-
Notifications
You must be signed in to change notification settings - Fork 1
/
transform_utils.py
1299 lines (1039 loc) · 37.8 KB
/
transform_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Utility functions of matrix and vector transformations.
Adapted from OmniGibson
NOTE: convention for quaternions is (x, y, z, w)
"""
import math
from numba import njit
import numpy as np
from scipy.spatial.transform import Rotation as R
import torch
PI = np.pi
EPS = np.finfo(float).eps * 4.0
# axis sequences for Euler angles
_NEXT_AXIS = [1, 2, 0, 1]
# map axes strings to/from tuples of inner axis, parity, repetition, frame
_AXES2TUPLE = {
"sxyz": (0, 0, 0, 0),
"sxyx": (0, 0, 1, 0),
"sxzy": (0, 1, 0, 0),
"sxzx": (0, 1, 1, 0),
"syzx": (1, 0, 0, 0),
"syzy": (1, 0, 1, 0),
"syxz": (1, 1, 0, 0),
"syxy": (1, 1, 1, 0),
"szxy": (2, 0, 0, 0),
"szxz": (2, 0, 1, 0),
"szyx": (2, 1, 0, 0),
"szyz": (2, 1, 1, 0),
"rzyx": (0, 0, 0, 1),
"rxyx": (0, 0, 1, 1),
"ryzx": (0, 1, 0, 1),
"rxzx": (0, 1, 1, 1),
"rxzy": (1, 0, 0, 1),
"ryzy": (1, 0, 1, 1),
"rzxy": (1, 1, 0, 1),
"ryxy": (1, 1, 1, 1),
"ryxz": (2, 0, 0, 1),
"rzxz": (2, 0, 1, 1),
"rxyz": (2, 1, 0, 1),
"rzyz": (2, 1, 1, 1),
}
_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
def ewma_vectorized(data, alpha, offset=None, dtype=None, order="C", out=None):
"""
Calculates the exponential moving average over a vector.
Will fail for large inputs.
Args:
data (Iterable): Input data
alpha (float): scalar in range (0,1)
The alpha parameter for the moving average.
offset (None or float): If specified, the offset for the moving average. None defaults to data[0].
dtype (None or type): Data type used for calculations. If None, defaults to float64 unless
data.dtype is float32, then it will use float32.
order (None or str): Order to use when flattening the data. Valid options are {'C', 'F', 'A'}.
None defaults to 'C'.
out (None or np.array): If specified, the location into which the result is stored. If provided, it must have
the same shape as the input. If not provided or `None`,
a freshly-allocated array is returned.
Returns:
np.array: Exponential moving average from @data
"""
data = np.array(data, copy=False)
if dtype is None:
if data.dtype == np.float32:
dtype = np.float32
else:
dtype = np.float64
else:
dtype = np.dtype(dtype)
if data.ndim > 1:
# flatten input
data = data.reshape(-1, order)
if out is None:
out = np.empty_like(data, dtype=dtype)
else:
assert out.shape == data.shape
assert out.dtype == dtype
if data.size < 1:
# empty input, return empty array
return out
if offset is None:
offset = data[0]
alpha = np.array(alpha, copy=False).astype(dtype, copy=False)
# scaling_factors -> 0 as len(data) gets large
# this leads to divide-by-zeros below
scaling_factors = np.power(1.0 - alpha, np.arange(data.size + 1, dtype=dtype), dtype=dtype)
# create cumulative sum array
np.multiply(data, (alpha * scaling_factors[-2]) / scaling_factors[:-1], dtype=dtype, out=out)
np.cumsum(out, dtype=dtype, out=out)
# cumsums / scaling
out /= scaling_factors[-2::-1]
if offset != 0:
offset = np.array(offset, copy=False).astype(dtype, copy=False)
# add offsets
out += offset * scaling_factors[1:]
return out
def convert_quat(q, to="xyzw"):
"""
Converts quaternion from one convention to another.
The convention to convert TO is specified as an optional argument.
If to == 'xyzw', then the input is in 'wxyz' format, and vice-versa.
Args:
q (np.array): a 4-dim array corresponding to a quaternion
to (str): either 'xyzw' or 'wxyz', determining which convention to convert to.
"""
if to == "xyzw":
return q[[1, 2, 3, 0]]
if to == "wxyz":
return q[[3, 0, 1, 2]]
raise Exception("convert_quat: choose a valid `to` argument (xyzw or wxyz)")
def quat_multiply(quaternion1, quaternion0):
"""
Return multiplication of two quaternions (q1 * q0).
E.g.:
>>> q = quat_multiply([1, -2, 3, 4], [-5, 6, 7, 8])
>>> np.allclose(q, [-44, -14, 48, 28])
True
Args:
quaternion1 (np.array): (x,y,z,w) quaternion
quaternion0 (np.array): (x,y,z,w) quaternion
Returns:
np.array: (x,y,z,w) multiplied quaternion
"""
if isinstance(quaternion0, torch.Tensor):
quaternion0 = quaternion0.detach().cpu().numpy()
if isinstance(quaternion1, torch.Tensor):
quaternion1 = quaternion1.detach().cpu().numpy()
x0, y0, z0, w0 = quaternion0
x1, y1, z1, w1 = quaternion1
return np.array(
(
x1 * w0 + y1 * z0 - z1 * y0 + w1 * x0,
-x1 * z0 + y1 * w0 + z1 * x0 + w1 * y0,
x1 * y0 - y1 * x0 + z1 * w0 + w1 * z0,
-x1 * x0 - y1 * y0 - z1 * z0 + w1 * w0,
),
dtype=quaternion0.dtype,
)
def quat_conjugate(quaternion):
"""
Return conjugate of quaternion.
E.g.:
>>> q0 = random_quaternion()
>>> q1 = quat_conjugate(q0)
>>> q1[3] == q0[3] and all(q1[:3] == -q0[:3])
True
Args:
quaternion (np.array): (x,y,z,w) quaternion
Returns:
np.array: (x,y,z,w) quaternion conjugate
"""
if isinstance(quaternion, torch.Tensor):
quaternion = quaternion.detach().cpu().numpy()
return np.array(
(-quaternion[0], -quaternion[1], -quaternion[2], quaternion[3]),
dtype=quaternion.dtype,
)
def quat_inverse(quaternion):
"""
Return inverse of quaternion.
E.g.:
>>> q0 = random_quaternion()
>>> q1 = quat_inverse(q0)
>>> np.allclose(quat_multiply(q0, q1), [0, 0, 0, 1])
True
Args:
quaternion (np.array): (x,y,z,w) quaternion
Returns:
np.array: (x,y,z,w) quaternion inverse
"""
return quat_conjugate(quaternion) / np.dot(quaternion, quaternion)
def quat_distance(quaternion1, quaternion0):
"""
Returns distance between two quaternions, such that distance * quaternion0 = quaternion1
Args:
quaternion1 (np.array): (x,y,z,w) quaternion
quaternion0 (np.array): (x,y,z,w) quaternion
Returns:
np.array: (x,y,z,w) quaternion distance
"""
return quat_multiply(quaternion1, quat_inverse(quaternion0))
def quat_slerp(quat0, quat1, fraction, shortestpath=True):
"""
Return spherical linear interpolation between two quaternions.
E.g.:
>>> q0 = random_quat()
>>> q1 = random_quat()
>>> q = quat_slerp(q0, q1, 0.0)
>>> np.allclose(q, q0)
True
>>> q = quat_slerp(q0, q1, 1.0)
>>> np.allclose(q, q1)
True
>>> q = quat_slerp(q0, q1, 0.5)
>>> angle = math.acos(np.dot(q0, q))
>>> np.allclose(2.0, math.acos(np.dot(q0, q1)) / angle) or \
np.allclose(2.0, math.acos(-np.dot(q0, q1)) / angle)
True
Args:
quat0 (np.array): (x,y,z,w) quaternion startpoint
quat1 (np.array): (x,y,z,w) quaternion endpoint
fraction (float): fraction of interpolation to calculate
shortestpath (bool): If True, will calculate the shortest path
Returns:
np.array: (x,y,z,w) quaternion distance
"""
q0 = unit_vector(quat0[:4])
q1 = unit_vector(quat1[:4])
if fraction == 0.0:
return q0
elif fraction == 1.0:
return q1
d = np.dot(q0, q1)
if abs(abs(d) - 1.0) < EPS:
return q0
if shortestpath and d < 0.0:
# invert rotation
d = -d
q1 *= -1.0
angle = math.acos(np.clip(d, -1, 1))
if abs(angle) < EPS:
return q0
isin = 1.0 / math.sin(angle)
q0 *= math.sin((1.0 - fraction) * angle) * isin
q1 *= math.sin(fraction * angle) * isin
q0 += q1
return q0
def random_quat(rand=None):
"""
Return uniform random unit quaternion.
