forked from yuxiaowww/BDCI-2018-Supply-Chain-Demand-Forecast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
zh_lgb_v1.py
308 lines (265 loc) · 14.6 KB
/
zh_lgb_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import gc
import time
import warnings
import numpy as np
import pandas as pd
import lightgbm as lgb
from datetime import datetime
# 特征提取
def get_fea(sku_id, goodsdaily, goodsinfo, goodsale, goods_sku_relation):
fea = pd.DataFrame({'sku_id': sku_id.values})
fea.reset_index(drop=True, inplace=True)
fea = goodsdaily_fea(fea, goodsdaily, goods_sku_relation)
print(fea.shape[0], fea.shape[1] - 1)
fea = goodsinfo_fea(fea, goodsinfo, goods_sku_relation)
print(fea.shape[0], fea.shape[1] - 1)
# fea = sku_sale_day_num_fea(fea, goodsale)
# print(fea.shape[0], fea.shape[1] - 1)
# fea = sku_sale_last_day_distance_day_fea(fea, goodsale)
# print(fea.shape[0], fea.shape[1] - 1)
fea = sku_price_fea(fea, goodsale)
print(fea.shape[0], fea.shape[1] - 1)
fea = goodsale_sku_slide_fea(fea, goodsale)
print(fea.shape[0], fea.shape[1] - 1)
fea = goodsale_goods_slide_fea(fea, goodsale, goods_sku_relation)
print(fea.shape[0], fea.shape[1] - 1)
fea = goodsale_rank_fea(fea)
print(fea.shape[0], fea.shape[1] - 1)
fea = sku_price_mean_rank_fea(fea, goods_sku_relation)
print(fea.shape[0], fea.shape[1] - 1)
fea = same_goods_sku_slide_sum_rank_fea(fea, goods_sku_relation)
print(fea.shape[0], fea.shape[1] - 1)
# fea = sku_last_n_day_sale_num_fea(fea, goodsale)
# print(fea.shape[0], fea.shape[1] - 1)
fea = fea[sorted(fea.columns)]
del fea['sku_id']
gc.collect()
fea = fea.astype(np.float32)
return fea
# goodsdaily表
def goodsdaily_fea(fea, goodsdaily, goods_sku_relation):
for i in [3, 5, 7, 14, 21, 27]:
date_sort = sorted(list(set(goodsdaily['data_date'])))
sub_goodsale = goodsdaily[goodsdaily['data_date'] >= date_sort[-i]]
data = sub_goodsale.groupby('goods_id')['goods_click', 'cart_click', 'favorites_click', 'sales_uv'].agg(['max', 'min', 'mean', 'sum']).reset_index()
data.columns = ['goods_id',
'goods_click_max_slide_' + str(i), 'goods_click_min_slide_' + str(i),
'goods_click_mean_slide_' + str(i), 'goods_click_sum_slide_' + str(i),
'cart_click_max_slide_' + str(i), 'cart_click_min_slide_' + str(i),
'cart_click_mean_slide_' + str(i), 'cart_click_sum_slide_' + str(i),
'favorites_click_max_slide_' + str(i), 'favorites_click_min_slide_' + str(i),
'favorites_click_mean_slide_' + str(i), 'favorites_click_sum_slide_' + str(i),
'sales_uv_max_slide_' + str(i), 'sales_uv_min_slide_' + str(i),
'sales_uv_mean_slide_' + str(i), 'sales_uv_sum_slide_' + str(i)]
data = pd.merge(goods_sku_relation, data, on=['goods_id'], how='left')
fea = pd.merge(fea, data, on=['sku_id'], how='left')
del fea['goods_id']
del data
del sub_goodsale
gc.collect()
fea = fea.fillna(-999)
return fea
# goodsinfo表
def goodsinfo_fea(fea, goodsinfo, goods_sku_relation):
data = pd.merge(goods_sku_relation, goodsinfo, on=['goods_id'], how='left')
fea = pd.merge(fea, data, on=['sku_id'], how='left')
del fea['brand_id']
del fea['goods_id']
del fea['cat_level6_id']
del fea['cat_level7_id']
gc.collect()
fea = fea.fillna(-999)
return fea
# sku销售天数
def sku_sale_day_num_fea(fea, goodsale):
sku_sale_day_num = goodsale['sku_id'].value_counts()
