From ae57eb3ba5cba5d543c6bf743c47d16f0b80fe10 Mon Sep 17 00:00:00 2001 From: Junyoung/Clare Jang Date: Mon, 6 May 2024 11:52:02 -0400 Subject: [PATCH] Remove unneccesary section --- theories/Core/Semantic/Realize.v | 104 +++++++++++++++---------------- 1 file changed, 51 insertions(+), 53 deletions(-) diff --git a/theories/Core/Semantic/Realize.v b/theories/Core/Semantic/Realize.v index d8be0abe..5151b1bc 100644 --- a/theories/Core/Semantic/Realize.v +++ b/theories/Core/Semantic/Realize.v @@ -17,59 +17,57 @@ Qed. #[export] Hint Resolve per_nat_then_per_top : mcltt. -Section Per_univ_elem_realize. - Lemma realize_per_univ_elem_gen : forall i a a' R, - {{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} -> - {{ Dom a ≈ a' ∈ per_top_typ }} - /\ (forall {c c'}, {{ Dom c ≈ c' ∈ per_bot }} -> {{ Dom ⇑ a c ≈ ⇑ a' c' ∈ R }}) - /\ (forall {b b'}, {{ Dom b ≈ b' ∈ R }} -> {{ Dom ⇓ a b ≈ ⇓ a' b' ∈ per_top }}). - Proof with (solve [(((eexists; split) || idtac; econstructor) || idtac); mauto]). - intros * H; simpl in H. - induction H using per_univ_elem_ind; repeat split; intros. - - subst; intro s... - - eexists. - per_univ_elem_econstructor. - eauto. - - destruct H2. - specialize (H1 _ _ _ H2) as [? [? ?]]. - intro s. - specialize (H1 s) as [? [? ?]]... - - intro s... - - idtac... - - eauto using per_nat_then_per_top. - - destruct IHper_univ_elem as [? []]. - intro s. - assert {{ Dom ⇑! A s ≈ ⇑! A' s ∈ in_rel }} by eauto using var_per_bot. - destruct_rel_mod_eval. - specialize (H10 (S s)) as [? []]. - specialize (H3 s) as [? []]... - - rewrite H2; clear H2. - intros c0 c0' equiv_c0_c0'. - destruct IHper_univ_elem as [? []]. - destruct_rel_mod_eval. - econstructor; try solve [econstructor; eauto]. - enough ({{ Dom c ⇓ A c0 ≈ c' ⇓ A' c0' ∈ per_bot }}) by mauto. - intro s. - specialize (H3 s) as [? [? ?]]. - specialize (H5 _ _ equiv_c0_c0' s) as [? [? ?]]... - - rewrite H2 in *; clear H2. - destruct IHper_univ_elem as [? []]. - intro s. - assert {{ Dom ⇑! A s ≈ ⇑! A' s ∈ in_rel }} by eauto using var_per_bot. - destruct_rel_mod_eval. - destruct_rel_mod_app. - assert {{ Dom ⇓ a fa ≈ ⇓ a' f'a' ∈ per_top }} by mauto. - specialize (H2 s) as [? []]. - specialize (H16 (S s)) as [? []]... - - intro s. - specialize (H s) as [? []]... - - idtac... - - intro s. - specialize (H s) as [? []]. - inversion_clear H0. - specialize (H2 s) as [? []]... - Qed. -End Per_univ_elem_realize. +Lemma realize_per_univ_elem_gen : forall i a a' R, + {{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} -> + {{ Dom a ≈ a' ∈ per_top_typ }} + /\ (forall {c c'}, {{ Dom c ≈ c' ∈ per_bot }} -> {{ Dom ⇑ a c ≈ ⇑ a' c' ∈ R }}) + /\ (forall {b b'}, {{ Dom b ≈ b' ∈ R }} -> {{ Dom ⇓ a b ≈ ⇓ a' b' ∈ per_top }}). +Proof with (solve [(((eexists; split) || idtac; econstructor) || idtac); mauto]). + intros * H; simpl in H. + induction H using per_univ_elem_ind; repeat split; intros. + - subst; intro s... + - eexists. + per_univ_elem_econstructor. + eauto. + - destruct H2. + specialize (H1 _ _ _ H2) as [? [? ?]]. + intro s. + specialize (H1 s) as [? [? ?]]... + - intro s... + - idtac... + - eauto using per_nat_then_per_top. + - destruct IHper_univ_elem as [? []]. + intro s. + assert {{ Dom ⇑! A s ≈ ⇑! A' s ∈ in_rel }} by eauto using var_per_bot. + destruct_rel_mod_eval. + specialize (H10 (S s)) as [? []]. + specialize (H3 s) as [? []]... + - rewrite H2; clear H2. + intros c0 c0' equiv_c0_c0'. + destruct IHper_univ_elem as [? []]. + destruct_rel_mod_eval. + econstructor; try solve [econstructor; eauto]. + enough ({{ Dom c ⇓ A c0 ≈ c' ⇓ A' c0' ∈ per_bot }}) by mauto. + intro s. + specialize (H3 s) as [? [? ?]]. + specialize (H5 _ _ equiv_c0_c0' s) as [? [? ?]]... + - rewrite H2 in *; clear H2. + destruct IHper_univ_elem as [? []]. + intro s. + assert {{ Dom ⇑! A s ≈ ⇑! A' s ∈ in_rel }} by eauto using var_per_bot. + destruct_rel_mod_eval. + destruct_rel_mod_app. + assert {{ Dom ⇓ a fa ≈ ⇓ a' f'a' ∈ per_top }} by mauto. + specialize (H2 s) as [? []]. + specialize (H16 (S s)) as [? []]... + - intro s. + specialize (H s) as [? []]... + - idtac... + - intro s. + specialize (H s) as [? []]. + inversion_clear H0. + specialize (H2 s) as [? []]... +Qed. Lemma per_univ_then_per_top_typ : forall i a a' R, {{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} -> {{ Dom a ≈ a' ∈ per_top_typ }}. Proof.