E.g.:
>>> q = random_quat()
>>> np.allclose(1.0, vector_norm(q))
True
>>> q = random_quat(np.random.random(3))
>>> q.shape
(4,)
Args:
rand (3-array or None): If specified, must be three independent random variables that are uniformly distributed
between 0 and 1.
Returns:
np.array: (x,y,z,w) random quaternion
"""
if rand is None:
rand = np.random.rand(3)
else:
assert len(rand) == 3
r1 = np.sqrt(1.0 - rand[0])
r2 = np.sqrt(rand[0])
pi2 = math.pi * 2.0
t1 = pi2 * rand[1]
t2 = pi2 * rand[2]
return np.array(
(np.sin(t1) * r1, np.cos(t1) * r1, np.sin(t2) * r2, np.cos(t2) * r2),
dtype=np.float32,
)
def random_axis_angle(angle_limit=None, random_state=None):
"""
Samples an axis-angle rotation by first sampling a random axis
and then sampling an angle. If @angle_limit is provided, the size
of the rotation angle is constrained.
If @random_state is provided (instance of np.random.RandomState), it
will be used to generate random numbers.
Args:
angle_limit (None or float): If set, determines magnitude limit of angles to generate
random_state (None or RandomState): RNG to use if specified
Raises:
AssertionError: [Invalid RNG]
"""
if angle_limit is None:
angle_limit = 2.0 * np.pi
if random_state is not None:
assert isinstance(random_state, np.random.RandomState)
npr = random_state
else:
npr = np.random
# sample random axis using a normalized sample from spherical Gaussian.
# see (http://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/)
# for why it works.
random_axis = npr.randn(3)
random_axis /= np.linalg.norm(random_axis)
random_angle = npr.uniform(low=0.0, high=angle_limit)
return random_axis, random_angle
def vec(values):
"""
Converts value tuple into a numpy vector.
Args:
values (n-array): a tuple of numbers
Returns:
np.array: vector of given values
"""
return np.array(values, dtype=np.float32)
def mat4(array):
"""
Converts an array to 4x4 matrix.
Args:
array (n-array): the array in form of vec, list, or tuple
Returns:
np.array: a 4x4 numpy matrix
"""
return np.array(array, dtype=np.float32).reshape((4, 4))
def mat2pose(hmat):
"""
Converts a homogeneous 4x4 matrix into pose.
Args:
hmat (np.array): a 4x4 homogeneous matrix
Returns:
2-tuple:
- (np.array) (x,y,z) position array in cartesian coordinates
- (np.array) (x,y,z,w) orientation array in quaternion form
"""
pos = hmat[:3, 3]
orn = mat2quat(hmat[:3, :3])
return pos, orn
def mat2quat(rmat):
"""
Converts given rotation matrix to quaternion.
Args:
rmat (np.array): (..., 3, 3) rotation matrix
Returns:
np.array: (..., 4) (x,y,z,w) float quaternion angles
"""
return R.from_matrix(rmat).as_quat()
def vec2quat(vec, up=(0, 0, 1.0)):
"""
Converts given 3d-direction vector @vec to quaternion orientation with respect to another direction vector @up
Args:
vec (3-array): (x,y,z) direction vector (possible non-normalized)
up (3-array): (x,y,z) direction vector representing the canonical up direction (possible non-normalized)
"""
# See https://stackoverflow.com/questions/15873996/converting-a-direction-vector-to-a-quaternion-rotation
# Take cross product of @up and @vec to get @s_n, and then cross @vec and @s_n to get @u_n
# Then compose 3x3 rotation matrix and convert into quaternion
vec_n = vec / np.linalg.norm(vec) # x
up_n = up / np.linalg.norm(up)
s_n = np.cross(up_n, vec_n) # y
u_n = np.cross(vec_n, s_n) # z
return mat2quat(np.array([vec_n, s_n, u_n]).T)
def euler2mat(euler):
"""
Converts euler angles into rotation matrix form
Args:
euler (np.array): (r,p,y) angles
Returns:
np.array: 3x3 rotation matrix
Raises:
AssertionError: [Invalid input shape]
"""
euler = np.asarray(euler, dtype=np.float64)
assert euler.shape[-1] == 3, "Invalid shaped euler {}".format(euler)
return R.from_euler("xyz", euler).as_matrix()
def mat2euler(rmat):
"""
Converts given rotation matrix to euler angles in radian.
