Skip to content

Latest commit

 

History

History
87 lines (66 loc) · 3.33 KB

README.md

File metadata and controls

87 lines (66 loc) · 3.33 KB

Complete Beginner's Guide to LangChain: Build AI Agents and Chatbots

The LangChain Crash Course repository serves as a comprehensive resource for beginners who are ready to learn LangChain, a programming framework designed for creating AI agents, building RAG (Retrieval-Augmented Generation) chatbots, and automating tasks using artificial intelligence.

Learning Objectives

  • Creating AI Agents: Understand and implement agent-based programming principles using LangChain.
  • Building RAG Chatbots: Develop RAG chatbots integrating retrieval-based and generative AI techniques.
  • Automating Tasks with AI: Use LangChain for automating repetitive tasks and improving workflow efficiency.

Course Outline

  1. Chat Models: Learn how to interact with models like ChatGPT, Claude, and Gemini.

    • 1_chat_model_basic.py
    • 2_chat_model_basic_conversation.py
    • 3_chat_model_conversation_with_user.py
  2. Prompt Templates: Understand the basics of prompt templates and how to use them effectively.

    • 1_prompt_template_basic.py
    • 2_prompt_template_with_chat_model.py
  3. Chains: Learn how to create chains using Chat Models and Prompts to automate tasks.

    • 1_chains_basics.py
    • 2_chains_under_the_hood.py
    • 3_chains_extended.py
    • 4_chains_parallel.py
    • 5_chains_branching.py
  4. RAG (Retrieval-Augmented Generation): Explore the technologies like documents, embeddings, and vector stores that enable RAG queries.

    • 1a_rag_basics.py
    • 1b_rag_basics.py
    • 2a_rag_basics_metadata.py
    • 2b_rag_basics_metadata.py
    • 3_rag_text_splitting_deep_dive.py
    • 4_rag_embedding_deep_dive.py
    • 5_rag_retriever_deep_dive.py
    • 6_rag_one_off_question.py
    • 7_rag_conversational.py
    • 8_rag_web_scrape_firecrawl.py
    • 8_rag_web_scrape.py
  5. Agents & Tools: Learn about agents, how they work, and how to build custom tools to enhance their capabilities.

    • 1_agent_and_tools_basics.py
    • agent_deep_dive/
      • 1_agent_react_chat.py
      • 2_react_docstore.py
    • tools_deep_dive/
      • 1_tool_constructor.py
      • 2_tool_decorator.py
      • 3_tool_base_tool.py

Set up your environment variables:

  • Rename the .env.example file to .env and update the variables inside with your own values. Example:

    cp .env.example .env
  • Add all api keys to the .env file.

     OPENAI_API_KEY="Enter the OPENAI api key"
     GOOGLE_API_KEY="Enter the GOOGLE api key"
     FIRECRAWL_API_KEY="Enter the FIRECRAWL api key"
     TAVILY_API_KEY="Enter the TAVILY api key"
     OPENAI_MODEL_NAME="gpt-3.5-turbo"

Follow

Subscribe

Donate & Support us

License

The Multiple PDFs QueryBot is released under the Apache License 2.0.