-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_cosine.py
581 lines (514 loc) · 23.2 KB
/
main_cosine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import argparse
import os
import shutil
import sys
import time
import warnings
from random import sample
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn import metrics
from torch.autograd import Variable
from torch.optim.lr_scheduler import MultiStepLR
from cgcnn.data_sampling import CIFData#,TrainCIFData
from cgcnn.data_sampling import collate_pool, get_train_val_test_loader#get_val_test_loader,get_train_loader
from cgcnn.model import CrystalGraphConvNet
parser = argparse.ArgumentParser(description='Crystal Graph Convolutional Neural Networks')
parser.add_argument('data_options', metavar='OPTIONS', nargs='+',
help='dataset options, started with the path to root dir, '
'then other options')
parser.add_argument('--task', choices=['regression', 'classification'],
default='regression', help='complete a regression or classification task (default: regression)')
parser.add_argument('--runs', default=0, type=int, metavar='N',
help='number of total epochs to run (default: 0)')
parser.add_argument('--fold', default=0, type=int, metavar='N',
help='number of fold to run (default: 0)')
parser.add_argument('--disable-cuda', action='store_true',
help='Disable CUDA')
parser.add_argument('-j', '--workers', default=0, type=int, metavar='N',
help='number of data loading workers (default: 0)')
parser.add_argument('--epochs', default=40, type=int, metavar='N',
help='number of total epochs to run (default: 30)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial learning rate (default: '
'0.01)')
parser.add_argument('--lr-milestones', default=[100], nargs='+', type=int,
metavar='N', help='milestones for scheduler (default: '
'[100])')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay (default: 0)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--train_path', default='./Indices/train_0', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
train_group = parser.add_mutually_exclusive_group()
train_group.add_argument('--train-ratio', default=None, type=float, metavar='N',
help='number of training data to be loaded (default none)')
train_group.add_argument('--train-size', default=None, type=int, metavar='N',
help='number of training data to be loaded (default none)')
valid_group = parser.add_mutually_exclusive_group()
valid_group.add_argument('--val-ratio', default=0.1, type=float, metavar='N',
help='percentage of validation data to be loaded (default '
'0.1)')
valid_group.add_argument('--val-size', default=None, type=int, metavar='N',
help='number of validation data to be loaded (default '
'1000)')
test_group = parser.add_mutually_exclusive_group()
test_group.add_argument('--test-ratio', default=0.1, type=float, metavar='N',
help='percentage of test data to be loaded (default 0.1)')
test_group.add_argument('--test-size', default=None, type=int, metavar='N',
help='number of test data to be loaded (default 1000)')
parser.add_argument('--optim', default='SGD', type=str, metavar='SGD',
help='choose an optimizer, SGD or Adam, (default: SGD)')
parser.add_argument('--atom-fea-len', default=64, type=int, metavar='N',
help='number of hidden atom features in conv layers')
parser.add_argument('--h-fea-len', default=128, type=int, metavar='N',
help='number of hidden features after pooling')
parser.add_argument('--n-conv', default=3, type=int, metavar='N',
help='number of conv layers')
parser.add_argument('--n-h', default=1, type=int, metavar='N',
help='number of hidden layers after pooling')
parser.add_argument('--train_id', default=0, type=int, metavar='N',
help='current train_id (default: 0)')
args = parser.parse_args(sys.argv[1:])
args.cuda = not args.disable_cuda and torch.cuda.is_available()
if args.task == 'regression':
best_mae_error = 1e10
else:
best_mae_error = 0.