Args:
rmat (np.array): 3x3 rotation matrix
Returns:
np.array: (r,p,y) converted euler angles in radian vec3 float
"""
M = np.array(rmat, dtype=rmat.dtype, copy=False)[:3, :3]
return R.from_matrix(M).as_euler("xyz")
def pose2mat(pose):
"""
Converts pose to homogeneous matrix.
Args:
pose (2-tuple): a (pos, orn) tuple where pos is vec3 float cartesian, and
orn is vec4 float quaternion.
Returns:
np.array: 4x4 homogeneous matrix
"""
if isinstance(pose[0], torch.Tensor):
pose = [p.detach().cpu().numpy() if isinstance(p, torch.Tensor) else p for p in pose]
homo_pose_mat = np.zeros((4, 4), dtype=pose[0].dtype)
homo_pose_mat[:3, :3] = quat2mat(pose[1])
homo_pose_mat[:3, 3] = np.array(pose[0], dtype=pose[0].dtype)
homo_pose_mat[3, 3] = 1.0
return homo_pose_mat
def quat2mat(quaternion):
"""
Converts given quaternion to matrix.
Args:
quaternion (np.array): (..., 4) (x,y,z,w) float quaternion angles
Returns:
np.array: (..., 3, 3) rotation matrix
"""
return R.from_quat(quaternion).as_matrix()
def quat2axisangle(quat):
"""
Converts quaternion to axis-angle format.
Returns a unit vector direction scaled by its angle in radians.
Args:
quat (np.array): (x,y,z,w) vec4 float angles
Returns:
np.array: (ax,ay,az) axis-angle exponential coordinates
"""
return R.from_quat(quat).as_rotvec()
def axisangle2quat(vec):
"""
Converts scaled axis-angle to quat.
Args:
vec (np.array): (ax,ay,az) axis-angle exponential coordinates
Returns:
np.array: (x,y,z,w) vec4 float angles
"""
return R.from_rotvec(vec).as_quat()
def euler2quat(euler):
"""
Converts euler angles into quaternion form
Args:
euler (np.array): (r,p,y) angles
Returns:
np.array: (x,y,z,w) float quaternion angles
Raises:
AssertionError: [Invalid input shape]
"""
return R.from_euler("xyz", euler).as_quat()
def quat2euler(quat):
"""
Converts euler angles into quaternion form
Args:
quat (np.array): (x,y,z,w) float quaternion angles
Returns:
np.array: (r,p,y) angles
Raises:
AssertionError: [Invalid input shape]
"""
return R.from_quat(quat).as_euler("xyz")
def pose_in_A_to_pose_in_B(pose_A, pose_A_in_B):
"""
Converts a homogenous matrix corresponding to a point C in frame A
to a homogenous matrix corresponding to the same point C in frame B.
Args:
pose_A (np.array): 4x4 matrix corresponding to the pose of C in frame A
pose_A_in_B (np.array): 4x4 matrix corresponding to the pose of A in frame B
Returns:
np.array: 4x4 matrix corresponding to the pose of C in frame B
"""
# pose of A in B takes a point in A and transforms it to a point in C.
# pose of C in B = pose of A in B * pose of C in A
# take a point in C, transform it to A, then to B
# T_B^C = T_A^C * T_B^A
return pose_A_in_B.dot(pose_A)
def pose_inv(pose_mat):
"""
Computes the inverse of a homogeneous matrix corresponding to the pose of some
frame B in frame A. The inverse is the pose of frame A in frame B.
