-
Notifications
You must be signed in to change notification settings - Fork 6
/
script_eval_on_single_topology.py
652 lines (549 loc) · 31.9 KB
/
script_eval_on_single_topology.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import numpy as np
import gym
import os
import json
import gc
import gym_graph
import networkx as nx
import random
import matplotlib.pyplot as plt
import argparse
import time as tt
import tensorflow as tf
import actorPPOmiddR as actor
import pandas as pd
from collections import Counter
import pickle
import sys
from scipy.stats import entropy
sys.setrecursionlimit(2000)
# This script is used to evaluate a DRL agent on a single instance of a topology and a TM
# from the repetita dataset. The eval_on_single_topology.py script calls this script for each TM
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
ENV_MIDDROUT_AGENT_SP = 'GraphEnv-v16'
ENV_SIMM_ANEAL_AGENT = 'GraphEnv-v15'
ENV_SAP_AGENT = 'GraphEnv-v20'
SEED = 9
percentage_demands = 15 # Percentage of demands that will be used in the optimization
str_perctg_demands = str(percentage_demands)
percentage_demands /= 100
os.environ['PYTHONHASHSEED']=str(SEED)
np.random.seed(SEED)
tf.random.set_seed(1)
# Indicates how many time-steps has an episode
EPISODE_LENGTH_MIDDROUT = 100
NUM_ACTIONS = 100 # Put a very large number if we want to take all actions possible for each topology
MAX_NUM_EDGES = 100
# Hyperparameters for the middlepoint routing agent
hparamsDRLSP = {
'l2': 0.005,
'dropout_rate': 0.1,
'link_state_dim': 20,
'readout_units': 20,
'learning_rate': 0.0002,
'T': 5,
}
hidden_init_actor = tf.keras.initializers.Orthogonal(gain=np.sqrt(2), seed=SEED)
kernel_init_actor = tf.keras.initializers.Orthogonal(gain=np.sqrt(0.01), seed=SEED)
def old_cummax(alist, extractor):
with tf.name_scope('cummax'):
maxes = [tf.reduce_max(extractor(v)) + 1 for v in alist]
cummaxes = [tf.zeros_like(maxes[0])]
for i in range(len(maxes) - 1):
cummaxes.append(tf.math.add_n(maxes[0:i + 1]))
return cummaxes
class PPOMIDDROUTING_SP:
def __init__(self, env_training):
self.listQValues = None
self.softMaxQValues = None
self.action = None
self.softMaxQValues = None
self.listQValues = None
self.K = env_training.K
self.utilization_feature = None
self.bw_allocated_feature = None
self.optimizer = tf.keras.optimizers.Adam(learning_rate=hparamsDRLSP['learning_rate'], beta_1=0.9, epsilon=1e-05)
self.actor = actor.myModel(hparamsDRLSP, hidden_init_actor, kernel_init_actor)
self.actor.build()
def pred_action_node_distrib_sp(self, env, source, destination):
# List of graph features that are used in the cummax() call
list_k_features = list()
# We get the K-middlepoints between source-destination
middlePointList = env.src_dst_k_middlepoints[str(source) +':'+ str(destination)]
itMidd = 0
# 2. Allocate (S,D, linkDemand) demand using the K shortest paths
while itMidd < len(middlePointList):
env.mark_action_sp(source, middlePointList[itMidd], source, destination)
# If we allocated to a middlepoint that is not the final destination
if middlePointList[itMidd]!=destination:
env.mark_action_sp(middlePointList[itMidd], destination, source, destination)
features = self.get_graph_features(env, source, destination)
list_k_features.append(features)
# We desmark the bw_allocated
env.edge_state[:,2] = 0
itMidd = itMidd + 1
vs = [v for v in list_k_features]
