-
Notifications
You must be signed in to change notification settings - Fork 3
/
Primitive_Recursion.v
516 lines (466 loc) · 17.5 KB
/
Primitive_Recursion.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(**********************************************************************)
(* LambdaFactor Calculus *)
(* *)
(* is implemented in Coq by adapting the implementation of *)
(* Lambda Calculus from Project Coq *)
(* 2015 *)
(**********************************************************************)
(**********************************************************************)
(* Primitive_Recursion.v *)
(* *)
(* Barry Jay *)
(* *)
(**********************************************************************)
Require Import Arith.
Require Import Max.
Require Import Omega.
Require Import Test.
Require Import General.
Require Import Lambda.Terms.
Require Import Lambda.Lambda_tactics.
Require Import Lambda.Substitution_term.
Require Import Lambda.Reduction.
Require Import Lambda.Redexes.
Require Import Lambda.Substitution.
Require Import Lambda.Residuals.
Require Import Lambda.Marks.
Require Import Lambda.Simulation.
Require Import Lambda.Cube.
Require Import Lambda.Confluence.
Require Import Lambda.Closed.
Require Import LamSF_Terms.
Require Import LamSF_Tactics.
Require Import LamSF_Substitution_term.
Require Import SF_reduction.
Require Import LamSF_reduction.
Require Import LamSF_Normal.
Require Import LamSF_Closed.
Require Import LamSF_Eval.
Require Import Unstar.
Require Import List.
(* Represent primitive and general recursive functions on natural numbers as normal forms of lamSF.
If f(x__{n-1},...,x_0) is such as function then f is represented by some term P = Abs (..(Abs ...))
Free variables represent formal parameters of the function *)
Lemma status_subst_app_ref_lt : forall M k, status M < S k -> forall N i, status (subst_rec M (App (Ref i) N) k) = status M.
Proof.
cut(forall p M, p>= rank M -> forall k, status M < S k -> forall N i, status (subst_rec M (App (Ref i) N) k) = status M).
split_all. eapply2 H.
induction p. split_all. assert(rank M >0) by eapply2 rank_positive. noway.
induction M; intros.
(* 4 *)
simpl in *; inversion H0; subst. insert_Ref_out. auto.
insert_Ref_out. auto.
(* 3 *)
split_all.
(* 2 *)
split_all.
simpl in *;
assert(status (subst_rec M (App (Ref i) N) (S k)) = status M).
eapply2 IHM. omega.
omega.
omega.
(* 1 *)
clear IHM2.
unfold subst_rec; fold subst_rec.
generalize IHM1 H H0; clear IHM1 H H0; case M1; intros; try (simpl in *; split_all; fail).
simpl in *; split_all.
inversion H0; subst. insert_Ref_out. split_all.
insert_Ref_out. split_all.
generalize IHM1 H H0; clear IHM1 H H0; case l; intros; try (simpl in *; split_all; fail).
unfold subst_rec; fold subst_rec.
simpl in H0.
insert_Ref_out. split_all.
generalize IHM1 H H0; clear IHM1 H H0; case l1; intros; try (simpl in *; split_all; fail).
unfold subst_rec; fold subst_rec.
simpl in H0.
insert_Ref_out. split_all.
simpl in *; split_all.
generalize IHM1 H H0; clear IHM1 H H0; case o; intros; try (simpl in *; split_all; fail).
eapply2 IHp.
omega.
generalize IHM1 H H0; clear IHM1 H H0; case l3; intros; try (simpl in *; split_all; fail).
unfold subst_rec; fold subst_rec.
simpl in H0.
insert_Ref_out. split_all.
generalize IHM1 H H0; clear IHM1 H H0; case o; intros; try (simpl in *; split_all; fail).
split_all.
eapply2 IHp.
simpl in *; omega.
unfold subst_rec; fold subst_rec.
replace (status
(App
(App
(App
(App
(App (subst_rec l5 (App (Ref i) N) k)
(subst_rec l6 (App (Ref i) N) k))
(subst_rec l4 (App (Ref i) N) k))
(subst_rec l2 (App (Ref i) N) k))
(subst_rec l0 (App (Ref i) N) k)) (subst_rec M2 (App (Ref i) N) k))) with
(status (subst_rec (App
(App
(App
(App l5 l6) l4) l2) l0) (App (Ref i) N) k)) by auto.
replace(status (App (App (App (App (App l5 l6) l4) l2) l0) M2)) with
(status (App (App (App (App l5 l6) l4) l2) l0)) by auto.
eapply2 IHp.
simpl in *. omega.
