6QY2CGmeHln3/0OFCDTlL/wzBXx/RyJ+SRL+T
jz0IlmOA002zzWL2CrDdKsJzDJdEvs6iFMsjDKjsbs6JILiAyy9G3SNJtLFr
u1lHAANCVtNovwgebiHKZXVEEkGlyIhCGQOUNtor/yW4/Y27GqEsSfR4KOip
wgIDHNpVy1IIXi2i9O5GPxl9/ja+2KrBBGVWfs0Ggh96beYnnEVG52Ndakwd
mcDXcUfpKqFT3+Rn8X53Morh8S10i2HCu6/diVeJuBwj+5x2GJJR0kS3+4nv
TDgteVRHw1YBjMhSYd3EfQ9764/+CcuARkeYSh/h2/53MbhBDAmpCo2m6F+T
gQ+n2GjbEQXozt26nnxTArmGCO5XMpSFLexzh9QOETrNjwYY80kg36gwqyBX
WXg+GmXVaKIA5bvNRhaDxdGAzceKhBRZuHTIJ93eiIg3MXtT+X9iqOKU9uda
khxsU+6pP6ulALK1erCjfhVyv+C4/t8POXAyGH/4jKifw7XGE0fsViGV/aXn
TvDJg+hurm3haxXg+7qbTvxTIqjAXCjsmoY81J6tyGhmK8CzM19/b6KKoL33
/NoSH8nDl4pn82lCCjCptxIsfFAI2RmkbxHWYYHWZyfLR9VsUOM3076Zw4f4
V+f6e+izwW481lXpExu2Gv2rFDbgQ+s1rA+eO8qGltmkUp8CNlzddynpaA0v
up8zOq5yjg2nAo+eiklmg5gDxWD1bx60P09ng3gIG2IObyxc682G6bVFaECU
G/GND4X5tbHhCw9PVps6G2J3uAZ2v5nH5YecXnQ6KUCr/kzCIpsNxZFvrG5+
nMOndkqnvLhN+PKT/PwvlQ0XbaaKKitncRmekjIlfwVQSjOY1JxlgQfVZC0a
+IfrXiloDUpRAGHNGJw3mAXenfycc6sn8cfsgvXf+hXARt7wn0aqPKxNUvYt
0evFF5NiLpdYKcKxczIWpOey4Nmwq8J081csge4rW0HhAEeq2vK3iyyEm7Wa
J8V9w/ZMtqZQ5DnwSPXOeTNjWfhLs3wfkdKIqfKEt0qv5gDddah+fkEG9vrX
bHfKbscCUjui9+pyYEqxMSPpKMHf6uRmtPzFXv0U+mB6ggOP3XZZH59nwCPn
T8E7zSaxakOuzB8RHDgh0566o5oBVylrC4r2TWFN6ZHnYqM5wGKnulS/ZIB3
YCMxkU9jvYZ83cqxHFgl1CcyasCAfN354mzNGSwjqUTZPJUDF471HLbzpcMA
NZRzUXAB22UXa2BayAGyyaXtBZZ0cNq+MH1jfgEbPDov14I4cJOhSfuymg6h
l7TKnw8tYvD1oJpcGQfqMtWv8FZIQ75zy4RizTIWq9OrXfWFA2N9rmc2PZWG
yrx1OW6FK9jp3PUuW6uIeGMFVsuelYa2X4VKI0e4QHLstqlNDQckrqSKyvFK
Q9+7Sfo3fW7Ylbnf5ds3Dgwbpidqf5MCY6/wNV653BD5y4hPoYEDK4ZxPKSX
UtDF9BxLWscDSlrrv6h958Ahpu7JpAtScPL0+fV7Y3nAPVNgaJDg3LcGF5Z1
pEDlblX6KSleqLk7EunQyAGBq7/odGJumQho0h/y4wXsjeRyNMF1q//+m2yg
gciVmJL+RV7oCkjeH0DwcC/7n2GvaDBjQBOzcOaDMLuJLC2CO2wxWJy9QAP7
hbVCml188NJf+XwU8d7cuZYkJR0a8NxreuV6iB/o5a5JOYT+toEBWTo/DQaV
Vb6uLuWHPkvq6+B6DoTen3e2iqaConlQRWGsAGyztst2qeWAqWTj9zQHKpDK
EpJiyIJQ2jix37OaAxFdhaRqTSqYxJ/f2OUlCLFWN0J3feWAU8B72ZsVFPh5