# We compute the graphs_ids to later perform the unsorted_segment_sum for each graph and obtain the
# link hidden states for each graph.
graph_ids = [tf.fill([tf.shape(vs[it]['link_state'])[0]], it) for it in range(len(list_k_features))]
first_offset = old_cummax(vs, lambda v: v['first'])
second_offset = old_cummax(vs, lambda v: v['second'])
tensor = ({
'graph_id': tf.concat([v for v in graph_ids], axis=0),
'link_state': tf.concat([v['link_state'] for v in vs], axis=0),
'first': tf.concat([v['first'] + m for v, m in zip(vs, first_offset)], axis=0),
'second': tf.concat([v['second'] + m for v, m in zip(vs, second_offset)], axis=0),
'num_edges': tf.math.add_n([v['num_edges'] for v in vs]),
}
)
# Predict qvalues for all graphs within tensors
r = self.actor(tensor['link_state'], tensor['graph_id'], tensor['first'], tensor['second'],
tensor['num_edges'], training=False)
self.listQValues = tf.reshape(r, (1, len(r)))
self.softMaxQValues = tf.nn.softmax(self.listQValues)
# Return action distribution
return self.softMaxQValues.numpy()[0], tensor
def get_graph_features(self, env, source, destination):
"""
We iterate over the converted graph nodes and take the features. The capacity and bw allocated features
are normalized on the fly.
"""
self.bw_allocated_feature = env.edge_state[:,2]
self.utilization_feature = env.edge_state[:,0]
sample = {
'num_edges': env.numEdges,
'length': env.firstTrueSize,
'capacity': env.link_capacity_feature,
'bw_allocated': tf.convert_to_tensor(value=self.bw_allocated_feature, dtype=tf.float32),
'utilization': tf.convert_to_tensor(value=np.divide(self.utilization_feature, env.edge_state[:,1]), dtype=tf.float32),
'first': env.first,
'second': env.second
}
sample['utilization'] = tf.reshape(sample['utilization'][0:sample['num_edges']], [sample['num_edges'], 1])
sample['capacity'] = tf.reshape(sample['capacity'][0:sample['num_edges']], [sample['num_edges'], 1])
sample['bw_allocated'] = tf.reshape(sample['bw_allocated'][0:sample['num_edges']], [sample['num_edges'], 1])
hiddenStates = tf.concat([sample['utilization'], sample['capacity'], sample['bw_allocated']], axis=1)
paddings = tf.constant([[0, 0], [0, hparamsDRLSP['link_state_dim'] - 3]])
link_state = tf.pad(tensor=hiddenStates, paddings=paddings, mode="CONSTANT")
inputs = {'link_state': link_state, 'first': sample['first'][0:sample['length']],
'second': sample['second'][0:sample['length']], 'num_edges': sample['num_edges']}
return inputs
def play_middRout_games_sp(tm_id, env_middRout_sp, agent, timesteps):
demand, source, destination = env_middRout_sp.reset(tm_id)
rewardAddTest = 0
initMaxUti = env_middRout_sp.edgeMaxUti[2]
OSPF_init = initMaxUti
best_routing = env_middRout_sp.sp_middlepoints_step.copy()
list_of_demands_to_change = env_middRout_sp.list_eligible_demands
timesteps.append((0, initMaxUti))
start = tt.time()
time_start_DRL = start
while 1:
action_dist, tensor = agent.pred_action_node_distrib_sp(env_middRout_sp, source, destination)
action = np.argmax(action_dist)
reward, done, error_eval_links, demand, source, destination, maxLinkUti, minLinkUti, utiStd = env_middRout_sp.step(action, demand, source, destination)
rewardAddTest += reward
if maxLinkUti[2]<initMaxUti:
initMaxUti = maxLinkUti[2]
best_routing = env_middRout_sp.sp_middlepoints_step.copy()
timesteps.append((tt.time()-time_start_DRL, initMaxUti))
if done:
break
end = tt.time()
return initMaxUti, end-start, OSPF_init, best_routing, list_of_demands_to_change, time_start_DRL
class SIMULATED_ANNEALING_SP:
def __init__(self, env):
self.num_actions = env.K
def next_state(self, env):
source, destination = -1, -1
while source==destination:
source = np.random.randint(low=0, high=env.numNodes-1)
destination = np.random.randint(low=0, high=env.numNodes-1)
# We explore all the possible actions with all the possible src,dst pairs
action = np.random.randint(low=0, high=len(env.src_dst_k_middlepoints[str(source)+':'+str(destination)]))
# We des-allocate the chosen path to try to allocate it in another place
# Remove bandwidth allocated until the middlepoint and then from the middlepoint on
originalMiddlepoint = -1
