-
Notifications
You must be signed in to change notification settings - Fork 3
/
Lambda_tactics.v
651 lines (536 loc) · 20.9 KB
/
Lambda_tactics.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(**********************************************************************)
(* Intensional Lambda Calculus *)
(* *)
(* is implemented in Coq by adapting the implementation of *)
(* Lambda Calculus from Project Coq *)
(* 2015 *)
(**********************************************************************)
(**********************************************************************)
(* Lambda_tactics.v *)
(* *)
(* Barry Jay *)
(* *)
(**********************************************************************)
Require Import Arith.
Require Import Terms.
Require Import Test.
Require Import General.
Definition termred := lamSF -> lamSF -> Prop.
Definition preserve (R : termred) (P : lamSF -> Prop) :=
forall x : lamSF, P x -> forall y : lamSF, R x y -> P y.
Inductive multi_step : termred -> termred :=
| zero_red : forall red M, multi_step red M M
| succ_red : forall (red: lamSF-> lamSF -> Prop) M N P,
red M N -> multi_step red N P -> multi_step red M P
.
Inductive sequential : termred -> termred -> termred :=
| seq_red : forall (red1 red2 : termred) M N P,
red1 M N -> red2 N P -> sequential red1 red2 M P.
Hint Resolve zero_red succ_red seq_red
.
Definition reflective red := forall (M: lamSF), red M M.
Lemma refl_multi_step : forall (red: termred), reflective (multi_step red).
Proof. red; split_all. Qed.
Lemma refl_seq : forall (red1 red2: termred),
reflective red1 -> reflective red2 -> reflective(sequential red1 red2).
Proof. red; split_all; eapply2 seq_red. Qed.
Ltac reflect := match goal with
| |- reflective (multi_step _) => eapply2 refl_multi_step
| |- multi_step _ _ _ => try (eapply2 refl_multi_step)
| |- reflective (sequential _) => eapply2 refl_seq; reflect
| |- sequential _ _ _ _ => try (eapply2 refl_seq)
| _ => split_all
end.
Ltac one_step :=
match goal with
| |- multi_step _ _ ?N => apply succ_red with N; auto; try red; try reflect
end.
Ltac seq_l :=
match goal with
| |- sequential _ _ ?M ?N => apply seq_red with N; auto; red; reflect
end.
Ltac seq_r :=
match goal with
| |- sequential _ _ ?M ?N => apply seq_red with M; auto; red; reflect
end.
Definition transitive red := forall (M N P: lamSF), red M N -> red N P -> red M P.
Lemma transitive_red : forall red, transitive (multi_step red).
Proof. red; induction 1; split_all.
apply succ_red with N; auto.
Qed.
Definition preserves_abs (red : termred) :=
forall M N, red M N -> red (Abs M) (Abs N).
Definition preserves_app (red : termred) :=
forall M M' N N', red M M' -> red N N' -> red (App M N) (App M' N').
Lemma preserves_abs_multi_step : forall red, preserves_abs red -> preserves_abs (multi_step red).
Proof.
red; induction 2; split_all.
apply succ_red with (Abs N); auto.
Qed.
Lemma preserves_app_multi_step : forall (red: termred), reflective red -> preserves_app red -> preserves_app (multi_step red).
Proof.
red. induction 3; split_all. generalize H0; induction 1.
reflect.
apply succ_red with (App M N); auto.
assert( transitive (multi_step red)) by eapply2 transitive_red.
apply X0 with (App N0 N); auto.
one_step.
Qed.
Lemma preserves_abs_seq : forall (red1 red2: termred), preserves_abs red1 -> preserves_abs red2 -> preserves_abs (sequential red1 red2).
Proof.
red; split_all.
inversion H1.
apply seq_red with (Abs N0); auto.
Qed.
Lemma preserves_app_seq : forall (red1 red2: termred), preserves_app red1 -> preserves_app red2 -> preserves_app (sequential red1 red2).
Proof.
red; split_all.
inversion H1; inversion H2.
apply seq_red with (App N0 N1); auto.
Qed.
Hint Resolve preserves_abs_multi_step preserves_app_multi_step preserves_abs_seq preserves_app_seq .
Definition preserves_abs1 (red: termred) := forall M N, red M N -> forall M0, M = Abs M0 ->
exists N0, red M0 N0 /\ Abs N0 = N.
Lemma preserves_abs1_multi_step : forall red, preserves_abs1 red -> preserves_abs1 (multi_step red).
Proof.
unfold preserves_abs1. induction 2; split_all.
exist M0.
assert(exists N0 : lamSF, red M0 N0 /\ Abs N0 = N) by eapply2 H; split_all.
assert(exists N0 : lamSF, multi_step red x N0 /\ Abs N0 = P) by eapply2 IHmulti_step; split_all.
exist x0.
apply succ_red with x; auto.
Qed.
Lemma preserves_abs1_seq : forall red1, preserves_abs1 red1 -> forall red2, preserves_abs1 red2 -> preserves_abs1 (sequential red1 red2).
Proof.
unfold preserves_abs1; split_all.
inversion H1.
elim(H M N0 H3 M0); split_all.
elim(H0 N0 N H4 x); split_all.
exist x0.
apply seq_red with x; auto.
Qed.
Hint Resolve preserves_abs1_multi_step preserves_abs1_seq.
Definition lift_rec_preserves (red: termred) :=
forall (M N : lamSF), red M N -> forall (n k : nat), red (lift_rec M n k) (lift_rec N n k).
Lemma lift_rec_preserves_multi_step :
forall red, lift_rec_preserves red -> lift_rec_preserves (multi_step red).
Proof. unfold lift_rec_preserves; induction 2; split_all.
apply succ_red with (lift_rec N n k); auto.
Qed.
Lemma lift_rec_preserves_seq :
forall red1 red2, lift_rec_preserves red1 -> lift_rec_preserves red2 ->
lift_rec_preserves (sequential red1 red2).
Proof. red; unfold lift_rec_preserves; split_all.
inversion H1. apply seq_red with (lift_rec N0 n k); auto.
Qed.
Hint Resolve lift_rec_preserves_multi_step lift_rec_preserves_seq.
Definition preserves_lift_rec (red: lamSF -> lamSF -> Prop) :=
forall M N, red M N -> forall M0 n k, lift_rec M0 n k = M -> exists N0, red M0 N0 /\ lift_rec N0 n k = N.
Lemma preserves_lift_rec_multi_step :
forall red, preserves_lift_rec red -> preserves_lift_rec (multi_step red).
Proof. unfold preserves_lift_rec. induction 2; split_all.
exist M0.
elim(H M N H0 M0 n k); split_all.
elim(IHmulti_step H x n k); split_all.
exist x0.
apply succ_red with x; auto.
Qed.
Lemma preserves_lift_rec_seq :
forall red1, preserves_lift_rec red1 -> forall red2, preserves_lift_rec red2 ->
preserves_lift_rec (sequential red1 red2).
Proof. unfold preserves_lift_rec. induction 3; split_all.
elim(H M N H1 M0 n k); split_all.
elim(H0 N P H2 x n k); split_all.
exist x0.
apply seq_red with x; auto.
Qed.
Ltac eelim_for_equal :=
match goal with
| H: forall _, _ = _ -> _ |- _ => eelim H; clear H; subst; eelim_for_equal
| _ => split_all
end.
Ltac inv_lift_rec :=
match goal with
| H: Ref _ = lift_rec ?l _ _ |- _ => gen_case_inv H l; inv_lift_rec
| H: Op _ = lift_rec ?l _ _ |- _ => gen_case_inv H l; inv_lift_rec
| H: App _ _ = lift_rec ?l _ _ |- _ => gen_case_inv H l; inv_lift_rec
| H: Abs _ = lift_rec ?l _ _ |- _ => gen_case_inv H l; inv_lift_rec
| H: lift_rec ?l _ _ = Ref _ |- _ => gen_case_inv H l; inv_lift_rec
| H: lift_rec ?l _ _ = Op _ |- _ => gen_case_inv H l; inv_lift_rec
| H: lift_rec ?l _ _ = App _ _ |- _ => gen_case_inv H l; inv_lift_rec
| H: lift_rec ?l _ _ = Abs _ |- _ => gen_case_inv H l; inv_lift_rec
| _ => subst; eelim_for_equal
end.