eG/S/eNCkJdgu42/nAMdyzrX+MIokO423/qrXAjWPj+gxFXKAXvNmEw7Gwqc
Nn9tFKEpDH5cSnU5OAdMBoIGo8cl4ZcpKU5ESAQ2VVaFnMjlQPRT4xQ5uiTM
b4te25W8CtzTQuihiRwo+Cl+6MoJEnTeg4C2GnGod+vb03yDA+OeaeRcVRJc
WG5TObReAjZUn3TtdebAOZVs+NolATZR6t8lHktAtIH7UJ4jB0KO8UdO8ktA
rHWo7gYlEux0uklOO0bsizpb2gFjMTAMLBqjtJLAU9I/4sdWIl9cr0PlG4Th
ffujM4VbJOFz7BfjgCFFeBy21cO7iQd2nDyIHsRS4eRubPykuiLoXTCoJjvx
gMyujbYNn6jgnUua+CivCGGfPZ5nznFD3n875rP7qCDgF36+l6QIpilL5zfK
cIPojw/79NfRwOy2w7PsKQUIdBHloKJl7CIl4OuZTBqcMR3O3vZRAYr9ZK8Y
tc1gye426kUJUtDw5OzRnXoKYI5Wv+D79BvbVyFk6rWDDuy9W6P8Vdiw8839
c+HberADWq0Voofp8NFwdYAujQ15T9b7sjK7sNFIYdMdDnTISz42UMvLBrMu
n48u+u0Y5826+ceBdAhxU/xmUsyCwJci2//JfMPcu03de5roUM575pO2JgtS
dmh511PzceXI0kE/awbs4wmJaRWRhx+qDKedF0txKrsROZ1nQJHqZ7riHzl4
EFnwV2H/F9zG5S02dosB6XV12nq4HOQWhECnWz3+dJU6beIJA+TaXA2nrsrB
M+2fnc7CHXiAs/fp2i8MaD7AjLvVJAsrFa+T1pgN4Lot9UkqCkxIkUva5xUt
A58jHeRPvh/Ej9osH3i8hgn/jbpJ2BP9lNcnZxVbahjnNNyJiNlEcNeYtDXG
MpDK9fqJbuMofvrO7KaSXUw4XnFnteUCEwZ+R4t+ejWBg8h4O82OCQ+aDatN
LJmwqjfjoJPxJG6mV1rV7MSETXszpHZvYMKBLV3Ze2YmcS2tluJ9l5kga8Pt
pyjAhLDQ+KqsfdN4IVmVR8udCTzXa7weZzHg5AksjN43gys5QdemYCZQfYX+
0xNjwG6Pxc0uj2dxszfcPE7hTEg6Ubfxcg8dVjTuHlrRmMMzH7WUHYhkwvf3
I3MBeXRYty/6aZLrPB4jaPZY9SUTlJyufn5oT4c1UcqRxcwFnEdwXF8ulpg/
cl4JOBDzmE+2UblQwQKeUxY/XxrPhPnm9wuaZDp0xSlEMhcXcZ2XmT+V3xBz
vdi7q2EF0hAacwHrebaEj/lbvutKZsLc6gpVtVBp2JlwWqZx6zLe7J04Z5rK
BF+27FyagzQcNKnYNtq4jHs+qhC+kkasN2r1UNSTBp0rDzM3Xl3Bj5ndwQzT
mTB0cZvxQ0lpoGw/YFwlwIUaMPZsFcFzhK/PtfUS56wZryDFnAt13nwYIpTB
BK2bVQylQikwYjsyh15xodhBuXOzxHoyPASbUCl4NXmTaTHMhZI86jqjCb7x
2tiKr4MU2HdtuJCNcaPMnK2dvwk9hxoV/gkT5/Wq9trDYSHcaLDaWa2R0D/C
2xzgLiIFCq8tzIa7uVHAk/Pal1KYoOKeeLurlQYJm6h9pZt40MulUp+3hD8/
ZAqu6aTRoDP/aYyUNw86FZUWHJ3EhJuPh9b7eNLg5JHM5d8NPChGb+q7ZgIT
8PJkq0+mNGD3dk9MXOFFZ52iV04S+XKzz69VnqCCzp47yRqIF3GdP94985wJ
Rz+SrxuVUuGrRvqhATE+FKukNKNL5P3ftqU9p8KpkHi3rf1zEh96Hsn8UBnE
