The LangChain Crash Course repository serves as a comprehensive resource for beginners who are ready to learn LangChain, a programming framework designed for creating AI agents, building RAG (Retrieval-Augmented Generation) chatbots, and automating tasks using artificial intelligence.
- Creating AI Agents: Understand and implement agent-based programming principles using LangChain.
- Building RAG Chatbots: Develop RAG chatbots integrating retrieval-based and generative AI techniques.
- Automating Tasks with AI: Use LangChain for automating repetitive tasks and improving workflow efficiency.
-
Chat Models: Learn how to interact with models like ChatGPT, Claude, and Gemini.
1_chat_model_basic.py
2_chat_model_basic_conversation.py
3_chat_model_conversation_with_user.py
-
Prompt Templates: Understand the basics of prompt templates and how to use them effectively.
1_prompt_template_basic.py
2_prompt_template_with_chat_model.py
-
Chains: Learn how to create chains using Chat Models and Prompts to automate tasks.
1_chains_basics.py
2_chains_under_the_hood.py
3_chains_extended.py
4_chains_parallel.py
5_chains_branching.py
-
RAG (Retrieval-Augmented Generation): Explore the technologies like documents, embeddings, and vector stores that enable RAG queries.
1a_rag_basics.py
1b_rag_basics.py
2a_rag_basics_metadata.py
2b_rag_basics_metadata.py
3_rag_text_splitting_deep_dive.py
4_rag_embedding_deep_dive.py
5_rag_retriever_deep_dive.py
6_rag_one_off_question.py
7_rag_conversational.py
8_rag_web_scrape_firecrawl.py
8_rag_web_scrape.py
-
Agents & Tools: Learn about agents, how they work, and how to build custom tools to enhance their capabilities.
1_agent_and_tools_basics.py
agent_deep_dive/
1_agent_react_chat.py
2_react_docstore.py
tools_deep_dive/
1_tool_constructor.py
2_tool_decorator.py
3_tool_base_tool.py
-
Rename the
.env.example
file to.env
and update the variables inside with your own values. Example:cp .env.example .env
-
Add all api keys to the
.env
file.OPENAI_API_KEY="Enter the OPENAI api key" GOOGLE_API_KEY="Enter the GOOGLE api key" FIRECRAWL_API_KEY="Enter the FIRECRAWL api key" TAVILY_API_KEY="Enter the TAVILY api key" OPENAI_MODEL_NAME="gpt-3.5-turbo"
- Linkedin Link: https://www.linkedin.com/in/bhavikjikadara
- Github Link: https://github.com/Bhavik-Jikadara
- Facebook Link: https://www.facebook.com/Bhavikjikadara07
- Instagram Link: https://www.instagram.com/bhavikjikadara/
- twitter Link: https://twitter.com/BhavikJikadara1
The Multiple PDFs QueryBot is released under the Apache License 2.0.