Qed.
Lemma status_subst_app_ref_gt : forall M k, status M > S k -> forall N i, status (subst_rec M (App (Ref i) N) k) = pred(status M).
Proof.
cut(forall p M, p>= rank M -> forall k, status M > S k -> forall N i, status (subst_rec M (App (Ref i) N) k) = pred(status M)).
split_all. eapply2 H.
induction p. split_all. assert(rank M >0) by eapply2 rank_positive. noway.
induction M; intros.
(* 4 *)
simpl in *; inversion H0; subst. insert_Ref_out. auto.
insert_Ref_out. replace n with (S (pred n)) by omega. auto.
(* 3 *)
split_all.
(* 2 *)
split_all.
simpl in *;
assert(status (subst_rec M (App (Ref i) N) (S k)) = pred(status M)).
eapply2 IHM. omega.
omega.
omega.
(* 1 *)
clear IHM2.
unfold subst_rec; fold subst_rec.
generalize IHM1 H H0; clear IHM1 H H0; case M1; intros; try (simpl in *; split_all; fail).
simpl in *; split_all.
inversion H0; subst. insert_Ref_out. split_all.
insert_Ref_out. replace n with (S (pred n)) by omega. split_all.
generalize IHM1 H H0; clear IHM1 H H0; case l; intros; try (simpl in *; split_all; fail).
unfold subst_rec; fold subst_rec.
simpl in H0.
insert_Ref_out. split_all. omega.
generalize IHM1 H H0; clear IHM1 H H0; case l1; intros; try (simpl in *; split_all; fail).
unfold subst_rec; fold subst_rec.
simpl in H0.
insert_Ref_out. split_all. omega.
simpl in *; split_all.
generalize IHM1 H H0; clear IHM1 H H0; case o; intros; try (simpl in *; split_all; fail).
eapply2 IHp.
omega.
generalize IHM1 H H0; clear IHM1 H H0; case l3; intros; try (simpl in *; split_all; fail).
unfold subst_rec; fold subst_rec.
simpl in H0.
insert_Ref_out. split_all. omega.
generalize IHM1 H H0; clear IHM1 H H0; case o; intros; try (simpl in *; split_all; fail).
split_all.
eapply2 IHp.
simpl in *; omega.
unfold subst_rec; fold subst_rec.
replace (status
(App
(App
(App
(App
(App (subst_rec l5 (App (Ref i) N) k)
(subst_rec l6 (App (Ref i) N) k))
(subst_rec l4 (App (Ref i) N) k))
(subst_rec l2 (App (Ref i) N) k))
(subst_rec l0 (App (Ref i) N) k)) (subst_rec M2 (App (Ref i) N) k))) with
(status (subst_rec (App
(App
(App
(App l5 l6) l4) l2) l0) (App (Ref i) N) k)) by auto.
replace(status (App (App (App (App (App l5 l6) l4) l2) l0) M2)) with
(status (App (App (App (App l5 l6) l4) l2) l0)) by auto.
eapply2 IHp.
simpl in *. omega.
Qed.
Lemma status_subst_app_ref_eq : forall M k, status M = S k -> forall N i, status (subst_rec M (App (Ref i) N) k) = S(i+k).
Proof.
cut(forall p M, p>= rank M -> forall k, status M = S k -> forall N i, status (subst_rec M (App (Ref i) N) k) = S(i+k)).
split_all. eapply2 H.
induction p. split_all. assert(rank M >0) by eapply2 rank_positive. noway.
induction M; intros.
(* 4 *)
simpl in *; inversion H0; subst. insert_Ref_out.
unfold relocate. elim(test 0 i); split_all; omega. simpl in *; noway.
simpl in *;
assert(status (subst_rec M (App (Ref i) N) (S k)) = S (i + S k)).
eapply2 IHM. omega.
omega.
omega.
(* 1 *)
clear IHM2.
unfold subst_rec; fold subst_rec.
generalize IHM1 H H0; clear IHM1 H H0; case M1; intros; try (simpl in *; split_all; fail).
simpl in *; split_all.
inversion H0; subst. insert_Ref_out. simpl. unfold relocate. elim(test 0 i); split_all; try noway. omega.
generalize IHM1 H H0; clear IHM1 H H0; case l; intros; try (simpl in *; split_all; fail).
simpl in *; split_all.
inversion H0; subst. insert_Ref_out. simpl. unfold relocate. elim(test 0 i); split_all; try noway. omega.
generalize IHM1 H H0; clear IHM1 H H0; case l1; intros; try (simpl in *; split_all; fail).
simpl in *; split_all.
inversion H0; subst. insert_Ref_out. simpl. unfold relocate. elim(test 0 i); split_all; try noway. omega.
generalize IHM1 H H0; clear IHM1 H H0; case o; intros; try (simpl in *; split_all; fail).
simpl in *; split_all.
eapply2 IHp.
omega.
generalize IHM1 H H0; clear IHM1 H H0; case l3; intros; try (simpl in *; split_all; fail).
simpl in *; split_all.
inversion H0; subst. insert_Ref_out. simpl. unfold relocate. elim(test 0 i); split_all; try noway. omega.
generalize IHM1 H H0; clear IHM1 H H0; case o; intros; try (simpl in *; split_all; fail).
simpl in *; split_all.
eapply2 IHp.
omega.
unfold subst_rec; fold subst_rec.
replace (status
(App
(App
(App
(App
(App (subst_rec l5 (App (Ref i) N) k)
(subst_rec l6 (App (Ref i) N) k))
(subst_rec l4 (App (Ref i) N) k))
(subst_rec l2 (App (Ref i) N) k))
(subst_rec l0 (App (Ref i) N) k)) (subst_rec M2 (App (Ref i) N) k))) with
(status (subst_rec (App
(App
(App
(App l5 l6) l4) l2) l0) (App (Ref i) N) k)) by auto.
eapply2 IHp.
simpl in *. omega.
Qed.
Lemma status_subst_app_ref : forall M k, status M >0 -> forall N i, status (subst_rec M (App (Ref i) N) k) >0.
Proof.
intros. assert(status M < S k \/ status M > S k \/ status M = S k) by omega.
inversion H0.
rewrite status_subst_app_ref_lt. auto. auto.
inversion H1.
rewrite status_subst_app_ref_gt. omega. auto.
rewrite status_subst_app_ref_eq. omega. auto.
Qed.
Lemma normal_subst_app_ref : forall M, normal M -> forall N i k, normal N -> normal (subst_rec M (App (Ref i) N) k).
Proof.
intros M nor; induction nor; split_all.
unfold insert_Ref. elim(compare k n); split_all. elim a; split_all.
unfold lift.
eapply2 lift_rec_preserves_normal. eapply2 nf_active. simpl; omega.
eapply2 nf_active.
replace (App (subst_rec M1 (App (Ref i) N) k) (subst_rec M2 (App (Ref i) N) k)) with
(subst_rec (App M1 M2) (App (Ref i) N) k) by auto.
eapply2 status_subst_app_ref.
eapply2 nf_compound.
replace (App (subst_rec M1 (App (Ref i) N) k) (subst_rec M2 (App (Ref i) N) k)) with
(subst_rec (App M1 M2) (App (Ref i) N) k) by auto.
eapply2 subst_rec_preserves_compound.
Qed.
Lemma wait_normal: forall M N, normal M -> normal N -> normal (wait M N).
Proof. unfold wait; unfold_op; split_all. repeat (eapply2 nf_compound). Qed.