Args:
pose_mat (np.array): 4x4 matrix for the pose to inverse
Returns:
np.array: 4x4 matrix for the inverse pose
"""
# Note, the inverse of a pose matrix is the following
# [R t; 0 1]^-1 = [R.T -R.T*t; 0 1]
# Intuitively, this makes sense.
# The original pose matrix translates by t, then rotates by R.
# We just invert the rotation by applying R-1 = R.T, and also translate back.
# Since we apply translation first before rotation, we need to translate by
# -t in the original frame, which is -R-1*t in the new frame, and then rotate back by
# R-1 to align the axis again.
pose_inv = np.zeros((4, 4))
pose_inv[:3, :3] = pose_mat[:3, :3].T
pose_inv[:3, 3] = -pose_inv[:3, :3].dot(pose_mat[:3, 3])
pose_inv[3, 3] = 1.0
return pose_inv
def pose_transform(pos1, quat1, pos0, quat0):
"""
Conducts forward transform from pose (pos0, quat0) to pose (pos1, quat1):
pose1 @ pose0, NOT pose0 @ pose1
Args:
pos1: (x,y,z) position to transform
quat1: (x,y,z,w) orientation to transform
pos0: (x,y,z) initial position
quat0: (x,y,z,w) initial orientation
Returns:
2-tuple:
- (np.array) (x,y,z) position array in cartesian coordinates
- (np.array) (x,y,z,w) orientation array in quaternion form
"""
# Get poses
mat0 = pose2mat((pos0, quat0))
mat1 = pose2mat((pos1, quat1))
# Multiply and convert back to pos, quat
return mat2pose(mat1 @ mat0)
def invert_pose_transform(pos, quat):
"""
Inverts a pose transform
Args:
pos: (x,y,z) position to transform
quat: (x,y,z,w) orientation to transform
Returns:
2-tuple:
- (np.array) (x,y,z) position array in cartesian coordinates
- (np.array) (x,y,z,w) orientation array in quaternion form
"""
# Get pose
mat = pose2mat((pos, quat))
# Invert pose and convert back to pos, quat
return mat2pose(pose_inv(mat))
def relative_pose_transform(pos1, quat1, pos0, quat0):
"""
Computes relative forward transform from pose (pos0, quat0) to pose (pos1, quat1), i.e.: solves:
pose1 = pose0 @ transform
Args:
pos1: (x,y,z) position to transform
quat1: (x,y,z,w) orientation to transform
pos0: (x,y,z) initial position
quat0: (x,y,z,w) initial orientation
Returns:
2-tuple:
- (np.array) (x,y,z) position array in cartesian coordinates
- (np.array) (x,y,z,w) orientation array in quaternion form
"""
# Get poses
mat0 = pose2mat((pos0, quat0))
mat1 = pose2mat((pos1, quat1))
# Invert pose0 and calculate transform
return mat2pose(pose_inv(mat0) @ mat1)
def _skew_symmetric_translation(pos_A_in_B):
"""
Helper function to get a skew symmetric translation matrix for converting quantities
between frames.
Args:
pos_A_in_B (np.array): (x,y,z) position of A in frame B
Returns:
np.array: 3x3 skew symmetric translation matrix
"""
return np.array(
[
0.0,
-pos_A_in_B[2],
pos_A_in_B[1],
pos_A_in_B[2],
0.0,
-pos_A_in_B[0],
-pos_A_in_B[1],
pos_A_in_B[0],
0.0,
]
).reshape((3, 3))
def vel_in_A_to_vel_in_B(vel_A, ang_vel_A, pose_A_in_B):
"""
Converts linear and angular velocity of a point in frame A to the equivalent in frame B.
Args:
vel_A (np.array): (vx,vy,vz) linear velocity in A
ang_vel_A (np.array): (wx,wy,wz) angular velocity in A
pose_A_in_B (np.array): 4x4 matrix corresponding to the pose of A in frame B
Returns:
2-tuple:
- (np.array) (vx,vy,vz) linear velocities in frame B
- (np.array) (wx,wy,wz) angular velocities in frame B
"""
pos_A_in_B = pose_A_in_B[:3, 3]
rot_A_in_B = pose_A_in_B[:3, :3]
skew_symm = _skew_symmetric_translation(pos_A_in_B)
vel_B = rot_A_in_B.dot(vel_A) + skew_symm.dot(rot_A_in_B.dot(ang_vel_A))
ang_vel_B = rot_A_in_B.dot(ang_vel_A)
return vel_B, ang_vel_B
def force_in_A_to_force_in_B(force_A, torque_A, pose_A_in_B):
"""
Converts linear and rotational force at a point in frame A to the equivalent in frame B.