if str(source)+':'+str(destination) in env.sp_middlepoints:
originalMiddlepoint = env.sp_middlepoints[str(source)+':'+str(destination)]
env.decrease_links_utilization_sp(source, originalMiddlepoint, source, destination)
env.decrease_links_utilization_sp(originalMiddlepoint, destination, source, destination)
del env.sp_middlepoints[str(source)+':'+str(destination)]
else: # Remove the bandwidth allocated from the src to the destination
env.decrease_links_utilization_sp(source, destination, source, destination)
# We get the K-middlepoints between source-destination
middlePointList = list(env.src_dst_k_middlepoints[str(source) +':'+ str(destination)])
middlePoint = middlePointList[action]
# First we allocate until the middlepoint
env.allocate_to_destination_sp(source, middlePoint, source, destination)
# If we allocated to a middlepoint that is not the final destination
if middlePoint!=destination:
# Then we allocate from the middlepoint to the destination
env.allocate_to_destination_sp(middlePoint, destination, source, destination)
# We store that the pair source,destination has a middlepoint
env.sp_middlepoints[str(source)+':'+str(destination)] = middlePoint
# Compute new energy for the corresponding action
energy = -1000000
position = 0
for i in env.graph:
for j in env.graph[i]:
link_capacity = env.links_bw[i][j]
if env.edge_state[position][0]/link_capacity>energy:
energy = env.edge_state[position][0]/link_capacity
position = position + 1
# Remove bandwidth allocated until the middlepoint and then from the middlepoint on
if str(source)+':'+str(destination) in env.sp_middlepoints:
middlepoint = env.sp_middlepoints[str(source)+':'+str(destination)]
env.decrease_links_utilization_sp(source, middlepoint, source, destination)
env.decrease_links_utilization_sp(middlepoint, destination, source, destination)
del env.sp_middlepoints[str(source)+':'+str(destination)]
else: # Remove the bandwidth allocated from the src to the destination
env.decrease_links_utilization_sp(source, destination, source, destination)
# Allocate back the demand whose actions we explored
# If the current demand had a middlepoint, we allocate src-middlepoint-dst
if originalMiddlepoint>=0:
# First we allocate until the middlepoint
env.allocate_to_destination_sp(source, originalMiddlepoint, source, destination)
# Then we allocate from the middlepoint to the destination
env.allocate_to_destination_sp(originalMiddlepoint, destination, source, destination)
# We store that the pair source,destination has a middlepoint
env.sp_middlepoints[str(source)+':'+str(destination)] = originalMiddlepoint
else:
# Then we allocate from the middlepoint to the destination
env.allocate_to_destination_sp(source, destination, source, destination)
return energy, action, source, destination
def play_sp_simulated_annealing_games(tm_id):
env_sim_anneal = gym.make(ENV_SIMM_ANEAL_AGENT)
env_sim_anneal.seed(SEED)
env_sim_anneal.generate_environment(general_dataset_folder, graph_topology_name, EPISODE_LENGTH_MIDDROUT, NUM_ACTIONS, percentage_demands)
init_energy = env_sim_anneal.reset_sp(tm_id)
sim_agent = SIMULATED_ANNEALING_SP(env_sim_anneal)
Tmax = 1
Tmin = 0.000001
cooling_ratio = 0.000001 # best value is 0.0001 but very slow
T = Tmax
L = 4 # Number of trials per temperature value. With L=3 I get even better results
energy = init_energy
itera = 0
start = tt.time()
while T>Tmin:
for _ in range(L):
next_energy, action, source, destination = sim_agent.next_state(env_sim_anneal)
delta_energy = (energy-next_energy)
itera += 1
# If we decreased the maximum link utilization we take the action
if delta_energy>0:
# We des-allocate the chosen path to apply later the chosen action
# Remove bandwidth allocated until the middlepoint and then from the middlepoint on
if str(source)+':'+str(destination) in env_sim_anneal.sp_middlepoints:
middlepoint = env_sim_anneal.sp_middlepoints[str(source)+':'+str(destination)]