Lemma little_omega_normal: normal little_omega.
Proof.
unfold little_omega.
eapply2 nf_abs.
eapply2 nf_abs.
eapply2 nf_active.
eapply2 nf_active.
eapply2 nf_active.
simpl. omega.
simpl. omega.
Qed.
(* eager evaluation *)
Definition eager M N := App (App (App (App f_op N)
(Abs (App (Ref 0) (lift_rec N 0 1))))
(App k_op (App k_op (Abs (App (Ref 0) (lift_rec N 0 1)))))) M
.
Lemma eager_is_eager : forall M N, factorable N -> lamSF_red (eager M N) (App M N).
Proof.
intros M N fact; inversion fact; split_all; subst; unfold eager; split_all.
(* 2 *)
eval_lamSF0. insert_Ref_out. rewrite lift_rec_null. auto.
(* 1 *)
unfold_op.
apply transitive_red with (App
(App (App
(App (App (Op Fop) (Op Fop))
(App (App (Op Fop) (Op Fop))
(Abs (App (Ref 0) (lift_rec N 0 1))))) (left_component N)) (right_component N)) M).
eapply2 preserves_app_lamSF_red.
eval_lamSF0. insert_Ref_out. rewrite lift_rec_null.
eapply2 preserves_app_lamSF_red.
rewrite subst_rec_lift_rec; try omega. rewrite lift_rec_null. auto.
Qed.
(*
Lemma eager_may_pause : forall M N, (factorable N -> False) -> forall P, lamSF_red (App (App eager M) N) P ->
exists M' N', P = App (App eager M' N') /\ lamSF_red M M' /\ lamSF_red N N'
*)
Lemma eager_normal: forall M N, normal M -> normal N -> status N >0 -> normal (eager M N).
Proof.
induction N; split_all; unfold eager; split_all; unfold_op.
eapply2 nf_active.
eapply2 nf_active.
eapply2 nf_compound.
eapply2 nf_compound.
eapply2 nf_compound.
noway.
eapply2 nf_active.
eapply2 nf_active.
eapply2 nf_compound.
eapply2 nf_abs.
eapply2 nf_active.
eapply2 nf_abs.
inversion H0.
eapply2 lift_rec_preserves_normal.
eapply2 nf_compound.
eapply2 nf_compound.
eapply2 nf_abs.
eapply2 nf_active.
eapply2 nf_abs.
inversion H0.
eapply2 lift_rec_preserves_normal.
(* 1 *)
eapply2 nf_active.
eapply2 nf_active.
eapply2 nf_compound.
eapply2 nf_abs.
eapply2 nf_active.
replace (App (lift_rec N1 0 1) (lift_rec N2 0 1)) with (lift_rec (App N1 N2) 0 1) by auto.
eapply2 lift_rec_preserves_normal.
eapply2 nf_compound.
eapply2 nf_compound.
eapply2 nf_abs.
eapply2 nf_active.
replace (App (lift_rec N1 0 1) (lift_rec N2 0 1)) with (lift_rec (App N1 N2) 0 1) by auto.
eapply2 lift_rec_preserves_normal.
Qed.
Definition fix_eager M N := eager (wait (wait little_omega little_omega) M) N.
Definition fix2 := Abs (Abs (fix_eager (Ref 1) (Ref 0))).
Fixpoint natrep (n: nat) : lamSF :=
match n with
| 0 => s_op
| S n0 => App s_op (natrep n0)
end.
Fixpoint composition_body1 (f: lamSF) (gs : list lamSF) :=
(* assume length gs = arity of f, m = arity of gs *)
match gs with
| nil => f
| cons g gs1 => composition_body1 (subst g f) gs1
end.
Definition composition_body f gs := composition_body1 (lift (length gs) f) gs.
Definition primrec_body (f g : lamSF) := fix_eager (Abs (Abs
(App (App (App f_op (Ref 0)) (lift 2 f)) (App k_op (Abs (subst_rec (lift_rec g 2 3) (App (Ref 2) (Ref 0)) 1)))))) (Ref 0).