def main():
global args, best_mae_error
# load data
print(args.train_id)
dataset = CIFData(*args.data_options,train_id = args.train_id)
#train_dataset = TrainCIFData(*args.data_options)
collate_fn = collate_pool
train_loader, val_loader, test_loader = get_train_val_test_loader(
dataset=dataset,
collate_fn=collate_fn,
batch_size=args.batch_size,
train_ratio=args.train_ratio,
num_workers=args.workers,
val_ratio=args.val_ratio,
test_ratio=args.test_ratio,
pin_memory=args.cuda,
train_size=args.train_size,
val_size=args.val_size,
test_size=args.test_size,
train_path = args.train_path,
return_test=True)
# val_loader, test_loader = get_val_test_loader(
# dataset=dataset,
# collate_fn=collate_fn,
# batch_size=args.batch_size,
# train_ratio=args.train_ratio,
# num_workers=args.workers,
# val_ratio=args.val_ratio,
# test_ratio=args.test_ratio,
# pin_memory=args.cuda,
# train_size=args.train_size,
# val_size=args.val_size,
# test_size=args.test_size,
# return_test=True)
# train_loader = get_train_loader(
# dataset=train_dataset,
# collate_fn=collate_fn,
# batch_size=args.batch_size,
# train_ratio=args.train_ratio,
# num_workers=args.workers,
# val_ratio=args.val_ratio,
# test_ratio=args.test_ratio,
# pin_memory=args.cuda,
# train_size=args.train_size,
# val_size=args.val_size,
# test_size=args.test_size,
# return_test=False)
# obtain target value normalizer
if args.task == 'classification':
normalizer = Normalizer(torch.zeros(2))
normalizer.load_state_dict({'mean': 0., 'std': 1.})
else:
if len(dataset) < 500:
warnings.warn('Dataset has less than 500 data points. '
'Lower accuracy is expected. ')
sample_data_list = [dataset[i] for i in range(len(dataset))]
else:
sample_data_list = [dataset[i] for i in
sample(range(len(dataset)), 500)]
_, sample_target, _ = collate_pool(sample_data_list)
normalizer = Normalizer(sample_target)
# build model
structures, _, _ = dataset[0]
orig_atom_fea_len = structures[0].shape[-1]
nbr_fea_len = structures[1].shape[-1]
model = CrystalGraphConvNet(orig_atom_fea_len, nbr_fea_len,
atom_fea_len=args.atom_fea_len,
n_conv=args.n_conv,
h_fea_len=args.h_fea_len,
n_h=args.n_h,
classification=True if args.task ==
'classification' else False)
if args.cuda:
model.cuda()
# define loss func and optimizer
if args.task == 'classification':
criterion = nn.NLLLoss()
else:
criterion = nn.MSELoss()
if args.optim == 'SGD':
optimizer = optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
elif args.optim == 'Adam':
optimizer = optim.Adam(model.parameters(), args.lr,
weight_decay=args.weight_decay)
else:
raise NameError('Only SGD or Adam is allowed as --optim')
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_mae_error = checkpoint['best_mae_error']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
normalizer.load_state_dict(checkpoint['normalizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
scheduler = MultiStepLR(optimizer, milestones=args.lr_milestones,
gamma=0.1)
test_errors = []
train_errors = []
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
train_error = train(train_loader, model, criterion, optimizer, epoch, normalizer)
train_errors.append(train_error)
# evaluate on validation set
mae_error = validate(val_loader, model, criterion, normalizer)
test_errors.append(mae_error)
if mae_error != mae_error:
print('Exit due to NaN')
sys.exit(1)
scheduler.step()
# remember the best mae_eror and save checkpoint
if args.task == 'regression':
is_best = mae_error < best_mae_error
best_mae_error = min(mae_error, best_mae_error)
# np.save("train_errors.npy", train_error)
else:
is_best = mae_error > best_mae_error
best_mae_error = max(mae_error, best_mae_error)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_mae_error': best_mae_error,
'optimizer': optimizer.state_dict(),
'normalizer': normalizer.state_dict(),
'args': vars(args)
}, is_best)
# test best model
print('---------Evaluate Model on Test Set---------------')
best_checkpoint = torch.load('./models/model_best_{}_{}.pth.tar'.format(args.runs,args.fold))
model.load_state_dict(best_checkpoint['state_dict'])
validate(test_loader, model, criterion, normalizer, test=True)
filename_train = "./training_errors/train_error_{}_{}.npy".format(args.runs,args.fold)