sku_sale_day_num_df = pd.DataFrame({'sku_id': sku_sale_day_num.index, 'sku_sale_day_num': sku_sale_day_num})
fea = pd.merge(fea, sku_sale_day_num_df, on='sku_id', how='left')
fea = fea.fillna(0)
del sku_sale_day_num
del sku_sale_day_num_df
gc.collect()
return fea
# sku销售最后一天距离窗口最后一天的天数
def sku_sale_last_day_distance_day_fea(fea, goodsale):
last_day = int(goodsale['data_date'].max())
sku_sale_last_day = goodsale['data_date'].groupby([goodsale['sku_id']]).max()
sku_sale_last_day_df = pd.DataFrame({'sku_id': sku_sale_last_day.index,
'sku_sale_last_day_distance_day': last_day - sku_sale_last_day})
fea = pd.merge(fea, sku_sale_last_day_df, on='sku_id', how='left')
fea = fea.fillna(-999)
del last_day
del sku_sale_last_day
del sku_sale_last_day_df
gc.collect()
return fea
# sku价格特征
def sku_price_fea(fea, goodsale):
data = goodsale.groupby('sku_id')['goods_price'].agg(['max', 'min', 'mean', 'var']).reset_index()
data.columns = ['sku_id', 'sku_price_max', 'sku_price_min', 'sku_price_mean', 'sku_price_var']
fea = pd.merge(fea, data, on='sku_id', how='left')
fea = fea.fillna(-999)
del data
gc.collect()
return fea
# goodsale表sku滑窗
def goodsale_sku_slide_fea(fea, goodsale):
for i in [3, 5, 7, 14, 21, 27]:
date_sort = sorted(list(set(goodsale['data_date'])))
sub_goodsale = goodsale[goodsale['data_date'] >= date_sort[-i]]
data = sub_goodsale.groupby('sku_id')['goods_num'].agg(['max', 'min', 'mean', 'median', 'sum']).reset_index()
data.columns = ['sku_id', 'goodsale_sku_max_slide_' + str(i), 'goodsale_sku_min_slide_' + str(i),
'goodsale_sku_mean_slide_' + str(i), 'goodsale_sku_median_slide_' + str(i),
'goodsale_sku_sum_slide_' + str(i)]
fea = pd.merge(fea, data, on=['sku_id'], how='left')
fea = fea.fillna(-999)
del data
del sub_goodsale
gc.collect()
return fea
# goodsale表goods滑窗
def goodsale_goods_slide_fea(fea, goodsale, goods_sku_relation):
for i in [3, 5, 7, 14, 21, 27]:
date_sort = sorted(list(set(goodsale['data_date'])))
sub_goodsale = goodsale[goodsale['data_date'] >= date_sort[-i]]
data = sub_goodsale.groupby('goods_id')['goods_num'].agg(['max', 'min', 'mean', 'sum']).reset_index()
data.columns = ['goods_id', 'goodsale_goods_max_slide_' + str(i), 'goodsale_goods_min_slide_' + str(i),
'goodsale_goods_mean_slide_' + str(i), 'goodsale_goods_sum_slide_' + str(i)]
data = pd.merge(goods_sku_relation, data, on=['goods_id'], how='left')
fea = pd.merge(fea, data, on=['sku_id'], how='left')
fea = fea.fillna(-999)
del fea['goods_id']
del sub_goodsale
del data
gc.collect()
return fea
# goodsale表rank
def goodsale_rank_fea(fea):
for i in [3, 5, 7, 14, 21, 27]:
fea['goodsale_sku_sum_slide_%s_rank_0' % str(i)] = fea['goodsale_sku_sum_slide_' + str(i)].rank(ascending=True, method='min')
fea['goodsale_sku_sum_slide_%s_rank_1' % str(i)] = fea['goodsale_sku_sum_slide_' + str(i)].rank(ascending=False, method='min')
fea['goodsale_sku_max_slide_%s_rank_0' % str(i)] = fea['goodsale_sku_max_slide_' + str(i)].rank(ascending=True, method='min')
fea['goodsale_sku_max_slide_%s_rank_1' % str(i)] = fea['goodsale_sku_max_slide_' + str(i)].rank(ascending=False, method='min')
fea['goodsale_sku_min_slide_%s_rank_0' % str(i)] = fea['goodsale_sku_min_slide_' + str(i)].rank(ascending=True, method='min')