Args:
force_A (np.array): (fx,fy,fz) linear force in A
torque_A (np.array): (tx,ty,tz) rotational force (moment) in A
pose_A_in_B (np.array): 4x4 matrix corresponding to the pose of A in frame B
Returns:
2-tuple:
- (np.array) (fx,fy,fz) linear forces in frame B
- (np.array) (tx,ty,tz) moments in frame B
"""
pos_A_in_B = pose_A_in_B[:3, 3]
rot_A_in_B = pose_A_in_B[:3, :3]
skew_symm = _skew_symmetric_translation(pos_A_in_B)
force_B = rot_A_in_B.T.dot(force_A)
torque_B = -rot_A_in_B.T.dot(skew_symm.dot(force_A)) + rot_A_in_B.T.dot(torque_A)
return force_B, torque_B
def rotation_matrix(angle, direction, point=None):
"""
Returns matrix to rotate about axis defined by point and direction.
E.g.:
>>> angle = (random.random() - 0.5) * (2*math.pi)
>>> direc = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> R0 = rotation_matrix(angle, direc, point)
>>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
>>> is_same_transform(R0, R1)
True
>>> R0 = rotation_matrix(angle, direc, point)
>>> R1 = rotation_matrix(-angle, -direc, point)
>>> is_same_transform(R0, R1)
True
>>> I = numpy.identity(4, numpy.float32)
>>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
True
>>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2,
... direc, point)))
True
Args:
angle (float): Magnitude of rotation
direction (np.array): (ax,ay,az) axis about which to rotate
point (None or np.array): If specified, is the (x,y,z) point about which the rotation will occur
Returns:
np.array: 4x4 homogeneous matrix that includes the desired rotation
"""
sina = math.sin(angle)
cosa = math.cos(angle)
direction = unit_vector(direction[:3])
# rotation matrix around unit vector
R = np.array(((cosa, 0.0, 0.0), (0.0, cosa, 0.0), (0.0, 0.0, cosa)), dtype=direction.dtype)
R += np.outer(direction, direction) * (1.0 - cosa)
direction *= sina
R += np.array(
(
(0.0, -direction[2], direction[1]),
(direction[2], 0.0, -direction[0]),
(-direction[1], direction[0], 0.0),
),
dtype=direction.dtype,
)
M = np.identity(4)
M[:3, :3] = R
if point is not None:
# rotation not around origin
point = np.array(point[:3], dtype=direction.dtype, copy=False)
M[:3, 3] = point - np.dot(R, point)
return M
def clip_translation(dpos, limit):
"""
Limits a translation (delta position) to a specified limit
Scales down the norm of the dpos to 'limit' if norm(dpos) > limit, else returns immediately
Args:
dpos (n-array): n-dim Translation being clipped (e,g.: (x, y, z)) -- numpy array
limit (float): Value to limit translation by -- magnitude (scalar, in same units as input)
Returns:
2-tuple:
- (np.array) Clipped translation (same dimension as inputs)
- (bool) whether the value was clipped or not
"""
input_norm = np.linalg.norm(dpos)
return (dpos * limit / input_norm, True) if input_norm > limit else (dpos, False)
def clip_rotation(quat, limit):
"""
Limits a (delta) rotation to a specified limit
Converts rotation to axis-angle, clips, then re-converts back into quaternion
Args:
quat (np.array): (x,y,z,w) rotation being clipped
limit (float): Value to limit rotation by -- magnitude (scalar, in radians)
Returns:
2-tuple:
- (np.array) Clipped rotation quaternion (x, y, z, w)
- (bool) whether the value was clipped or not
"""
clipped = False
# First, normalize the quaternion
quat = quat / np.linalg.norm(quat)
den = np.sqrt(max(1 - quat[3] * quat[3], 0))
if den == 0:
# This is a zero degree rotation, immediately return
return quat, clipped
else:
# This is all other cases
x = quat[0] / den
y = quat[1] / den
z = quat[2] / den
a = 2 * math.acos(quat[3])
# Clip rotation if necessary and return clipped quat
if abs(a) > limit:
a = limit * np.sign(a) / 2
sa = math.sin(a)
ca = math.cos(a)
quat = np.array([x * sa, y * sa, z * sa, ca])
clipped = True
return quat, clipped
def make_pose(translation, rotation):
"""
Makes a homogeneous pose matrix from a translation vector and a rotation matrix.