originalMiddlepoint = env_sim_anneal.sp_middlepoints[str(source)+':'+str(destination)]
env_sim_anneal.decrease_links_utilization_sp(source, middlepoint, source, destination)
env_sim_anneal.decrease_links_utilization_sp(middlepoint, destination, source, destination)
del env_sim_anneal.sp_middlepoints[str(source)+':'+str(destination)]
else: # Remove the bandwidth allocated from the src to the destination
env_sim_anneal.decrease_links_utilization_sp(source, destination, source, destination)
energy = env_sim_anneal.step_sp(action, source, destination)
# If not, accept the action with some probability
elif np.exp(delta_energy/T)>random.uniform(0, 1):
# We des-allocate the chosen path to apply later the chosen action
# Remove bandwidth allocated until the middlepoint and then from the middlepoint on
if str(source)+':'+str(destination) in env_sim_anneal.sp_middlepoints:
middlepoint = env_sim_anneal.sp_middlepoints[str(source)+':'+str(destination)]
originalMiddlepoint = env_sim_anneal.sp_middlepoints[str(source)+':'+str(destination)]
env_sim_anneal.decrease_links_utilization_sp(source, middlepoint, source, destination)
env_sim_anneal.decrease_links_utilization_sp(middlepoint, destination, source, destination)
del env_sim_anneal.sp_middlepoints[str(source)+':'+str(destination)]
else: # Remove the bandwidth allocated from the src to the destination
env_sim_anneal.decrease_links_utilization_sp(source, destination, source, destination)
energy = env_sim_anneal.step_sp(action, source, destination)
T -= cooling_ratio
end = tt.time()
return energy, end-start
class HILL_CLIMBING:
def __init__(self, env):
self.num_actions = env.K
def get_value_sp(self, env, source, destination, action):
# We get the K-middlepoints between source-destination
middlePointList = list(env.src_dst_k_middlepoints[str(source) +':'+ str(destination)])
middlePoint = middlePointList[action]
# First we allocate until the middlepoint
env.allocate_to_destination_sp(source, middlePoint, source, destination)
# If we allocated to a middlepoint that is not the final destination
if middlePoint!=destination:
# Then we allocate from the middlepoint to the destination
env.allocate_to_destination_sp(middlePoint, destination, source, destination)
# We store that the pair source,destination has a middlepoint
env.sp_middlepoints[str(source)+':'+str(destination)] = middlePoint
currentValue = -1000000
position = 0
# Get the maximum loaded link and it's value after allocating to the corresponding middlepoint
for i in env.graph:
for j in env.graph[i]:
link_capacity = env.links_bw[i][j]
if env.edge_state[position][0]/link_capacity>currentValue:
currentValue = env.edge_state[position][0]/link_capacity
position = position + 1
# Dissolve allocation step so that later we can try another action
# Remove bandwidth allocated until the middlepoint and then from the middlepoint on
if str(source)+':'+str(destination) in env.sp_middlepoints:
middlepoint = env.sp_middlepoints[str(source)+':'+str(destination)]
env.decrease_links_utilization_sp(source, middlepoint, source, destination)
env.decrease_links_utilization_sp(middlepoint, destination, source, destination)
del env.sp_middlepoints[str(source)+':'+str(destination)]
else: # Remove the bandwidth allocated from the src to the destination
env.decrease_links_utilization_sp(source, destination, source, destination)
return -currentValue
def explore_neighbourhood_sp(self, env):
dem_iter = 0
nextVal = -1000000
next_state = None
# Iterate for each demand possible
for source in range(env.numNodes):
for dest in range(env.numNodes):
if source!=dest:
for action in range(len(env.src_dst_k_middlepoints[str(source)+':'+str(dest)])):
middlepoint = -1
# First we need to desallocate the current demand before we explore all it's possible actions
# Check if there is a middlepoint to desallocate from src-middlepoint-dst
if str(source)+':'+str(dest) in env.sp_middlepoints:
middlepoint = env.sp_middlepoints[str(source)+':'+str(dest)]
env.decrease_links_utilization_sp(source, middlepoint, source, dest)