Definition leastrec_body (f: lamSF) :=
match f with
| Op _ => f
| App (App (App (Op Fop) _) _) _ =>
fix_eager (Abs (Abs (App (App (App f_op (lift_rec f 1 1)) (Ref 0))
(App k_op (App k_op (App (Ref 1) (App s_op (Ref 0))))))))
(Ref 0)
| _ => f_op (* the undefined function *)
end.
Lemma composition_body_normal :
forall gs, (forall g, In g gs -> normal g) -> forall f, normal f -> normal (composition_body f gs).
Proof.
induction gs; split_all; unfold composition_body; unfold lift; split_all; unfold composition_body1; fold composition_body1; split_all.
rewrite lift_rec_null. auto.
unfold subst. rewrite subst_rec_lift_rec; try omega.
eapply2 IHgs.
Qed.
Lemma primrec_body_normal : forall f g, normal f -> normal g -> normal (primrec_body f g).
Proof.
split_all. unfold primrec_body. unfold_op.
eapply2 eager_normal.
eapply2 wait_normal.
eapply2 wait_normal.
eapply2 little_omega_normal.
eapply2 little_omega_normal.
eapply2 nf_abs.
eapply2 nf_abs.
eapply2 nf_active.
eapply2 nf_compound.
eapply2 lift_rec_preserves_normal.
eapply2 nf_compound.
eapply2 nf_abs.
eapply2 normal_subst_app_ref.
eapply2 lift_rec_preserves_normal.
Qed.
Lemma leastrec_body_normal : forall f, normal f -> normal (leastrec_body f).
Proof.
split_all. unfold leastrec_body. unfold_op.
gen_case H f.
gen_case H l.
gen_case H l1.
gen_case H l3.
gen_case H o.
eapply2 eager_normal.
eapply2 wait_normal.
eapply2 wait_normal.
eapply2 little_omega_normal.
eapply2 little_omega_normal.
eapply2 nf_abs.
eapply2 nf_abs.
eapply2 nf_active.
eapply2 nf_compound.
eapply2 nf_compound.
eapply2 nf_active.
eapply2 nf_compound.
eapply2 nf_compound.
eapply2 lift_rec_preserves_normal.
inversion H; split_all.
inversion H2; split_all.
inversion H7; split_all.
inversion H7; split_all.
inversion H2; split_all.
inversion H7; split_all.
inversion H7; split_all.
eapply2 lift_rec_preserves_normal.
inversion H; split_all.
inversion H2; split_all.
inversion H2; split_all.
eapply2 lift_rec_preserves_normal.
inversion H; split_all.
simpl.
rewrite lift_rec_preserves_status.
unfold relocate.
elim(test 2 (status l4)); split_all.
omega.
inversion H.
simpl in *. auto.
inversion H4.
eapply2 nf_compound.
eapply2 nf_compound.
eapply2 nf_active.
split_all.
simpl.
rewrite lift_rec_preserves_status.
unfold relocate.
elim(test 2 (status l4)); split_all.
omega.
inversion H.
simpl in *. auto.
inversion H4.
Qed.
Inductive recbody : nat -> lamSF -> Prop :=
| zero_body : forall n, recbody n (natrep 0)
| succ_body: forall n, recbody (S n) (App s_op (Ref 0))
| proj_body: forall n i, recbody (n+i) (Ref i)
| comp_body : forall k (f: lamSF) (gs: list lamSF), recbody (length gs) f -> (forall g, In g gs -> recbody k g) -> recbody k (composition_body f gs)
| prim_body : forall n f g, recbody n f -> recbody (S (S n)) g -> recbody (S n) (primrec_body f g)
| lrec_body : forall n f, recbody (S n) f -> recbody n (leastrec_body f)
.
Lemma recbodies_are_normal : forall n f, recbody n f -> normal f.
Proof.
intros n f rb; induction rb; split_all; unfold_op; split_all.
eapply2 composition_body_normal.
eapply2 primrec_body_normal.
eapply2 leastrec_body_normal.
Qed.