Args:
translation (np.array): (x,y,z) translation value
rotation (np.array): a 3x3 matrix representing rotation
Returns:
pose (np.array): a 4x4 homogeneous matrix
"""
pose = np.zeros((4, 4))
pose[:3, :3] = rotation
pose[:3, 3] = translation
pose[3, 3] = 1.0
return pose
def unit_vector(data, axis=None, out=None):
"""
Returns ndarray normalized by length, i.e. eucledian norm, along axis.
E.g.:
>>> v0 = numpy.random.random(3)
>>> v1 = unit_vector(v0)
>>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
True
>>> v0 = numpy.random.rand(5, 4, 3)
>>> v1 = unit_vector(v0, axis=-1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
>>> numpy.allclose(v1, v2)
True
>>> v1 = unit_vector(v0, axis=1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
>>> numpy.allclose(v1, v2)
True
>>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float32)
>>> unit_vector(v0, axis=1, out=v1)
>>> numpy.allclose(v1, v2)
True
>>> list(unit_vector([]))
[]
>>> list(unit_vector([1.0]))
[1.0]
Args:
data (np.array): data to normalize
axis (None or int): If specified, determines specific axis along data to normalize
out (None or np.array): If specified, will store computation in this variable
Returns:
None or np.array: If @out is not specified, will return normalized vector. Otherwise, stores the output in @out
"""
if out is None:
data = np.array(data, dtype=data.dtype, copy=True)
if data.ndim == 1:
data /= math.sqrt(np.dot(data, data))
return data
else:
if out is not data:
out[:] = np.array(data, copy=False)
data = out
length = np.atleast_1d(np.sum(data * data, axis))
np.sqrt(length, length)
if axis is not None:
length = np.expand_dims(length, axis)
data /= length
if out is None:
return data
def get_orientation_error(target_orn, current_orn):
"""
Returns the difference between two quaternion orientations as a 3 DOF numpy array.
For use in an impedance controller / task-space PD controller.
Args:
target_orn (np.array): (x, y, z, w) desired quaternion orientation
current_orn (np.array): (x, y, z, w) current quaternion orientation
Returns:
orn_error (np.array): (ax,ay,az) current orientation error, corresponds to
(target_orn - current_orn)
"""
current_orn = np.array([current_orn[3], current_orn[0], current_orn[1], current_orn[2]])
target_orn = np.array([target_orn[3], target_orn[0], target_orn[1], target_orn[2]])
pinv = np.zeros((3, 4))
pinv[0, :] = [-current_orn[1], current_orn[0], -current_orn[3], current_orn[2]]
pinv[1, :] = [-current_orn[2], current_orn[3], current_orn[0], -current_orn[1]]
pinv[2, :] = [-current_orn[3], -current_orn[2], current_orn[1], current_orn[0]]
orn_error = 2.0 * pinv.dot(np.array(target_orn))
return orn_error
def get_orientation_diff_in_radian(orn0, orn1):
"""
Returns the difference between two quaternion orientations in radian
Args:
orn0 (np.array): (x, y, z, w)
orn1 (np.array): (x, y, z, w)
Returns:
orn_diff (float): orientation difference in radian
"""
vec0 = quat2axisangle(orn0)
vec0 /= np.linalg.norm(vec0)
vec1 = quat2axisangle(orn1)
vec1 /= np.linalg.norm(vec1)
return np.arccos(np.dot(vec0, vec1))
def get_pose_error(target_pose, current_pose):
"""
Computes the error corresponding to target pose - current pose as a 6-dim vector.
The first 3 components correspond to translational error while the last 3 components
correspond to the rotational error.
Args:
target_pose (np.array): a 4x4 homogenous matrix for the target pose
current_pose (np.array): a 4x4 homogenous matrix for the current pose
Returns:
np.array: 6-dim pose error.
"""
error = np.zeros(6)
# compute translational error
target_pos = target_pose[:3, 3]
current_pos = current_pose[:3, 3]
pos_err = target_pos - current_pos
# compute rotational error
r1 = current_pose[:3, 0]
r2 = current_pose[:3, 1]
r3 = current_pose[:3, 2]
r1d = target_pose[:3, 0]
r2d = target_pose[:3, 1]