env.decrease_links_utilization_sp(middlepoint, dest, source, dest)
del env.sp_middlepoints[str(source)+':'+str(dest)]
# Else, there is no middlepoint and we desallocate the entire src,dst
else:
# Remove the bandwidth allocated from the src to the destination
env.decrease_links_utilization_sp(source, dest, source, dest)
evalState = self.get_value_sp(env, source, dest, action)
if evalState > nextVal:
nextVal = evalState
next_state = (action, source, dest)
# Allocate back the demand whose actions we explored
# If the current demand had a middlepoint, we allocate src-middlepoint-dst
if middlepoint>=0:
# First we allocate until the middlepoint
env.allocate_to_destination_sp(source, middlepoint, source, dest)
# Then we allocate from the middlepoint to the destination
env.allocate_to_destination_sp(middlepoint, dest, source, dest)
# We store that the pair source,destination has a middlepoint
env.sp_middlepoints[str(source)+':'+str(dest)] = middlepoint
else:
# Then we allocate from the middlepoint to the destination
env.allocate_to_destination_sp(source, dest, source, dest)
return nextVal, next_state
def explore_neighbourhood_DRL_sp(self, env):
dem_iter = 0
nextVal = -1000000
next_state = None
# We iterate over the top critical demands
for elem in env.list_eligible_demands:
source = elem[0]
dest = elem[1]
for action in range(len(env.src_dst_k_middlepoints[str(source)+':'+str(dest)])):
middlepoint = -1
# First we need to desallocate the current demand before we explore all it's possible actions
# Check if there is a middlepoint to desallocate from src-middlepoint-dst
if str(source)+':'+str(dest) in env.sp_middlepoints:
middlepoint = env.sp_middlepoints[str(source)+':'+str(dest)]
env.decrease_links_utilization_sp(source, middlepoint, source, dest)
env.decrease_links_utilization_sp(middlepoint, dest, source, dest)
del env.sp_middlepoints[str(source)+':'+str(dest)]
# Else, there is no middlepoint and we desallocate the entire src,dst
else:
# Remove the bandwidth allocated from the src to the destination
env.decrease_links_utilization_sp(source, dest, source, dest)
evalState = self.get_value_sp(env, source, dest, action)
if evalState > nextVal:
nextVal = evalState
next_state = (action, source, dest)
# Allocate back the demand whose actions we explored
# If the current demand had a middlepoint, we allocate src-middlepoint-dst
if middlepoint>=0:
# First we allocate until the middlepoint
env.allocate_to_destination_sp(source, middlepoint, source, dest)
# Then we allocate from the middlepoint to the destination
env.allocate_to_destination_sp(middlepoint, dest, source, dest)
# We store that the pair source,destination has a middlepoint
env.sp_middlepoints[str(source)+':'+str(dest)] = middlepoint
else:
# Then we allocate from the middlepoint to the destination
env.allocate_to_destination_sp(source, dest, source, dest)
return nextVal, next_state
def play_sp_hill_climbing_games(tm_id):
# Here we use sp in hill climbing to select the middlepoint and to evaluate
env_hill_climb = gym.make(ENV_SIMM_ANEAL_AGENT)
env_hill_climb.seed(SEED)
env_hill_climb.generate_environment(general_dataset_folder, graph_topology_name, EPISODE_LENGTH_MIDDROUT, NUM_ACTIONS, percentage_demands)
currentVal = env_hill_climb.reset_hill_sp(tm_id)
hill_climb_agent = HILL_CLIMBING(env_hill_climb)
start = tt.time()
while 1:
nextVal, next_state = hill_climb_agent.explore_neighbourhood_sp(env_hill_climb)
# If the difference between the two edges is super small but non-zero, we break (this is because of precision reasons)
if nextVal<=currentVal or (abs((-1)*nextVal-(-1)*currentVal)<1e-4):
break
# Before we apply the new action, we need to remove the current allocation of the chosen demand
action = next_state[0]
source = next_state[1]
dest = next_state[2]
# Remove bandwidth allocated until the middlepoint and then from the middlepoint on
if str(source)+':'+str(dest) in env_hill_climb.sp_middlepoints:
middlepoint = env_hill_climb.sp_middlepoints[str(source)+':'+str(dest)]
env_hill_climb.decrease_links_utilization_sp(source, middlepoint, source, dest)
