-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_train.py
65 lines (52 loc) · 1.74 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os.path
import flair
import xtars.xtars_utils
from flair.trainers import ModelTrainer
from torch.optim.adam import Adam
from xtars.xtars_model import XTARSClassifier
flair.set_seed(0)
mixin_utils = xtars.xtars_utils.MixinXTARS()
# define folders needed for training
data_folder = r"./sample_data/"
model_folder = mixin_utils.get_demo_folder()
# define parameters for training
num_negative_labels_to_sample = 3
label_type = "class"
corpus, label_dictionary = mixin_utils.load_sample_data(data_folder, label_col="label", label_type=label_type,
num_negative_labels_to_sample=num_negative_labels_to_sample)
xtars_clf = XTARSClassifier(
multi_label=False,
embeddings="allenai/scibert_scivocab_uncased",
use_xtars_sampling=True,
top_k_embed=3 * num_negative_labels_to_sample,
temperature=0.1,
neg_vs_pos_ratio=5,
label_type=label_type,
label_dictionary=label_dictionary,
num_negative_labels_to_sample=num_negative_labels_to_sample,
)
print("Starting XTARS {} calculation".format(xtars_clf))
print("List of existing tasks: {}".format(xtars_clf.list_existing_tasks()))
print("Training...")
# add the task
xtars_clf.add_and_switch_to_new_task(
task_name="text classification",
label_type=label_type,
label_dictionary=label_dictionary,
)
trainer = ModelTrainer(xtars_clf, corpus)
trainer.train(
base_path=base_path_tars, # path to store the model artifacts
optimizer=Adam,
learning_rate=5.0e-5,
mini_batch_size=32,
max_epochs=2,
anneal_factor=0.0,
patience=20,
write_weights=False,
save_final_model=True,
shuffle=True,
checkpoint=False,
embeddings_storage_mode="gpu",
)
print("Model saved to {}".format(base_path_tars))