hDv5l9Vub6EC1XC7o1ojP6LERQeR3JigoBGhc/o2BTqHzaTXsQRQzNImUfp1
JkSdFK002U8BD+H/fiQ5CqCiXQ9Kai8xoSp+tmirLAVIq/4Yc88LoMvY1V6z
00zIjVs8ylckCd+zlhW2SwkhjVrzKxn6TAjtu+Hqzy0Jl62KPJ9tFkGJx1rM
DWYYwC8sVdvhSwJTbmvxsesiqKK5f0/AEAP2hMcPthwjwQ/17Yu52SKo07oH
f9zFAGkWrb5tDQk4fGo28VtWoS+rPpsUVDJgcoDXpC9KApLHNKPbN4iiNXt6
XvyIYsDOa+GvVhTFQWa2+V6ZoDjSq9occH0tAw5qV71b2LoKDspsbQlOJKFQ
aUFzQTYdVhnGv627zQ/bmsGvpoCEKvPKB2LF6bD9EN+h1Sr8oI5FhNfUk1Br
XtBH8SVpUHsyyB3/jQ+kTp3+Q1smoTOG7pmWzdKwSFKjiajxwXqaZ1iJGRlt
Pqb4pjhIGribW0/HNvPAuNte/pfDZOQXGeS/a0oK/Bw1B331ueDhUJxh44wk
6vpxtbE/hgZjFfYbRS79w7436++8LUBBG596nbD0pcHeB9b3J2unMTz9xIce
KgUFSb1jx18h5oWw+lNGmtNYprGOA58GBW01Guj8bkADeeN+fc3ZSaxALT3R
6ywFzVgkbE78S4U4FpSo+41jyVlPra+VU5B43nXHEypUSDfmzDbf6cfW+Q8Y
yllR0btwb4+KYEkQOyzc83lfFWZ6L+TgaVsqKtP2HJO/SeRV2T/LoPcztq9f
/bmzExXhfFO3T9pIQrx3cHXiw1LsRO6fi4M3qIiDla57pSYJn+6l1Tj+9wHL
MLjrbRdERY0fKk6qFZPBzVkr+2LAG3w1zfrflWwqak4Pz4kfIsG3vYfxEcHv
eKUuRcnpIxUNWGiblX0jwdzrt6pejB942z6Nl+pFVPS63xMasom+fLFTd3F1
E27r4CTI+ERFW0Rn7dEdEjTHUm582NmGP4+JuOhfR0Uq+aykTgoJBhykfOfV
u/GrsjINffVUpD1QEi44LgFCtv4lNut68BeibS8ojVS013dXsMZHCQgfVs59
q/4bP/mWZ+JbExWd9c5jbzKWgCae258UV//Ft6zdWWrfQkU3aP7jq2jEc/pu
2IBSL66bcsHvcysVKVlLj1a2i8NuB8nMfaw+fKyrzWe6nYqE/WW7ly6Jg2DN
VJqi5AC+elqFv6SDik6TpCVctMXhiYDx2IjwIL7Q7rDK5hcVJWXV/qxbEYNq
rSPsBK4hfJW/e2E5wa3EUn5IV4hBxB5O6K5/Q/iTbfawQvBf0fcS9gSLwduc
4uiqgWF8q5hhnkAnFSX+jm+3sxSDWsb6Z9s7RnCB56cPtBPr/zxslD7HFoOm
IrPesLpR3MlPUfE+wUsuHBiy6hOFjalL432nxvAMZbLNLKEz4ufHCZ23omBi
eWFuvmkMr1r+ydEjeG/gzhI+V1Ggb80t8Do4ju+/px9tRsTbu3R7vAATBb1Z
sbEbn8dxnsP1OgOEb6nvc8tnalZBh8oDz/ysCXzttMeRjgYqml2mhScNicDm
XXcuPvGZwtv05H7Ef6Miy6jM1OEsEWAJS7YkzE7hr1vX626vpSJpd4dyZTcR
SMBu+amcn8ZNAg6ZdHyhIkeDeINLwiJg0OeWddPkH/7j6rPOyQIqyu4W0bqs
LAw/XuoEHRKfxZ37XMwePqOiaozz7r2VIIh8r7HIu7qAa0psSVsKp6Jdjekd
nnKCMHat7r/UPwv4wV/XfDCinp+5vxEz+CUAyeYXyiYsFvF09r/bKvepSCB/