env_hill_climb.decrease_links_utilization_sp(middlepoint, dest, source, dest)
del env_hill_climb.sp_middlepoints[str(source)+':'+str(dest)]
# If there is no middlepoint assigned to the src,dst pair
else:
# Remove the bandwidth allocated from the src to the destination using sp
env_hill_climb.decrease_links_utilization_sp(source, dest, source, dest)
# We apply the new chosen action to the selected demand
currentVal = env_hill_climb.step_hill_sp(action, source, dest)
end = tt.time()
return currentVal*(-1), end-start
def play_DRL_GNN_sp_hill_climbing_games(tm_id, best_routing, list_of_demands_to_change, timesteps, time_start_DRL):
# Here we use sp in hill climbing to select the middlepoint and to evaluate
env_hill_climb = gym.make(ENV_SIMM_ANEAL_AGENT)
env_hill_climb.seed(SEED)
env_hill_climb.generate_environment(general_dataset_folder, graph_topology_name, EPISODE_LENGTH_MIDDROUT, NUM_ACTIONS, percentage_demands)
currentVal = env_hill_climb.reset_DRL_hill_sp(tm_id, best_routing, list_of_demands_to_change)
hill_climb_agent = HILL_CLIMBING(env_hill_climb)
start = tt.time()
while 1:
nextVal, next_state = hill_climb_agent.explore_neighbourhood_DRL_sp(env_hill_climb)
# If the difference between the two edges is super small but non-zero, we break (this is because of precision reasons)
if nextVal<=currentVal or (abs((-1)*nextVal-(-1)*currentVal)<1e-4):
break
# Before we apply the new action, we need to remove the current allocation of the chosen demand
action = next_state[0]
source = next_state[1]
dest = next_state[2]
# Remove bandwidth allocated until the middlepoint and then from the middlepoint on
if str(source)+':'+str(dest) in env_hill_climb.sp_middlepoints:
middlepoint = env_hill_climb.sp_middlepoints[str(source)+':'+str(dest)]
env_hill_climb.decrease_links_utilization_sp(source, middlepoint, source, dest)
env_hill_climb.decrease_links_utilization_sp(middlepoint, dest, source, dest)
del env_hill_climb.sp_middlepoints[str(source)+':'+str(dest)]
# If there is no middlepoint assigned to the src,dst pair
else:
# Remove the bandwidth allocated from the src to the destination using sp
env_hill_climb.decrease_links_utilization_sp(source, dest, source, dest)
# We apply the new chosen action to the selected demand
currentVal = env_hill_climb.step_hill_sp(action, source, dest)
timer = tt.time()
timesteps.append((timer-time_start_DRL, currentVal*(-1)))
end = tt.time()
return currentVal*(-1), end-start
class SAPAgent:
def __init__(self, env):
self.K = env.K
def act(self, env, demand, n1, n2):
pathList = env.allPaths[str(n1) +':'+ str(n2)]
path = 0
allocated = 0 # Indicates 1 if we allocated the demand, 0 otherwise
while allocated==0 and path < len(pathList) and path<self.K:
currentPath = pathList[path]
can_allocate = 1 # Indicates 1 if we can allocate the demand, 0 otherwise
i = 0
j = 1
# 1. Iterate over pairs of nodes and check if we can allocate the demand
while j < len(currentPath):
link_capacity = env.links_bw[currentPath[i]][currentPath[j]]
if (env.edge_state[env.edgesDict[str(currentPath[i]) + ':' + str(currentPath[j])]][0] + demand)/link_capacity > 1:
can_allocate = 0
break
i = i + 1
j = j + 1
if can_allocate==1:
return path
path = path + 1
return -1
def play_sap_games(tm_id):
env_sap = gym.make(ENV_SAP_AGENT)
env_sap.seed(SEED)
env_sap.generate_environment(general_dataset_folder, graph_topology_name, EPISODE_LENGTH_MIDDROUT, NUM_ACTIONS)
demand, source, destination = env_sap.reset(tm_id)
sap_Agent = SAPAgent(env_sap)
rewardAddTest = 0
start = tt.time()
while 1:
action = sap_Agent.act(env_sap, demand, source, destination)
done, error_eval_links, demand, source, destination, maxLinkUti, minLinkUti, utiStd = env_sap.step(action, demand, source, destination)
if done:
break
end = tt.time()
return maxLinkUti[2], end-start
def play_middRout_games(tm_id, env_middRout, agent):
demand, source, destination = env_middRout.reset(tm_id)
rewardAddTest = 0
while 1:
