Skip to content

Commit

Permalink
Finish Realizability for PER (#60)
Browse files Browse the repository at this point in the history
* Finish Realizability for PER

* remove unnecessary wf induction

* Remove unneccesary section

* Use "try" instead of "or idtac"

---------

Co-authored-by: HuStmpHrrr <[email protected]>
  • Loading branch information
Ailrun and HuStmpHrrr authored May 6, 2024
1 parent a8a27e9 commit 97ff14d
Show file tree
Hide file tree
Showing 3 changed files with 112 additions and 0 deletions.
9 changes: 9 additions & 0 deletions theories/Core/Semantic/PERLemmas.v
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,15 @@ Qed.
#[export]
Hint Resolve per_bot_trans : mcltt.

Lemma var_per_bot : forall {n},
{{ Dom !n ≈ !n ∈ per_bot }}.
Proof.
intros n s. repeat econstructor.
Qed.

#[export]
Hint Resolve var_per_bot : mcltt.

Lemma per_top_sym : forall m n,
{{ Dom m ≈ n ∈ per_top }} ->
{{ Dom n ≈ m ∈ per_top }}.
Expand Down
102 changes: 102 additions & 0 deletions theories/Core/Semantic/Realize.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
From Coq Require Import Lia PeanoNat Relation_Definitions.
From Equations Require Import Equations.
From Mcltt Require Import Base Domain Evaluate EvaluateLemmas LibTactics PER PERLemmas Syntax System.

Lemma per_nat_then_per_top : forall {n m},
{{ Dom n ≈ m ∈ per_nat }} ->
{{ Dom ⇓ ℕ n ≈ ⇓ ℕ m ∈ per_top }}.
Proof.
induction 1; simpl in *; intros.
- eexists; firstorder econstructor.
- specialize (IHper_nat s) as [? []].
eexists; firstorder (econstructor; eauto).
- specialize (H s) as [? []].
eexists; firstorder (econstructor; eauto).
Qed.

#[export]
Hint Resolve per_nat_then_per_top : mcltt.

Lemma realize_per_univ_elem_gen : forall i a a' R,
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom a ≈ a' ∈ per_top_typ }}
/\ (forall {c c'}, {{ Dom c ≈ c' ∈ per_bot }} -> {{ Dom ⇑ a c ≈ ⇑ a' c' ∈ R }})
/\ (forall {b b'}, {{ Dom b ≈ b' ∈ R }} -> {{ Dom ⇓ a b ≈ ⇓ a' b' ∈ per_top }}).
Proof with (solve [try (try (eexists; split); econstructor); mauto]).
intros * H; simpl in H.
induction H using per_univ_elem_ind; repeat split; intros.
- subst; intro s...
- eexists.
per_univ_elem_econstructor.
eauto.
- destruct H2.
specialize (H1 _ _ _ H2) as [? [? ?]].
intro s.
specialize (H1 s) as [? [? ?]]...
- intro s...
- idtac...
- eauto using per_nat_then_per_top.
- destruct IHper_univ_elem as [? []].
intro s.
assert {{ Dom ⇑! A s ≈ ⇑! A' s ∈ in_rel }} by eauto using var_per_bot.
destruct_rel_mod_eval.
specialize (H10 (S s)) as [? []].
specialize (H3 s) as [? []]...
- rewrite H2; clear H2.
intros c0 c0' equiv_c0_c0'.
destruct IHper_univ_elem as [? []].
destruct_rel_mod_eval.
econstructor; try solve [econstructor; eauto].
enough ({{ Dom c ⇓ A c0 ≈ c' ⇓ A' c0' ∈ per_bot }}) by mauto.
intro s.
specialize (H3 s) as [? [? ?]].
specialize (H5 _ _ equiv_c0_c0' s) as [? [? ?]]...
- rewrite H2 in *; clear H2.
destruct IHper_univ_elem as [? []].
intro s.
assert {{ Dom ⇑! A s ≈ ⇑! A' s ∈ in_rel }} by eauto using var_per_bot.
destruct_rel_mod_eval.
destruct_rel_mod_app.
assert {{ Dom ⇓ a fa ≈ ⇓ a' f'a' ∈ per_top }} by mauto.
specialize (H2 s) as [? []].
specialize (H16 (S s)) as [? []]...
- intro s.
specialize (H s) as [? []]...
- idtac...
- intro s.
specialize (H s) as [? []].
inversion_clear H0.
specialize (H2 s) as [? []]...
Qed.

Lemma per_univ_then_per_top_typ : forall i a a' R, {{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} -> {{ Dom a ≈ a' ∈ per_top_typ }}.
Proof.
intros.
eapply realize_per_univ_elem_gen; mauto.
Qed.

#[export]
Hint Resolve per_univ_then_per_top_typ : mcltt.

Lemma per_bot_then_per_elem : forall {i a a' R c c'},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom c ≈ c' ∈ per_bot }} -> {{ Dom ⇑ a c ≈ ⇑ a' c' ∈ R }}.
Proof.
intros.
eapply realize_per_univ_elem_gen; mauto.
Qed.

(** We cannot add [per_bot_then_per_elem] as a hint
because we don't know what "R" is (i.e. the pattern becomes higher-order.)
In fact, Coq complains it cannot add one if we try. *)

Lemma per_elem_then_per_top : forall {i a a' R b b'},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom b ≈ b' ∈ R }} -> {{ Dom ⇓ a b ≈ ⇓ a' b' ∈ per_top }}.
Proof.
intros.
eapply realize_per_univ_elem_gen; mauto.
Qed.

#[export]
Hint Resolve per_elem_then_per_top : mcltt.
1 change: 1 addition & 0 deletions theories/_CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
./Core/Semantic/PERLemmas.v
./Core/Semantic/Readback.v
./Core/Semantic/ReadbackLemmas.v
./Core/Semantic/Realize.v
./Core/Syntactic/CtxEquiv.v
./Core/Syntactic/Presup.v
./Core/Syntactic/Relations.v
Expand Down

0 comments on commit 97ff14d

Please sign in to comment.