forked from xingwangsfu/caffe-yolo
-
Notifications
You must be signed in to change notification settings - Fork 30
/
create_yolo_caffemodel.py
115 lines (89 loc) · 4.52 KB
/
create_yolo_caffemodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 29 16:10:21 2016
@author: xingw, Banus
"""
from __future__ import print_function, division
import argparse
import os
import numpy as np
if 'GLOG_minloglevel' not in os.environ:
os.environ['GLOG_minloglevel'] = '2' # suppress verbose Caffe output
import caffe
def transpose_matrix(array, rows, cols):
""" transpose flattened matrix """
return array.reshape((rows, cols)).transpose().flatten()
def load_parameter(weights, layer_data, transpose=False):
""" load Caffe parameters from YOLO weights """
shape = layer_data.shape
size = np.prod(shape)
if size > weights.size:
raise ValueError(" Layer too big: required {} weights, available {}".
format(size, weights.size))
if transpose:
layer_data[...] = np.reshape(
transpose_matrix(weights[:size], np.prod(shape[1:]), shape[0]), shape)
else:
layer_data[...] = np.reshape(weights[:size], shape)
return size
def convert_weights(model_filename, yoloweight_filename, caffemodel_filename):
""" convert YOLO weights to .caffemodel format given the caffe model """
net = caffe.Net(model_filename, caffe.TEST)
# read header to get the transpose flag
weights_int = np.fromfile(yoloweight_filename, dtype=np.int32, count=4)
# transpose flag, the first 4 entries are major, minor, revision and net.seen
transp_flag = (weights_int[0] > 1000 or weights_int[1] > 1000)
print('Transpose fc layers: {}'.format(transp_flag))
# read the weights from YOLO file, skipping the header
weights = np.fromfile(yoloweight_filename, dtype=np.float32)[4:]
count = 0
for name, layer in zip(net.top_names, net.layers):
if name not in net.params.keys(): # layer without parameters
continue
if layer.type in ['BatchNorm', 'Scale']:
continue # handled within the convolutional layer
print(" converting {0}".format(name))
if layer.type == 'Convolution':
bn_name = "{0}_bn".format(name)
scale_name = "{0}_scale".format(name)
if bn_name in net.top_names: # there is a batchnorm layer
# YOLO stores bias, scale, rolling mean, rolling variance in
# this order
# set bias and scale on the ScaleLayer in Caffe
count += load_parameter(weights[count:], net.params[scale_name][1].data)
count += load_parameter(weights[count:], net.params[scale_name][0].data)
# load mean and variance for BatchNormLayer in Caffe
count += load_parameter(weights[count:], net.params[bn_name][0].data)
count += load_parameter(weights[count:], net.params[bn_name][1].data)
# use Scale Layer for channel-wise scel factor
net.params[bn_name][2].data[...] = 1.0
else:
count += load_parameter(weights[count:], net.params[name][1].data) # conv bias
# weights
count += load_parameter(weights[count:], net.params[name][0].data)
elif layer.type == 'InnerProduct': # fc layer
count += load_parameter(weights[count:], net.params[name][1].data) # bias
count += load_parameter(weights[count:], net.params[name][0].data, transp_flag)
elif layer.type == 'LocalConvolution':
count += load_parameter(weights[count:], net.params[name][1].data) # bias
count += load_parameter(weights[count:], net.params[name][0].data)
else:
print("WARNING: unknown type {} for layer {}".format(layer.type, name))
if count != weights.shape[0]: # some weights were left out
raise ValueError(" Wrong number of weights: read {0}, used {1} (missing {2})".
format(weights.size, count, weights.size-count))
print('Converted {0} weights.'.format(count))
net.save(caffemodel_filename)
def main():
""" script entry point """
parser = argparse.ArgumentParser(description='Convert YOLO weights to Caffe.')
parser.add_argument('model', type=str, help='Caffe model file')
parser.add_argument('yolo_weights', type=str, help='YOLO weight file')
parser.add_argument('output', type=str, help='converted .caffemodel')
args = parser.parse_args()
print('model file is {}'.format(args.model))
print('weight file is {}'.format(args.yolo_weights))
print('output caffemodel file is {}'.format(args.output))
convert_weights(args.model, args.yolo_weights, args.output)
if __name__ == '__main__':
main()