From 3164d9d0b378effab75c225ae3dd183549327772 Mon Sep 17 00:00:00 2001 From: Jason Hu Date: Tue, 28 May 2024 14:29:47 -0400 Subject: [PATCH] working on the logrel for soundness proof (#86) * working on the logrel for soundness proof * add end of section to make CI happy * make CI happy * CI is stubborn * add natural numbers * add the case for nat * handled neutral case * need to think of the right definition for gluing of pi * finish gluing model * add induction principle * define wf gluing model * add induction principle * add extreme relations * adjust the gluing model --- theories/Core/Soundness/LogicalRelation.v | 269 ++++++++++++++++++ theories/Core/Soundness/Weakening.v | 1 + .../Core/Soundness/Weakening/Definition.v | 19 ++ theories/LibTactics.v | 16 +- theories/_CoqProject | 3 + 5 files changed, 307 insertions(+), 1 deletion(-) create mode 100644 theories/Core/Soundness/LogicalRelation.v create mode 100644 theories/Core/Soundness/Weakening.v create mode 100644 theories/Core/Soundness/Weakening/Definition.v diff --git a/theories/Core/Soundness/LogicalRelation.v b/theories/Core/Soundness/LogicalRelation.v new file mode 100644 index 00000000..4c37a4ab --- /dev/null +++ b/theories/Core/Soundness/LogicalRelation.v @@ -0,0 +1,269 @@ +From Coq Require Import Relation_Definitions RelationClasses. +From Equations Require Import Equations. + +From Mcltt Require Import Base LibTactics. +From Mcltt.Core Require Import System.Definitions Evaluation Readback PER.Definitions. +From Mcltt Require Export Domain. +From Mcltt.Core.Soundness Require Export Weakening. + +Import Domain_Notations. +Global Open Scope predicate_scope. + +Generalizable All Variables. + +Notation "'typ_pred'" := (predicate (Tcons ctx (Tcons typ Tnil))). +Notation "'glu_pred'" := (predicate (Tcons ctx (Tcons exp (Tcons typ (Tcons domain Tnil))))). + +Definition univ_typ_pred j i : typ_pred := fun Γ T => {{ Γ ⊢ T ≈ Type@j : Type@i }}. +Arguments univ_typ_pred j i Γ T/. + +Inductive glu_nat : ctx -> exp -> domain -> Prop := +| glu_nat_zero : + `( {{ Γ ⊢ m ≈ zero : ℕ }} -> + glu_nat Γ m d{{{ zero }}} ) +| glu_nat_succ : + `( {{ Γ ⊢ m ≈ succ m' : ℕ }} -> + glu_nat Γ m' a -> + glu_nat Γ m d{{{ succ a }}} ) +| glu_nat_neut : + `( per_bot c c -> + (forall {Δ σ v}, {{ Δ ⊢w σ : Γ }} -> {{ Rne c in length Δ ↘ v }} -> {{ Δ ⊢ m [ σ ] ≈ v : ℕ }}) -> + glu_nat Γ m d{{{ ⇑ ℕ c }}} ). + +Definition nat_typ_pred i : typ_pred := fun Γ M => {{ Γ ⊢ M ≈ ℕ : Type@i }}. +Arguments nat_typ_pred i Γ M/. + +Definition nat_glu_pred i : glu_pred := fun Γ m M a => nat_typ_pred i Γ M /\ glu_nat Γ m a. +Arguments nat_glu_pred i Γ m M a/. + +Definition neut_typ_pred i C : typ_pred := + fun Γ M => {{ Γ ⊢ M : Type@i }} /\ + (forall Δ σ V, {{ Δ ⊢w σ : Γ }} -> {{ Rne C in length Δ ↘ V }} -> {{ Δ ⊢ M [ σ ] ≈ V : Type@i }}). +Arguments neut_typ_pred i C Γ M/. + +Inductive neut_glu_pred i C : glu_pred := +| ngp_make : forall Γ m M A c, + neut_typ_pred i C Γ M -> + per_bot c c -> + (forall Δ σ V v, {{ Δ ⊢w σ : Γ }} -> + {{ Rne C in length Δ ↘ V }} -> + {{ Rne c in length Δ ↘ v }} -> + {{ Δ ⊢ m [ σ ] ≈ v : M [ σ ] }}) -> + neut_glu_pred i C Γ m M d{{{ ⇑ A c }}}. + +Inductive pi_typ_pred i + (IR : relation domain) + (IP : typ_pred) + (IEl : glu_pred) + (OP : forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ IR }}), typ_pred) : typ_pred := +| ptp_make : forall Γ IT OT M, + {{ Γ ⊢ M ≈ Π IT OT : Type@i }} -> + {{ Γ , IT ⊢ OT : Type@i }} -> + (forall Δ σ, {{ Δ ⊢w σ : Γ }} -> IP Δ {{{ IT [ σ ] }}}) -> + (forall Δ σ m a, {{ Δ ⊢w σ : Γ }} -> IEl Δ m {{{ IT [ σ ] }}} a -> forall (Ha : IR a a), OP _ _ Ha Δ {{{ OT [ σ ,, m ] }}}) -> + pi_typ_pred i IR IP IEl OP Γ M. + +Inductive pi_glu_pred i + (IR : relation domain) + (IP : typ_pred) + (IEl : glu_pred) + (elem_rel : relation domain) + (OEl : forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ IR }}), glu_pred): glu_pred := +| pgp_make : forall Γ IT OT m M a, + {{ Γ ⊢ m : M }} -> + elem_rel a a -> + {{ Γ ⊢ M ≈ Π IT OT : Type@i }} -> + {{ Γ , IT ⊢ OT : Type@i }} -> + (forall Δ σ, {{ Δ ⊢w σ : Γ }} -> IP Δ {{{ IT [ σ ] }}}) -> + (forall Δ σ m' b, {{ Δ ⊢w σ : Γ }} -> IEl Δ m' {{{ IT [ σ ] }}} b -> forall (Ha : IR b b), + exists ab, {{ $| a & b |↘ ab }} /\ OEl _ _ Ha Δ {{{ m [ σ ] m' }}} {{{ OT [ σ ,, m' ] }}} ab) -> + pi_glu_pred i IR IP IEl elem_rel OEl Γ m M a. + + +Lemma pi_glu_pred_pi_typ_pred : forall i IR IP IEl (OP : forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ IR }}), typ_pred) elem_rel OEl Γ m M a, + pi_glu_pred i IR IP IEl elem_rel OEl Γ m M a -> + (forall Δ m' M' b c c' (Hc : IR c c'), OEl _ _ Hc Δ m' M' b -> OP _ _ Hc Δ M') -> + pi_typ_pred i IR IP IEl OP Γ M. +Proof. + inversion_clear 1; econstructor; eauto. + intros. + edestruct H5 as [? []]; eauto. +Qed. + +Section Gluing. + Variable + (i : nat) + (glu_univ_typ_rec : forall {j}, j < i -> domain -> typ_pred). + + Definition univ_glu_pred' {j} (lt_j_i : j < i) : glu_pred := + fun Γ m M A => + {{ Γ ⊢ m : M }} /\ {{ Γ ⊢ M ≈ Type@j : Type@i }} /\ + per_univ j A A /\ + glu_univ_typ_rec lt_j_i A Γ m. + + #[global] + Arguments univ_glu_pred' {j} lt_j_i Γ m M A/. + + Inductive glu_univ_elem_core : typ_pred -> glu_pred -> domain -> domain -> Prop := + | glu_univ_elem_core_univ : + `{ forall typ_rel + el_rel + (lt_j_i : j < i), + j = j' -> + typ_rel <∙> univ_typ_pred j i -> + el_rel <∙> univ_glu_pred' lt_j_i -> + glu_univ_elem_core typ_rel el_rel d{{{ 𝕌@j }}} d{{{ 𝕌@j' }}} } + + | glu_univ_elem_core_nat : + `{ forall typ_rel el_rel, + typ_rel <∙> nat_typ_pred i -> + el_rel <∙> nat_glu_pred i -> + glu_univ_elem_core typ_rel el_rel d{{{ ℕ }}} d{{{ ℕ }}} } + + | glu_univ_elem_core_pi : + `{ forall (in_rel : relation domain) + IP IEl + (OP : forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), typ_pred) + (OEl : forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), glu_pred) + typ_rel el_rel + (elem_rel : relation domain), + glu_univ_elem_core IP IEl a a' -> + per_univ_elem i in_rel a a' -> + (forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}) b b', + {{ ⟦ B ⟧ p ↦ c ↘ b }} -> + {{ ⟦ B' ⟧ p' ↦ c' ↘ b' }} -> + glu_univ_elem_core (OP _ _ equiv_c_c') (OEl _ _ equiv_c_c') b b') -> + per_univ_elem i elem_rel d{{{ Π a p B }}} d{{{ Π a' p' B' }}} -> + typ_rel <∙> pi_typ_pred i in_rel IP IEl OP -> + el_rel <∙> pi_glu_pred i in_rel IP IEl elem_rel OEl -> + glu_univ_elem_core typ_rel el_rel d{{{ Π a p B }}} d{{{ Π a' p' B' }}} } + + | glu_univ_elem_core_neut : + `{ forall typ_rel el_rel, + {{ Dom b ≈ b' ∈ per_bot }} -> + typ_rel <∙> neut_typ_pred i b -> + el_rel <∙> neut_glu_pred i b -> + glu_univ_elem_core typ_rel el_rel d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}} }. + +End