filename_test = "./training_errors/test_error_{}_{}.npy".format(args.runs,args.fold)
np.save(filename_train, np.asarray(train_errors))
np.save(filename_test, np.asarray(test_errors))
#validate(test_loader2) # change here
def train(train_loader, model, criterion, optimizer, epoch, normalizer):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
if args.task == 'regression':
mae_errors = AverageMeter()
else:
accuracies = AverageMeter()
precisions = AverageMeter()
recalls = AverageMeter()
fscores = AverageMeter()
auc_scores = AverageMeter()
# switch to train mode
model.train()
train_ids = []
difference= []
end = time.time()
for i, (input, target, ids) in enumerate(train_loader):
# measure data loading time
#print(ids)
data_time.update(time.time() - end)
if args.cuda:
input_var = (Variable(input[0].cuda(non_blocking=True)),
Variable(input[1].cuda(non_blocking=True)),
input[2].cuda(non_blocking=True),
[crys_idx.cuda(non_blocking=True) for crys_idx in input[3]])
else:
input_var = (Variable(input[0]),
Variable(input[1]),
input[2],
input[3])
# normalize target
if args.task == 'regression':
target_normed = normalizer.norm(target)
else:
target_normed = target.view(-1).long()
if args.cuda:
target_var = Variable(target_normed.cuda(non_blocking=True))
else:
target_var = Variable(target_normed)
# compute output
output = model(*input_var)
out = (output.detach().cpu().numpy())
tar = (target_var.detach().cpu().numpy())
#print(out)
#print(tar)
diff = np.abs((out-tar)).tolist()
#print(diff)
loss = criterion(output, target_var)
train_ids += ids
difference += diff
# measure accuracy and record loss
if args.task == 'regression':
mae_error = mae(normalizer.denorm(output.data.cpu()), target)
losses.update(loss.data.cpu(), target.size(0))
mae_errors.update(mae_error, target.size(0))
#print(mae_error)
else:
accuracy, precision, recall, fscore, auc_score = \
class_eval(output.data.cpu(), target)
losses.update(loss.data.cpu().item(), target.size(0))
accuracies.update(accuracy, target.size(0))
precisions.update(precision, target.size(0))
recalls.update(recall, target.size(0))
fscores.update(fscore, target.size(0))
auc_scores.update(auc_score, target.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
#print("HHHHHHHHHHHHHHH")
if i % args.print_freq == 0:
if args.task == 'regression':
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'MAE {mae_errors.val:.3f} ({mae_errors.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, mae_errors=mae_errors)
)
else:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accu {accu.val:.3f} ({accu.avg:.3f})\t'
'Precision {prec.val:.3f} ({prec.avg:.3f})\t'
'Recall {recall.val:.3f} ({recall.avg:.3f})\t'
'F1 {f1.val:.3f} ({f1.avg:.3f})\t'
'AUC {auc.val:.3f} ({auc.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, accu=accuracies,
prec=precisions, recall=recalls, f1=fscores,
auc=auc_scores)
)
train_idx = np.asarray(train_ids)
#print(diff.shape)
#print(train_idx.shape)
train_error = np.concatenate((train_idx.reshape(-1,1),difference), axis=1)
return train_error
def validate(val_loader, model, criterion, normalizer, test=False):
batch_time = AverageMeter()
losses = AverageMeter()
if args.task == 'regression':
mae_errors = AverageMeter()
else:
accuracies = AverageMeter()
precisions = AverageMeter()
recalls = AverageMeter()
fscores = AverageMeter()
auc_scores = AverageMeter()
if test:
test_targets = []
test_preds = []
test_cif_ids = []
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target, batch_cif_ids) in enumerate(val_loader):
if args.cuda:
with torch.no_grad():
input_var = (Variable(input[0].cuda(non_blocking=True)),
Variable(input[1].cuda(non_blocking=True)),
input[2].cuda(non_blocking=True),
[crys_idx.cuda(non_blocking=True) for crys_idx in input[3]])
else:
with torch.no_grad():
input_var = (Variable(input[0]),
Variable(input[1]),
input[2],
input[3])
if args.task == 'regression':
target_normed = normalizer.norm(target)
else:
target_normed = target.view(-1).long()
if args.cuda:
with torch.no_grad():
target_var = Variable(target_normed.cuda(non_blocking=True))
else:
with torch.no_grad():
target_var = Variable(target_normed)