/YYCWwEIHZd3v7FtCT/tc3H9Q0dif9kXeng78YNXG03t6MwyzmXKU1GsRsSr
G9jIc5OXqIf8eJXV3EjPDK8KfUhBP9dXJN1WX8HUxVyExTE+lDD6PemXGwWp
SyZ0MTOXMWlubXbART7UxP00d9mZgqq05tY0aS1jm4bvuWc+50O23LPH3ltQ
0Ef55fR0bAmjFJ8aHv/Hh1LsuT/yKlOQbM7T+0PmCxjfybcqe9/wIx1eW60z
OZJIoT1AIuPBDMYU2eRnsiSADL52Pc8vICOHEGuOssQY1l1RN1VoK4x+rfBq
dqWSEWvmABrUH8Xum23eWnFfGJXLb1H4E01GDRPPPJYcRrDgwOrrPvHCKGoj
p9LXnYzOSNSecc0awjizEdyMP8JoIMnbZ9c2MioV5GmfM+3HAvbZWCfYiqDg
hoNNORkkdMcjzjX8VTf2h7daz9p0FUpA5tfLBSXQ81hyIzW1HPsQPXI5elQU
aZqo9Nh1iiNj1cXm+XulmO0+0yhZQTE0296vW5krjvwlXH3OWiPMWUrI0Uxe
DO09ZrVj0lEcvfQ54lW57j32ehW3fvN+MdT8M9ezuFwMeRTTf3OSQvFgi/E5
uzgxtMxTJ53kKorK62TuNyZX4gqBToM3domjWcHs6BO5wuhVi9332X3dON9R
VSF1UwnC91mJYB9hZPBx57UjlB7cWqSsWfSkBHrk+7o24JAwajrIV/ChpQc/
FUEyDLskgT5lNt4YGBRCw/Urf2+f/YP7KG12DwmQQCavb+7cLSuE+LSDWwav
9OF2a0Z9LcokUH7wd1hxEUBR2C8bqsUIXjwtJxlBJqGgVwr/qe0QQKPph+0n
xUdx9Z/pewukSGglvub2aiEB9PJaqWzRJ2KfbzX0y5Yhof7c8YyE5/xoT/fy
Q6HIMdyNvf26qjIJYdErd9MRH8oZfXKzdGEcL0sNPr6kRULcZWOP3Xh50cWD
mod2/zeFXwrb+j7AlIT+rn9F1/zKg+52WoYZLEzhA6rJGUtmJHTV7IxFeSgP
+gPYkdQD0/h4QQZ9lzkJre/32fNIgQdFyn5dKRybxsmPjoWaWZIQ3b1fJb+P
G+U49RTZ7/yH847U1dOPk1CL8kVyVQY3crOITbkR8g9fPnav84MV0b+VbM4E
63Gj/pN3qr9tmMGTf/4uI+6HKLWua24XHzca8gn8y/Scwam8L6uCT5KQ8dHs
6dZKLhQVoThd+XUGb5dP4H1wiqizidyRIyFcyCPT2bmLPot/tm29Z3aahILb
et2yLLiQgKdVtY39LH5N2NhukuCNlac2T8txIeUvnr5Y5ixeq65adN6W8G0I
ndCuWMF52SqyDxZn8fVxJakfCd6k6S1kar6Cn7l8iF/DaA6Xa4/a87/vsTf/
XgrX7FzGG+PySrCQOdys9EBKG8Gf3bLa1HN+GU/R//w9s2UOL3gSP5JB8CAb
PortzBKeIfGi8AFnHs+u9FM/TnCrnki7t/eW8OFkCnfR+Xm8d0TMq5XQqbVp
3LxWbAk32ZivZJE1j//nc5ZrM8HtNstKo8hF3LulNcNsfh5f7B+utCN8+HLt
RMt9ziJuGHdjbRos4KMbOHPnCN96boOK39YFfM1iIdvn6wLu9Wzf4Io1Cenf
P0+qLpnHY4fEPnCRFnEv1/Hfj4m8uHOXFPUZz+Oj3Gzn1sOLuNGVjLTJYyRU
iLHWpZ6awyO4OqNTmxfx468cGUZHSejX440Hjw7M4sFxJJ1YmSVcrE5ncjNR
J3MrXkttLrP4biUR42nrJdzyZ7XwAlFXL+e5HHYuzeDjpY6XEl4s4SS9ftco
og5/v60r+t9/BDzbH257176Ed/z/fwT+D9dPVHo=