-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoder.py
77 lines (64 loc) · 2.8 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch.nn.functional as F
import numpy as np
import torch
class DecDecoder(object):
def __init__(self, K, conf_thresh):
self.K = K
self.conf_thresh = conf_thresh
def _topk(self, scores):
batch, cat, height, width = scores.size()
topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), self.K)
topk_inds = topk_inds % (height * width)
topk_ys = torch.true_divide(topk_inds, width).int().float() #/ 不能用
topk_xs = (topk_inds % width).int().float()
topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), self.K)
topk_inds = self._gather_feat( topk_inds.view(batch, -1, 1), topk_ind).view(batch, self.K)
topk_ys = self._gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, self.K)
topk_xs = self._gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, self.K)
return topk_score, topk_inds, topk_ys, topk_xs
def _nms(self, heat, kernel=3):
hmax = F.max_pool2d(heat, (kernel, kernel), stride=1, padding=(kernel - 1) // 2)
keep = (hmax == heat).float()
return heat * keep
def _gather_feat(self, feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _tranpose_and_gather_feat(self, feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = self._gather_feat(feat, ind)
return feat
def ctdet_decode(self, heat, wh, reg):
# output: num_obj x 7
# 7: cenx, ceny, w, h, angle, score, cls
batch, c, height, width = heat.size()
heat = self._nms(heat) # [1, 1, 256, 128]
scores, inds, ys, xs = self._topk(heat)
scores = scores.view(batch, self.K, 1)
reg = self._tranpose_and_gather_feat(reg, inds)
reg = reg.view(batch, self.K, 2)
xs = xs.view(batch, self.K, 1) + reg[:, :, 0:1]
ys = ys.view(batch, self.K, 1) + reg[:, :, 1:2]
wh = self._tranpose_and_gather_feat(wh, inds)
wh = wh.view(batch, self.K, 2*4)
tl_x = xs - wh[:,:,0:1]
tl_y = ys - wh[:,:,1:2]
tr_x = xs - wh[:,:,2:3]
tr_y = ys - wh[:,:,3:4]
bl_x = xs - wh[:,:,4:5]
bl_y = ys - wh[:,:,5:6]
br_x = xs - wh[:,:,6:7]
br_y = ys - wh[:,:,7:8]
pts = torch.cat([xs, ys,
tl_x,tl_y,
tr_x,tr_y,
bl_x,bl_y,
br_x,br_y,
scores], dim=2).squeeze(0)
return pts.data.cpu().numpy()