Gluing. + +#[export] +Hint Constructors glu_univ_elem_core : mcltt. + + +Equations glu_univ_elem (i : nat) : typ_pred -> glu_pred -> domain -> domain -> Prop by wf i := +| i => glu_univ_elem_core i (fun j lt_j_i A Γ M => exists P El, glu_univ_elem j P El A A /\ P Γ M). + + +Definition glu_univ (i : nat) (A : domain) : typ_pred := + fun Γ M => exists P El, glu_univ_elem i P El A A /\ P Γ M. + +Definition univ_glu_pred j i : glu_pred := + fun Γ m M A => + {{ Γ ⊢ m : M }} /\ {{ Γ ⊢ M ≈ Type@j : Type@i }} /\ + per_univ j A A /\ + glu_univ j A Γ m. + +Section GluingInduction. + + Hypothesis + (motive : nat -> typ_pred -> glu_pred -> domain -> domain -> Prop) + + (case_univ : + forall i (j j' : nat) + (typ_rel : typ_pred) (el_rel : glu_pred) (lt_j_i : j < i), + j = j' -> + (forall P El A B, glu_univ_elem j P El A B -> motive j P El A B) -> + typ_rel <∙> univ_typ_pred j i -> + el_rel <∙> univ_glu_pred j i -> + motive i typ_rel el_rel d{{{ 𝕌 @ j }}} d{{{ 𝕌 @ j' }}}) + + (case_nat : + forall i (typ_rel : typ_pred) (el_rel : glu_pred), + typ_rel <∙> nat_typ_pred i -> + el_rel <∙> nat_glu_pred i -> + motive i typ_rel el_rel d{{{ ℕ }}} d{{{ ℕ }}}) + + (case_pi : + forall i (a a' : domain) (B : typ) (p : env) (B' : typ) (p' : env) (in_rel : relation domain) (IP : typ_pred) + (IEl : glu_pred) (OP : forall c c' : domain, {{ Dom c ≈ c' ∈ in_rel }} -> typ_pred) + (OEl : forall c c' : domain, {{ Dom c ≈ c' ∈ in_rel }} -> glu_pred) (typ_rel : typ_pred) (el_rel : glu_pred) + (elem_rel : relation domain), + glu_univ_elem i IP IEl a a' -> + motive i IP IEl a a' -> + per_univ_elem i in_rel a a' -> + (forall (c c' : domain) (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}) (b b' : domain), + {{ ⟦ B ⟧ p ↦ c ↘ b }} -> + {{ ⟦ B' ⟧ p' ↦ c' ↘ b' }} -> glu_univ_elem i (OP c c' equiv_c_c') (OEl c c' equiv_c_c') b b') -> + (forall (c c' : domain) (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}) (b b' : domain), + {{ ⟦ B ⟧ p ↦ c ↘ b }} -> {{ ⟦ B' ⟧ p' ↦ c' ↘ b' }} -> motive i (OP c c' equiv_c_c') (OEl c c' equiv_c_c') b b') -> + per_univ_elem i elem_rel d{{{ Π a p B }}} d{{{ Π a' p' B' }}} -> + typ_rel <∙> pi_typ_pred i in_rel IP IEl OP -> + el_rel <∙> pi_glu_pred i in_rel IP IEl elem_rel OEl -> + motive i typ_rel el_rel d{{{ Π a p B }}} d{{{ Π a' p' B' }}}) + + (case_neut : + forall i (b b' : domain_ne) (a a' : domain) + (typ_rel : typ_pred) + (el_rel : glu_pred), + {{ Dom b ≈ b' ∈ per_bot }} -> + typ_rel <∙> neut_typ_pred i b -> + el_rel <∙> neut_glu_pred i b -> + motive i typ_rel el_rel d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}}) + . + + + #[local] + Ltac def_simp := simp glu_univ_elem in *. + + #[derive(equations=no, eliminator=no), tactic="def_simp"] + Equations glu_univ_elem_ind i P El a b + (H : glu_univ_elem i P El a b) : motive i P El a b by wf i := + | i, P, El, a, b, H => + glu_univ_elem_core_ind + i + (fun j lt_j_i A Γ M => glu_univ j A Γ M) + (motive i) + (fun j j' typ_rel el_rel lt_j_i Heq Htr Hel => + case_univ i j j' typ_rel el_rel lt_j_i + Heq + (fun P El A B H => glu_univ_elem_ind j P El A B H) + Htr + Hel) + (case_nat i) + _ (* (case_pi i) *) + (case_neut i) + P El a b + _. + Next Obligation. + eapply (case_pi i); def_simp; eauto. + Qed. + +End GluingInduction. + + +Inductive glu_neut i Γ m M c A B : Prop := +| glu_neut_make : forall P El, + {{ Γ ⊢ m : M }} -> + glu_univ_elem i P El A B -> + per_bot c c -> + (forall Δ σ a, {{ Δ ⊢w σ : Γ }} -> {{ Rne c in length Δ ↘ a }} -> {{ Δ ⊢ m [ σ ] ≈ a : M [ σ ] }}) -> + glu_neut i Γ m M c A B. + + +Inductive glu_normal i Γ m M a A B : Prop := +| glu_normal_make : forall P El, + {{ Γ ⊢ m : M }} -> + glu_univ_elem i P El A B -> + per_top d{{{ ⇓ A a }}} d{{{ ⇓ B a }}} -> + (forall Δ σ b, {{ Δ ⊢w σ : Γ }} -> {{ Rnf ⇓ A a in length Δ ↘ b }} -> {{ Δ ⊢ m [ σ ] ≈ b : M [ σ ] }}) -> + glu_normal i Γ m M a A B. + + +Inductive glu_typ i Γ M A B : Prop := +| glu_typ_make : forall P El, + {{ Γ ⊢ M : Type@i }} -> + glu_univ_elem i P El A B -> + per_top_typ A B -> + (forall Δ σ a, {{ Δ ⊢w σ : Γ }} -> {{ Rtyp A in length Δ ↘ a }} -> {{ Δ ⊢ M [ σ ] ≈ a : Type@i }}) -> + glu_typ i Γ M A B. diff --git a/theories/Core/Soundness/Weakening.v b/theories/Core/Soundness/Weakening.v new file mode 100644 index 00000000..e06ce979 --- /dev/null +++ b/theories/Core/Soundness/Weakening.v @@ -0,0 +1 @@ +From Mcltt.Core.Soundness Require Export Weakening.Definition. diff --git a/theories/Core/Soundness/Weakening/Definition.v b/theories/Core/Soundness/Weakening/Definition.v new file mode 100644 index 00000000..43fd1dc0 --- /dev/null +++ b/theories/Core/Soundness/Weakening/Definition.v @@ -0,0 +1,19 @@ +From Mcltt Require Import Base System.Definitions. +Import Syntax_Notations. + +Generalizable All Variables. + +Reserved Notation "Γ ⊢w σ : Δ" (in custom judg at level 80, Γ custom exp, σ custom exp, Δ custom exp). + +Inductive weakening : ctx -> sub -> ctx -> Prop := +| wk_id : + `( {{ Γ ⊢s σ ≈ Id : Δ }} -> + {{ Γ ⊢w σ : Δ }} ) +| wk_p : + `( {{ Γ ⊢w τ : Δ , T }} -> + {{ Γ ⊢s σ ≈ Wk ∘ τ : Δ }} -> + {{ Γ ⊢w σ : Δ }} ) +where "Γ ⊢w σ : Δ" := (weakening Γ σ Δ) (in custom judg) : type_scope. + +#[export] + Hint Constructors weakening : mcltt. diff --git a/theories/LibTactics.v b/theories/LibTactics.v index 6b7ae520..aeabe9bd 100644 --- a/theories/LibTactics.v +++ b/theories/LibTactics.v @@ -1,4 +1,4 @@ -From Coq Require Export Program.Equality Program.Tactics Lia. +From Coq Require Export Program.Equality Program.Tactics Lia RelationClasses. Create HintDb mcltt discriminated. @@ -181,5 +181,19 @@ Ltac mautosolve := unshelve solve [mauto]; solve [constructor]. #[export] Hint Extern 1 => eassumption : typeclass_instances. +Ltac predicate_resolve := + lazymatch goal with + | |- @Reflexive _ (@predicate_equivalence _) => + simple apply @Equivalence_Reflexive + | |- @Symmetric _ (@predicate_equivalence _) => + simple apply @Equivalence_Symmetric + | |- @Transitive _ (@predicate_equivalence _) => + simple apply @Equivalence_Transitive + end. + +#[export] + Hint Extern 1 => predicate_resolve : typeclass_instances. + + (* intuition tactic default setting *) Ltac Tauto.intuition_solver ::= auto with mcltt core solve_subterm. diff --git a/theories/_CoqProject b/theories/_CoqProject index d5e5a6d9..1692ac5d 100644 --- a/theories/_CoqProject +++ b/theories/_CoqProject @@ -35,6 +35,9 @@ ./Core/Syntactic/System.v ./Core/Syntactic/System/Definitions.v ./Core/Syntactic/System/Lemmas.v +./Core/Soundness/LogicalRelation.v +./Core/Soundness/Weakening.v +./Core/Soundness/Weakening/Definition.v ./Frontend/Elaborator.v ./Frontend/Parser.v ./Frontend/ParserExtraction.v