-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
working on the logrel for soundness proof
- Loading branch information
1 parent
bc58326
commit f39bda5
Showing
1 changed file
with
59 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
From Coq Require Import Relation_Definitions RelationClasses. | ||
From Mcltt Require Import Base LibTactics. | ||
From Mcltt.Core Require Import System.Definitions Evaluation Readback PER.Definitions. | ||
From Mcltt Require Export Domain. | ||
|
||
Import Domain_Notations. | ||
Global Open Scope predicate_scope. | ||
|
||
Generalizable All Variables. | ||
|
||
Notation "'typ_pred'" := (predicate (Tcons typ Tnil)). | ||
Notation "'glu_pred'" := (predicate (Tcons exp (Tcons typ (Tcons domain Tnil)))). | ||
|
||
Definition univ_typ_pred Γ j i : typ_pred := fun T => {{ Γ ⊢ T ≈ Type@j : Type@i }}. | ||
|
||
Section Gluing. | ||
Variable | ||
(i : nat) | ||
(glu_univ_rec : forall {j}, j < i -> relation domain) | ||
(glu_univ_typ_rec : forall {j}, j < i -> typ_pred). | ||
|
||
Definition univ_glu_pred Γ {j} (lt_j_i : j < i) : glu_pred := | ||
fun m M A => | ||
{{ Γ ⊢ m : M }} /\ {{ Γ ⊢ M ≈ Type@j : Type@i }} /\ | ||
glu_univ_rec lt_j_i A A /\ | ||
glu_univ_typ_rec lt_j_i m. | ||
|
||
Inductive glu_univ_elem_core : ctx -> relation domain -> typ_pred -> glu_pred -> domain -> domain -> Prop := | ||
| glu_univ_elem_core_univ : | ||
`{ forall (elem_rel : relation domain) | ||
typ_rel | ||
el_rel | ||
(lt_j_i : j < i), | ||
j = j' -> | ||
(elem_rel <~> glu_univ_rec lt_j_i) -> | ||
typ_rel <∙> univ_typ_pred Γ j i -> | ||
el_rel <∙> univ_glu_pred Γ lt_j_i -> | ||
glu_univ_elem_core Γ elem_rel typ_rel el_rel d{{{ 𝕌@j }}} d{{{ 𝕌@j' }}} }. | ||
|
||
(* | per_univ_elem_core_nat : *) | ||
(* forall (elem_rel : relation domain), *) | ||
(* (elem_rel <~> per_nat) -> *) | ||
(* {{ DF ℕ ≈ ℕ ∈ per_univ_elem_core ↘ elem_rel }} *) | ||
(* | per_univ_elem_core_pi : *) | ||
(* `{ forall (in_rel : relation domain) *) | ||
(* (out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain) *) | ||
(* (elem_rel : relation domain) *) | ||
(* (equiv_a_a' : {{ DF a ≈ a' ∈ per_univ_elem_core ↘ in_rel}}), *) | ||
(* PER in_rel -> *) | ||
(* (forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), *) | ||
(* rel_mod_eval per_univ_elem_core B d{{{ p ↦ c }}} B' d{{{ p' ↦ c' }}} (out_rel equiv_c_c')) -> *) | ||
(* (elem_rel <~> fun f f' => forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app f c f' c' (out_rel equiv_c_c')) -> *) | ||
(* {{ DF Π a p B ≈ Π a' p' B' ∈ per_univ_elem_core ↘ elem_rel }} } *) | ||
(* | per_univ_elem_core_neut : *) | ||
(* `{ forall (elem_rel : relation domain), *) | ||
(* {{ Dom b ≈ b' ∈ per_bot }} -> *) | ||
(* (elem_rel <~> per_ne) -> *) | ||
(* {{ DF ⇑ a b ≈ ⇑ a' b' ∈ per_univ_elem_core ↘ elem_rel }} } *) | ||
(* . *) |