Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue in 2nd File FaultNet.ipynb #1

Open
DataAnalysisCU opened this issue Mar 5, 2024 · 0 comments
Open

Issue in 2nd File FaultNet.ipynb #1

DataAnalysisCU opened this issue Mar 5, 2024 · 0 comments

Comments

@DataAnalysisCU
Copy link

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.autograd import Variable
import torch.nn.functional as F
data = np.load('E:\Bawar Research\FaultNet-main\FaultNet-main\CWRU files\featurized_data.npy')
labels = np.load('E:\Bawar Research\FaultNet-main\FaultNet-main\CWRU files\featurized_data_labels.npy')
x=data[:,0:1600]
def mean(data,no_elements):
X=np.zeros((data.shape[0],data.shape[1]))
for i in range(data.shape[1]-no_elements+1):
X[:,i]=np.mean(data[:,i:i+no_elements],axis=1)
return X.astype(np.float16)
def median(data,no_elements):
X=np.zeros((data.shape[0],data.shape[1]))
for i in range(data.shape[1]-no_elements+1):
X[:,i]=np.median(data[:,i:i+no_elements],axis=1)
return X.astype(np.float16)
def sig_image(data,size):
X=np.zeros((data.shape[0],size,size))
for i in range(data.shape[0]):
X[i]=(data[i,:].reshape(size,size))
return X.astype(np.float16)
channel_mean=(mean(x,10)).astype(np.float16)
x_m=sig_image(channel_mean,40)
channel_median=(median(x,10)).astype(np.float16)
x_md=sig_image(x,40)
x_n=sig_image(x,40)
x_n.shape
x_m.shape
X=np.stack((x_n,x_m,x_md),axis=1).astype(np.float16)
X.shape
from sklearn.model_selection import train_test_split
trainx, testx, trainlabel, testlabel = train_test_split(X, labels, test_size=0.2, random_state=20)
sig_train, sig_test = trainx,testx
lab_train, lab_test = trainlabel,testlabel
sig_train = torch.from_numpy(sig_train)
sig_test = torch.from_numpy(sig_test)
lab_train= torch.from_numpy(lab_train)
lab_test = torch.from_numpy(lab_test)
import torch.utils.data as data_utils
batch_size = 128
train_tensor = data_utils.TensorDataset(sig_train, lab_train)
train_loader = data_utils.DataLoader(dataset = train_tensor, batch_size = batch_size, shuffle = True)
batch_size = 1024
test_tensor = data_utils.TensorDataset(sig_test, lab_test)
test_loader = data_utils.DataLoader(dataset = test_tensor, batch_size = batch_size, shuffle = False)
sig_train.size()
sig_test.size()
class CNN(nn.Module):
def init(self):
super(CNN, self).init()
self.conv1 = nn.Conv2d(3, 32, kernel_size=4,stride=1,padding = 1)
self.mp1 = nn.MaxPool2d(kernel_size=4,stride=2)
self.conv2 = nn.Conv2d(32,64, kernel_size=4,stride =1)
self.mp2 = nn.MaxPool2d(kernel_size=4,stride=2)
self.fc1= nn.Linear(2304,256)
self.dp1 = nn.Dropout(p=0.2)
self.fc2 = nn.Linear(256,10)

def forward(self, x):
    in_size = x.size(0)
    x = F.relu(self.mp1(self.conv1(x)))
    x = F.relu(self.mp2(self.conv2(x)))
    x = x.view(in_size,-1)
    x = F.relu(self.fc1(x))
    x = self.dp1(x)
    x = self.fc2(x)
    
    return F.log_softmax(x, dim=1)

cnn = CNN().double()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001)
num_epochs = 100
total_step = len(train_loader)
loss_list = []
acc_list = []
for epoch in range(num_epochs):
for i, (signals, labels) in enumerate(train_loader):
optimizer.zero_grad()
# Run the forward pass
signals=signals
labels=labels
outputs = cnn(signals.double())
loss = criterion(outputs, labels.long())

    loss_list.append(loss.item())

    # Backprop and perform Adam optimisation
    
    loss.backward()
    optimizer.step()
    # Track the accuracy
    total = labels.size(0)
    _, predicted = torch.max(outputs.data, 1)
    correct = (predicted == labels.long()).sum().item()
    acc_list.append(correct / total)

    if (epoch+1) % 5 == 0 or epoch==0:
        print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Train Accuracy: {:.2f}%'
              .format(epoch + 1, num_epochs, i + 1, total_step, loss.item(),
                      (correct / total) * 100))

total_step = len(test_loader)
print(total_step)
loss_list_test = []
acc_list_test = []
with torch.no_grad():
for i, (signals, labels) in enumerate(test_loader):
# Run the forward pass
signals=signals
labels=labels
outputs = cnn(signals.double())
loss = criterion(outputs, labels.long())
loss_list_test.append(loss.item())
if epoch%10 ==0:
print(loss)
total = labels.size(0)
_, predicted = torch.max(outputs.data, 1)
correct = (predicted == labels.long()).sum().item()
acc_list_test.append(correct / total)
if (epoch) % 1 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Accuracy: {:.2f}%'
.format(epoch + 1, num_epochs, i + 1, total_step, loss.item(),
(correct / total) * 100))

if you need to save

torch.save(cnn,'cnnTC3_fold3_45.pth')

This code has serious error about the reshape array of size 20 into shape of (40,40)
Here is the error

ValueError Traceback (most recent call last)
Cell In[52], line 2
1 channel_mean=(mean(x,10)).astype(np.float16)
----> 2 x_m=sig_image(channel_mean,40)
3 channel_median=(median(x,10)).astype(np.float16)
4 x_md = sig_image(channel_median, 40)

Cell In[51], line 21
19 for i in range(data.shape[0]):
20 if data[i, :].size != expected_size:
---> 21 raise ValueError(f"Cannot reshape array of size {data[i, :].size} into shape ({size},{size})")
22 X[i] = (data[i, :].reshape(size, size))
23 return X.astype(np.float16)

ValueError: Cannot reshape array of size 20 into shape (40,40)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant