diff --git a/kerrgeopy/frequencies.py b/kerrgeopy/frequencies.py index 8e5460b..5f07af1 100644 --- a/kerrgeopy/frequencies.py +++ b/kerrgeopy/frequencies.py @@ -12,17 +12,17 @@ def _ellipeinc(phi,m): Incomplete elliptic integral of the second kind defined as :math:`E(\phi,m) = \int_0^{\phi} \sqrt{1-m\sin^2\theta}d\theta`. """ # count the number of half periods + num_cycles = floor(phi/(pi/2)) # map phi to [0,pi/2] phi = abs(arcsin(sin(phi))) - # makes this work for array input without throwing a division by zero warning - c = 1/np.where(phi == 0, np.nan, sin(phi)**2) - c = np.where(np.isnan(c),np.inf,c) - # formula from https://en.wikipedia.org/wiki/Carlson_symmetric_form - integral = elliprf(c-1,c-m,c)-1/3*m*elliprd(c-1,c-m,c) - return where(num_cycles % 2 == 0, num_cycles*ellipe(m)+integral, (num_cycles+1)*ellipe(m)-integral) + integral = sin(phi)*elliprf(cos(phi)**2,1-m*sin(phi)**2,1)-1/3*m*sin(phi)**3*elliprd(cos(phi)**2,1-m*sin(phi)**2,1) + result = where(num_cycles % 2 == 0, num_cycles*ellipe(m)+integral, (num_cycles+1)*ellipe(m)-integral) + + # return scalar for scalar input + return result.item() if np.isscalar(phi) else result def _ellippi(n,m): r""" @@ -57,7 +57,10 @@ def _ellippiinc(phi,n,m): # formula from https://en.wikipedia.org/wiki/Carlson_symmetric_form integral = sin(phi)*elliprf(cos(phi)**2,1-m*sin(phi)**2,1)+1/3*n*sin(phi)**3*elliprj(cos(phi)**2,1-m*sin(phi)**2,1,1-n*sin(phi)**2) - return where(num_cycles % 2 == 0, num_cycles*_ellippi(n,m)+integral, (num_cycles+1)*_ellippi(n,m)-integral) + result = where(num_cycles % 2 == 0, num_cycles*_ellippi(n,m)+integral, (num_cycles+1)*_ellippi(n,m)-integral) + + # return scalar for scalar input + return result.item() if np.isscalar(phi) else result def r_frequency(a,p,e,x,constants=None): """