Ltac inv1 prop :=
match goal with
| H: prop (Ref _) |- _ => inversion H; clear H; inv1 prop
| H: prop (App _ _) |- _ => inversion H; clear H; inv1 prop
| H: prop Op _ |- _ => inversion H; clear H; inv1 prop
| H: prop (Abs _) |- _ => inversion H; clear H; inv1 prop
| _ => split_all
end.
Definition implies_red (red1 red2: termred) := forall M N, red1 M N -> red2 M N.
Lemma implies_red_multi_step: forall red1 red2, implies_red red1 (multi_step red2) ->
implies_red (multi_step red1) (multi_step red2).
Proof. red.
intros red1 red2 IR M N R; induction R; split_all.
apply transitive_red with N; auto.
Qed.
Lemma implies_red_seq:
forall red1 red2 red3,
implies_red red1 (multi_step red3) ->
implies_red red2 (multi_step red3) ->
implies_red (sequential red1 red2) (multi_step red3) .
Proof.
red; split_all. inversion H1. apply transitive_red with N0; auto.
Qed.
Definition subst_rec_preserves_l (red: termred) :=
forall (M M' N : lamSF), red M M' -> forall ( k : nat), red (subst_rec M N k) (subst_rec M' N k).
Definition subst_rec_preserves_r (red: termred) :=
forall (M N N' : lamSF), red N N' -> forall ( k : nat), red (subst_rec M N k) (subst_rec M N' k).
Definition subst_rec_preserves (red: termred) :=
forall (M M' : lamSF), red M M' -> forall N N', red N N' -> forall ( k : nat), red (subst_rec M N k) (subst_rec M' N' k).
Lemma subst_rec_preserves_l_multi_step :
forall (red: termred), subst_rec_preserves_l red -> subst_rec_preserves_l (multi_step red).
Proof. unfold subst_rec_preserves_l.
induction 2; split_all.
apply succ_red with (subst_rec N0 N k); auto.
Qed.
Lemma subst_rec_preserves_r_multi_step :
forall (red: termred), subst_rec_preserves_r red -> subst_rec_preserves_r (multi_step red).
Proof. unfold subst_rec_preserves_r.
induction 2; split_all.
apply succ_red with (subst_rec M N k); auto.
Qed.
Lemma subst_rec_preserves_multi_step :
forall (red: termred), subst_rec_preserves_l red -> subst_rec_preserves_r red -> subst_rec_preserves (multi_step red).
Proof.
unfold subst_rec_preserves. split_all.
assert(transitive (multi_step red)) by eapply2 transitive_red.
unfold transitive in *.
apply X with (subst_rec M' N k); auto.
eapply2 subst_rec_preserves_l_multi_step.
eapply2 subst_rec_preserves_r_multi_step.
Qed.
Lemma subst_rec_preserves_l_seq :
forall red1 , subst_rec_preserves_l red1 -> forall red2 , subst_rec_preserves_l red2 ->
subst_rec_preserves_l (sequential red1 red2).
Proof. unfold subst_rec_preserves_l; split_all.
inversion H1.
apply seq_red with (subst_rec N0 N k); auto.
Qed.
Lemma subst_rec_preserves_r_seq :
forall red1 , subst_rec_preserves_r red1 -> forall red2 , subst_rec_preserves_r red2 ->
subst_rec_preserves_r (sequential red1 red2).
Proof. unfold subst_rec_preserves_r; split_all.
inversion H1.
apply seq_red with (subst_rec M N0 k); auto.
Qed.
Lemma subst_rec_preserves_seq :
forall red1 , subst_rec_preserves red1 -> forall red2 , subst_rec_preserves red2 ->
subst_rec_preserves (sequential red1 red2).
Proof. unfold subst_rec_preserves; split_all.
inversion H1.
inversion H2.
apply seq_red with (subst_rec N0 N1 k); auto.
Qed.