# compute output
output = model(*input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
if args.task == 'regression':
mae_error = mae(normalizer.denorm(output.data.cpu()), target)
losses.update(loss.data.cpu().item(), target.size(0))
mae_errors.update(mae_error, target.size(0))
if test:
test_pred = normalizer.denorm(output.data.cpu())
test_target = target
test_preds += test_pred.view(-1).tolist()
test_targets += test_target.view(-1).tolist()
test_cif_ids += batch_cif_ids
#np.save('test_cif_ids.npy', test_cif_ids)
else:
accuracy, precision, recall, fscore, auc_score = \
class_eval(output.data.cpu(), target)
losses.update(loss.data.cpu().item(), target.size(0))
accuracies.update(accuracy, target.size(0))
precisions.update(precision, target.size(0))
recalls.update(recall, target.size(0))
fscores.update(fscore, target.size(0))
auc_scores.update(auc_score, target.size(0))
if test:
test_pred = torch.exp(output.data.cpu())
test_target = target
assert test_pred.shape[1] == 2
test_preds += test_pred[:, 1].tolist()
test_targets += test_target.view(-1).tolist()
test_cif_ids += batch_cif_ids
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
if args.task == 'regression':
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'MAE {mae_errors.val:.3f} ({mae_errors.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
mae_errors=mae_errors))
else:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accu {accu.val:.3f} ({accu.avg:.3f})\t'
'Precision {prec.val:.3f} ({prec.avg:.3f})\t'
'Recall {recall.val:.3f} ({recall.avg:.3f})\t'
'F1 {f1.val:.3f} ({f1.avg:.3f})\t'
'AUC {auc.val:.3f} ({auc.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
accu=accuracies, prec=precisions, recall=recalls,
f1=fscores, auc=auc_scores))
if test:
star_label = '**'
import csv
with open('./results/test_results_{}_{}.csv'.format(args.runs,args.fold), 'w') as f:
writer = csv.writer(f)
for cif_id, target, pred in zip(test_cif_ids, test_targets,
test_preds):
writer.writerow((cif_id, target, pred))
else:
star_label = '*'
if args.task == 'regression':
print(' {star} MAE {mae_errors.avg:.3f}'.format(star=star_label,
mae_errors=mae_errors))
return mae_errors.avg
else:
print(' {star} AUC {auc.avg:.3f}'.format(star=star_label,
auc=auc_scores))
return auc_scores.avg
class Normalizer(object):
"""Normalize a Tensor and restore it later. """
def __init__(self, tensor):
"""tensor is taken as a sample to calculate the mean and std"""
self.mean = torch.mean(tensor)
self.std = torch.std(tensor)
def norm(self, tensor):
return (tensor - self.mean) / self.std
def denorm(self, normed_tensor):
return normed_tensor * self.std + self.mean
def state_dict(self):
return {'mean': self.mean,
'std': self.std}
def load_state_dict(self, state_dict):
self.mean = state_dict['mean']
self.std = state_dict['std']
def mae(prediction, target):
"""
Computes the mean absolute error between prediction and target
Parameters
----------
prediction: torch.Tensor (N, 1)
target: torch.Tensor (N, 1)
"""
return torch.mean(torch.abs(target - prediction))
def class_eval(prediction, target):
prediction = np.exp(prediction.numpy())
target = target.numpy()
pred_label = np.argmax(prediction, axis=1)
target_label = np.squeeze(target)
if not target_label.shape:
target_label = np.asarray([target_label])
if prediction.shape[1] == 2:
precision, recall, fscore, _ = metrics.precision_recall_fscore_support(
target_label, pred_label, average='binary')
auc_score = metrics.roc_auc_score(target_label, prediction[:, 1])
accuracy = metrics.accuracy_score(target_label, pred_label)
else:
raise NotImplementedError
return accuracy, precision, recall, fscore, auc_score
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state, is_best, runs = args.runs, fold = args.fold, filename='./models/checkpoint_{}_{}.tar'.format(args.runs,args.fold)):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, './models/model_best_{}_{}.pth.tar'.format(runs,fold))
def adjust_learning_rate(optimizer, epoch, k):
"""Sets the learning rate to the initial LR decayed by 10 every k epochs"""
assert type(k) is int
lr = args.lr * (0.1 ** (epoch // k))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()