fea['goodsale_sku_min_slide_%s_rank_1' % str(i)] = fea['goodsale_sku_min_slide_' + str(i)].rank(ascending=False, method='min')
fea['goodsale_sku_mean_slide_%s_rank_0' % str(i)] = fea['goodsale_sku_mean_slide_' + str(i)].rank(ascending=True, method='min')
fea['goodsale_sku_mean_slide_%s_rank_1' % str(i)] = fea['goodsale_sku_mean_slide_' + str(i)].rank(ascending=False, method='min')
fea['goodsale_sku_median_slide_%s_rank_0' % str(i)] = fea['goodsale_sku_median_slide_' + str(i)].rank(ascending=True, method='min')
fea['goodsale_sku_median_slide_%s_rank_1' % str(i)] = fea['goodsale_sku_median_slide_' + str(i)].rank(ascending=False, method='min')
return fea
# 同一个goods中,sku平均价格均值排序
def sku_price_mean_rank_fea(fea, goods_sku_relation):
fea = pd.merge(fea, goods_sku_relation, on='sku_id', how='left')
sku_price_mean_df = fea[['goods_id', 'sku_id', 'sku_price_mean']]
sku_price_mean_rank_0 = sku_price_mean_df.groupby('goods_id')['sku_price_mean'].rank(ascending=False, method='min')
sku_price_mean_rank_1 = sku_price_mean_df.groupby('goods_id')['sku_price_mean'].rank(ascending=True, method='min')
fea['sku_price_mean_rank_0'] = sku_price_mean_rank_0.values
fea['sku_price_mean_rank_1'] = sku_price_mean_rank_1.values
del fea['goods_id']
del sku_price_mean_df
del sku_price_mean_rank_0
del sku_price_mean_rank_1
gc.collect()
return fea
# 同一个goods中,sku销售量滑窗排序
def same_goods_sku_slide_sum_rank_fea(fea, goods_sku_relation):
for i in [3, 5, 7, 14, 21, 27]:
fea = pd.merge(fea, goods_sku_relation, on='sku_id', how='left')
sku_sale_num_mean_df = fea[['goods_id', 'sku_id', 'goodsale_sku_sum_slide_' + str(i)]]
sku_sale_num_mean_rank_0 = sku_sale_num_mean_df.groupby('goods_id')['goodsale_sku_sum_slide_' + str(i)].rank(ascending=False, method='min')
sku_sale_num_mean_rank_1 = sku_sale_num_mean_df.groupby('goods_id')['goodsale_sku_sum_slide_' + str(i)].rank(ascending=True, method='min')
fea['same_goods_sku_slide_sum_%s_rank_0' % str(i)] = sku_sale_num_mean_rank_0.values
fea['same_goods_sku_slide_sum_%s_rank_1' % str(i)] = sku_sale_num_mean_rank_1.values
del fea['goods_id']
del sku_sale_num_mean_df
del sku_sale_num_mean_rank_0
del sku_sale_num_mean_rank_1
gc.collect()
return fea
# 有销量的天数中,sku排第n天的销量数
def sku_last_n_day_sale_num_fea(fea, goodsale):
group = goodsale['goods_num'].groupby([goodsale['sku_id'], goodsale['data_date']]).sum()
group = group.unstack()
group = group.fillna(-999)
for day in [1, 2, 3, 5, 7, 10, 14]:
sku_last_n_day_goods_num = group.apply(lambda x: sorted(x)[-day], axis=1).reset_index(name='sku_last_%s_day_goods_num' % str(day))
fea = pd.merge(fea, sku_last_n_day_goods_num, on='sku_id', how='left')
del sku_last_n_day_goods_num
gc.collect()
del group
gc.collect()
return fea
# 打标签
def get_label(goodsale_label, sku_id):
label_df = pd.DataFrame({'sku_id': sku_id})
date = sorted(list(set(goodsale_label['data_date'])))
for i in range(5):
data = goodsale_label[(goodsale_label['data_date'] >= date[i * 7]) & (goodsale_label['data_date'] <= date[i * 7 + 6])]
data = data.groupby('sku_id')['goods_num'].sum().reset_index(name='goods_num')
data = pd.DataFrame({'sku_id': data['sku_id'], 'week' + str(i + 1): data['goods_num']})
label_df = pd.merge(label_df, data, on=['sku_id'], how='left')
label_df.sort_values(by=['sku_id'], inplace=True)