Hint Resolve subst_rec_preserves_multi_step subst_rec_preserves_seq.
Hint Resolve subst_rec_preserves_multi_step subst_rec_preserves_seq.
Ltac inv red :=
match goal with
| H: multi_step red (App _ _) _ |- _ => inversion H; clear H; inv red
| H: multi_step red (Ref _) _ |- _ => inversion H; clear H; inv red
| H: multi_step red (Op _) _ |- _ => inversion H; clear H; inv red
| H: multi_step red (Abs _) _ |- _ => inversion H; clear H; inv red
| H: red (Ref _) _ |- _ => inversion H; clear H; inv red
| H: red (App _ _) _ |- _ => inversion H; clear H; inv red
| H: red (Op _) _ |- _ => inversion H; clear H; inv red
| H: red (Abs _) _ |- _ => inversion H; clear H; inv red
| H: multi_step red _ (Ref _) |- _ => inversion H; clear H; inv red
| H: multi_step red _ (App _ _) |- _ => inversion H; clear H; inv red
| H: multi_step red _ (Op _) |- _ => inversion H; clear H; inv red
| H: multi_step red _ (Abs _) |- _ => inversion H; clear H; inv red
| H: red _ (Ref _) |- _ => inversion H; clear H; inv red
| H: red _ (App _ _) |- _ => inversion H; clear H; inv red
| H: red _ (Op _) |- _ => inversion H; clear H; inv red
| H: red _ (Abs _) |- _ => inversion H; clear H; inv red
| |- red (lift _ _) (lift _ _) => unfold lift; eapply2 (lift_rec_preserves red); inv red
| _ => subst; split_all
end.
Definition diamond (red1 red2 : termred) :=
forall M N, red1 M N -> forall P, red2 M P -> exists Q, red2 N Q /\ red1 P Q.
Lemma diamond_flip: forall red1 red2, diamond red1 red2 -> diamond red2 red1.
Proof. unfold diamond; split_all. elim (H M P H1 N H0); split_all. exist x. Qed.
Lemma diamond_strip :
forall red1 red2, diamond red1 red2 -> diamond red1 (multi_step red2).
Proof. intros.
eapply2 diamond_flip.
red; induction 1; split_all.
exist P.
elim (H M P0 H2 N); split_all.
elim(IHmulti_step H x); split_all.
exist x0.
apply succ_red with x; auto.
Qed.
Definition diamond_star (red1 red2: termred) := forall M N, red1 M N -> forall P, red2 M P ->
exists Q, red1 P Q /\ multi_step red2 N Q.
Lemma diamond_star_strip: forall red1 red2, diamond_star red1 red2 -> diamond (multi_step red2) red1 .
Proof.
red. induction 2; split_all.
exist P.
elim(H M P0 H2 N H0); split_all.
elim(IHmulti_step H x); split_all.
exist x0.
apply transitive_red with x; auto.
Qed.
Lemma diamond_tiling :
forall red1 red2, diamond red1 red2 -> diamond (multi_step red1) (multi_step red2).
Proof.
red. induction 2; split_all.
exist P.
elim(diamond_strip red red2 H M N H0 P0); split_all.
elim(IHmulti_step H x H4); split_all.
exist x0.
apply succ_red with x; auto.
Qed.
Hint Resolve diamond_tiling.
Lemma diamond_seq: forall red red1 red2, diamond red red1 -> diamond red red2 -> diamond red (sequential red1 red2).
Proof. unfold diamond; split_all.
inversion H2.
elim(H M N H1 N0); split_all.
elim(H0 N0 x H11 P); split_all.
exist x0.
apply seq_red with x; auto.
Qed.
Lemma relocate_null :
forall (n n0 : nat), relocate n n0 0 = n.
Proof. split_all. unfold relocate. case (test n0 n); intro; auto with arith. Qed.
Lemma relocate_lessthan : forall m n k, m<=k -> relocate k m n = (n+k).
Proof. split_all. unfold relocate. elim(test m k); split_all; try noway. Qed.
Lemma relocate_greaterthan : forall m n k, m>k -> relocate k m n = k.
Proof. split_all. unfold relocate. elim(test m k); split_all; try noway. Qed.
Ltac relocate_lt :=
try (rewrite relocate_lessthan; [| omega]; relocate_lt);
try (rewrite relocate_greaterthan; [| omega]; relocate_lt);
try(rewrite relocate_null).
Lemma relocate_zero_succ :
forall n k, relocate 0 (S n) k = 0.
Proof. split_all. Qed.
Lemma relocate_succ :
forall n n0 k, relocate (S n) (S n0) k = S(relocate n n0 k).
Proof.
intros; unfold relocate. elim(test(S n0) (S n)); elim(test n0 n); split_all.
noway.
noway.
Qed.
Lemma relocate_mono : forall M N n k, relocate M n k = relocate N n k -> M=N.
Proof.
intros M N n k.
unfold relocate.
elim(test n M); elim(test n N); split_all; omega.
Qed.
Lemma lift_rec_mono : forall M N n k, lift_rec M n k = lift_rec N n k -> M=N.
Proof.
induction M; split_all.
gen_case_inv H N.
assert(n=n1) by eapply2 relocate_mono.
subst; auto.
gen_case_inv H N.
gen_case_inv H N.
assert(M = l) by eapply2 IHM.
congruence.
gen_case_inv H N.
assert(M1 = l) by eapply2 IHM1.
assert(M2 = l0) by eapply2 IHM2. congruence.
Qed.
Lemma insert_Ref_lt : forall M n k, n< k -> insert_Ref M n k = Ref n.
Proof.
induction M; unfold insert_Ref; split_all.
elim (compare k n0); split_all.
elim a; split_all; try noway.
elim (compare k n); split_all.
elim a; split_all; try noway.
elim (compare k n); split_all.
elim a; split_all; try noway.
elim (compare k n); split_all.
elim a; split_all; try noway.
Qed.
Lemma insert_Ref_eq : forall M n k, n= k -> insert_Ref M n k = lift k M.
Proof.
induction M; unfold insert_Ref; split_all.
elim (compare k n0); split_all.
elim a; split_all; try noway.
unfold lift; unfold lift_rec. unfold relocate. elim(test 0 n); split_all; try noway.
elim (compare k n); split_all.
elim a; split_all; try noway.
unfold lift; unfold lift_rec. unfold relocate. elim(test 0 n); split_all; try noway.
elim (compare k n); split_all.
elim a; split_all; try noway.
noway.
elim (compare k n); split_all.
elim a; split_all; try noway.
noway.
Qed.
Lemma insert_Ref_gt : forall M n k, n> k -> insert_Ref M n k = Ref (pred n).
Proof.
induction M; unfold insert_Ref; split_all.
elim (compare k n0); split_all.
elim a; split_all; try noway.
noway.
elim (compare k n); split_all.
elim a; split_all; try noway.
noway.
elim (compare k n); split_all.
elim a; split_all; try noway.
noway.
elim (compare k n); split_all.
elim a; split_all; try noway.
noway.
Qed.
Ltac insert_Ref_out :=
try (rewrite insert_Ref_lt; [|unfold relocate; split_all; omega]; insert_Ref_out);
try (rewrite insert_Ref_eq; [|unfold relocate; split_all; omega]; insert_Ref_out);
try (rewrite insert_Ref_gt; [|unfold relocate; split_all; omega]; insert_Ref_out);
unfold lift; unfold lift_rec; fold lift_rec.
(* status *)
Fixpoint status (M: lamSF) :=
match M with
| Ref i => S i
| Op _ => 0
| Abs M1 => pred (status M1)
| App (Op _) _ => 0
| App (Abs _) _ => 0
| App (App (Op _) _) _ => 0
| App (App (App (Op Sop) _) _) _ => 0
| App (App (App (Op Fop) M1) _) _ => status M1
| App M1 M2 => status M1
end.
Definition abs_rank := 10.
Fixpoint rank (M: lamSF) :=
match M with
| Ref _ => 1
| Op _ => 1
| App M1 M2 => S((rank M1) + (rank M2))
| Abs M1 => abs_rank * rank M1
end.
Lemma rank_positive: forall M, rank M > 0.
Proof.
induction M; split_all; try omega.
Qed.
Lemma lift_rec_preserves_status :
forall (M: lamSF) (n k: nat), status (lift_rec M n k) = relocate (status M) (S n) k.
Proof.
cut(forall p (M: lamSF) (n k: nat), p>= rank M -> status (lift_rec M n k) = relocate (status M) (S n) k).
split_all. eapply2 H.
induction p; intro M. split_all.
assert(rank M > 0) by eapply2 rank_positive.
noway.
(* p > 0 *)
induction M; split_all; try (rewrite relocate_succ; auto);
try (eapply2 IHM1).
(* 2 *)
rewrite IHM.
unfold relocate.
elim(test (S(S n)) (status M)); elim(test (S n) (pred(status M))); split_all; try noway.
omega.
assert(rank M > 0) by eapply2 rank_positive.
omega.
(* 1 *)
clear IHM2.
gen2_case IHM1 H M1; try (rewrite relocate_succ; auto); try (eapply2 IHM1).
gen2_case IHM1 H l; try (rewrite relocate_succ; auto); try (eapply2 IHM1).
gen2_case IHM1 H l1; try (rewrite relocate_succ; auto); try (eapply2 IHM1).
case o; split_all.
eapply2 IHp. omega.
omega.
Qed.
Hint Resolve lift_rec_preserves_status.
Lemma lift_rec_preserves_rank :
forall (M: lamSF) (n k: nat), rank (lift_rec M n k) = rank M.
Proof. induction M; split_all. Qed.
Lemma subst_rec_preserves_status:
forall (M N: lamSF)(k : nat), (status M <= k -> status (subst_rec M N k) = status M).
Proof.
cut(forall p (M: lamSF), p>= rank M -> forall (N: lamSF) (k : nat), (status M <= k -> status (subst_rec M N k) = status M)).
split_all. eapply2 H.
induction p; intro M. split_all.
assert(rank M > 0) by eapply2 rank_positive.
noway.
(* p > 0 *)
induction M; intros.
(* 4 *)
split_all. simpl in *. insert_Ref_out; split_all.
(* 3 *)
split_all.
(* 2 *)
split_all.
rewrite IHM. auto. simpl in *; omega. simpl in *; omega.
(* 1 *)
unfold subst_rec; fold subst_rec.
(* 1 *)
generalize IHM1 H H0; clear IHM1 H H0; case M1; intros.
(* 4 *)
unfold subst_rec; fold subst_rec.
simpl in H0.
split_all.
insert_Ref_out; try (split_all; fail).
(* 3 *)
split_all.
(* 2 *)
insert_Ref_out; split_all.
(* 1 *)
unfold subst_rec; fold subst_rec.
(* 1 *)
generalize IHM1 H H0; clear IHM1 H H0; case l; intros.
(* 4 *)
unfold subst_rec; fold subst_rec.
simpl in H0.
insert_Ref_out; try (split_all; fail).
(* 3 *)
split_all.
(* 2 *)
insert_Ref_out; split_all.
(* 1 *)
unfold subst_rec; fold subst_rec.
(* 1 *)
generalize IHM1 H H0; clear IHM1 H H0; case l1; intros.
(* 4 *)
unfold subst_rec; fold subst_rec.
simpl in H0.
insert_Ref_out; try (split_all; fail).
(* 3 *)
split_all.
gen3_case IHM1 H H0 o.
eapply2 IHp. omega.
(* 2 *)
split_all.
(* 1 *)
unfold subst_rec; fold subst_rec.
(* 1 *)
assert(status (App (App (App (App l3 l4) l2) l0) M2) = status(App (App (App l3 l4) l2) l0)).
split_all.
rewrite H1.
assert(status (App
(App
(App (App (subst_rec l3 N k) (subst_rec l4 N k))
(subst_rec l2 N k)) (subst_rec l0 N k))
(subst_rec M2 N k)) = status (subst_rec (App (App (App l3 l4) l2) l0) N k))
by split_all.
rewrite H2.
eapply2 IHp.
simpl in *; omega.
Qed.