label_df.fillna(0, inplace=True)
label_df.index = label_df['sku_id']
del label_df['sku_id']
gc.collect()
return label_df
if __name__ == '__main__':
warnings.filterwarnings("ignore")
start_time = datetime.strptime(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), '%Y-%m-%d %H:%M:%S')
print('start time :', start_time)
goodsdaily = pd.read_csv('./dataset/b/goodsdaily.csv', index_col=False, dtype={'goods_click': np.float32,
'cart_click': np.float32,
'favorites_click': np.float32,
'sales_uv': np.float32,
'onsale_days': np.float32})
goodsinfo = pd.read_csv('./dataset/b/goodsinfo.csv', index_col=False)
goodsale = pd.read_csv('./dataset/b/goodsale.csv', index_col=False, dtype={'goods_num': np.float32})
goods_sku_relation = pd.read_csv('./dataset/b/goods_sku_relation.csv', index_col=False)
submit_example = pd.read_csv('./dataset/b/submit_example_2.csv', index_col=False)
goodsale.goods_price = goodsale.goods_price.map(lambda x: float(str(x).replace(',', '')))
goodsale.orginal_shop_price = goodsale.orginal_shop_price.map(lambda x: float(str(x).replace(',', '')))
X_train = []
y_train = []
fea_regions = [[20170301, 20170327], [20170920, 20171016]]
label_regions = [[20170512, 20170615], [20171201, 20180104]]
for fea_region, label_region in zip(fea_regions, label_regions):
print('train %s ing...' % str(fea_regions.index(fea_region) + 1))
label = get_label(goodsale[(goodsale.data_date >= label_region[0]) & (goodsale.data_date <= label_region[1])],
list(set(goodsale[(goodsale.data_date >= fea_region[0]) & (goodsale.data_date <= fea_region[1])]['sku_id'])))
y_train.append(label)
X_train.append(get_fea(label.index,
goodsdaily[(goodsdaily.data_date >= fea_region[0]) & (goodsdaily.data_date <= fea_region[1])],
goodsinfo,
goodsale[(goodsale.data_date >= fea_region[0]) & (goodsale.data_date <= fea_region[1])],
goods_sku_relation))
print('test ing...')
fea_region = [20180218, 20180316]
X_test = get_fea(submit_example.sku_id,
goodsdaily[(goodsdaily.data_date >= fea_region[0]) & (goodsdaily.data_date <= fea_region[1])],
goodsinfo,
goodsale[(goodsale.data_date >= fea_region[0]) & (goodsale.data_date <= fea_region[1])],
goods_sku_relation)
del goodsdaily;del goodsinfo;del goodsale;del goods_sku_relation
gc.collect()
X_train = pd.concat(X_train, ignore_index=True)
y_train = pd.concat(y_train, ignore_index=True)
print('X_train', X_train.shape)
print('X_test', X_test.shape)
print('model predict')
params = {'boosting_type': 'gbdt', 'objective': 'regression', 'learning_rate': 0.06, 'max_depth': 6, 'num_leaves': 31,
'min_child_weight': 25, 'lambda_l1': 0.1, 'lambda_l2': 0.2}
result = pd.DataFrame({'sku_id': submit_example['sku_id']})
del submit_example
gc.collect()
for i in [1, 2, 3, 4, 5]:
print('week %s' % str(i))
lgb_train = lgb.Dataset(X_train.values, y_train['week%s' % str(i)])
gbm = lgb.train(params, lgb_train, num_boost_round=2000)
result['week%s' % str(i)] = gbm.predict(X_test.values, num_iteration=gbm.best_iteration)
result = result[result > 0].fillna(0)
result.to_csv('zh_lgb_v1.csv', index=False)
end_time = datetime.strptime(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), '%Y-%m-%d %H:%M:%S')
print('end time :', end_time)
run_time = end_time - start_time
print('run time :', run_time)