# Change to agent.pred_action_node_distrib_sp to choose the middlepoint using only the SPs
action_dist, tensor = agent.pred_action_node_distrib_sp(env_middRout, source, destination)
action = np.argmax(action_dist)
reward, done, error_eval_links, demand, source, destination, maxLinkUti, minLinkUti, utiStd = env_middRout.step(action, demand, source, destination)
rewardAddTest += reward
if done:
break
return rewardAddTest, maxLinkUti[2], minLinkUti, utiStd
if __name__ == "__main__":
# Parse logs and get best model
parser = argparse.ArgumentParser(description='Parse file and create plots')
parser.add_argument('-t', help='DEFO demands TM file id', type=str, required=True, nargs='+')
parser.add_argument('-g', help='graph topology name', type=str, required=True, nargs='+')
parser.add_argument('-m', help='model id whose weights to load', type=str, required=True, nargs='+')
parser.add_argument('-o', help='Where to store the pckl file', type=str, required=True, nargs='+')
parser.add_argument('-d', help='differentiation string', type=str, required=True, nargs='+')
parser.add_argument('-f', help='general dataset folder name', type=str, required=True, nargs='+')
parser.add_argument('-f2', help='specific dataset folder name', type=str, required=True, nargs='+')
args = parser.parse_args()
drl_eval_res_folder = args.o[0]
tm_id = int(args.t[0])
model_id = args.m[0]
differentiation_str = args.d[0]
graph_topology_name = args.g[0]
general_dataset_folder = args.f[0]
specific_dataset_folder = args.f2[0]
timesteps = list()
results = np.zeros(17)
########### The following lines of code is to evaluate a DRL SP-based agent
env_DRL_SP = gym.make(ENV_MIDDROUT_AGENT_SP)
env_DRL_SP.seed(SEED)
env_DRL_SP.generate_environment(general_dataset_folder, graph_topology_name, EPISODE_LENGTH_MIDDROUT, NUM_ACTIONS, percentage_demands)
# Set to True f we want to take the top X% of the 5 most loaded links
env_DRL_SP.top_K_critical_demands = True
DRL_SP_Agent = PPOMIDDROUTING_SP(env_DRL_SP)
checkpoint_dir = "./models" + differentiation_str
checkpoint = tf.train.Checkpoint(model=DRL_SP_Agent.actor, optimizer=DRL_SP_Agent.optimizer)
# Restore variables on creation if a checkpoint exists.
checkpoint.restore(checkpoint_dir + "/ckpt_ACT-" + str(model_id))
print("Restored DRL_SP model ", "/ckpt_ACT-" + str(model_id))
################################################
# We can also use simulated annealing but it is going to take a while
max_link_uti_sim_annealing, optim_cost_SA = 1,1 #play_sp_simulated_annealing_games(tm_id)
max_link_uti_sp_hill_climb, optim_cost_HILL = play_sp_hill_climbing_games(tm_id)
max_link_uti_SAP, optim_cost_SAP = 1, 1 #play_sap_games(tm_id)
max_link_uti_DRL_SP, optim_cost_DRL_GNN, OSPF_init, best_routing, list_of_demands_to_change, time_start_DRL = play_middRout_games_sp(tm_id, env_DRL_SP, DRL_SP_Agent, timesteps)
max_link_uti_DRL_SP_HILL, optim_cost_DRL_HILL = play_DRL_GNN_sp_hill_climbing_games(tm_id, best_routing, list_of_demands_to_change, timesteps, time_start_DRL)
new_timesteps = list()
for elem in timesteps:
new_timesteps.append((elem[0], elem[1], time_start_DRL, max_link_uti_DRL_SP))
print("MAX UTI before and after optimization for traffic matrix ID: ", OSPF_init, max_link_uti_DRL_SP_HILL, tm_id)
results[3] = max_link_uti_DRL_SP_HILL
results[4] = max_link_uti_sim_annealing
results[6] = len(env_DRL_SP.defoDatasetAPI.Gbase.edges()) # We store the number of edges to order the figures
results[7] = max_link_uti_sp_hill_climb
results[8] = max_link_uti_SAP
results[9] = max_link_uti_DRL_SP
results[11] = OSPF_init
results[12] = optim_cost_SA
results[13] = optim_cost_SAP
results[14] = optim_cost_DRL_GNN
results[15] = optim_cost_HILL
results[16] = optim_cost_DRL_GNN+optim_cost_DRL_HILL
path_to_pckl_rewards = drl_eval_res_folder + differentiation_str+ '/'+ graph_topology_name + '/'
if not os.path.exists(path_to_pckl_rewards):
os.makedirs(path_to_pckl_rewards)
with open(path_to_pckl_rewards + graph_topology_name +'.' + str(tm_id) + ".pckl", 'wb') as f:
pickle.dump(results, f, pickle.HIGHEST_PROTOCOL)
with open(path_to_pckl_rewards + graph_topology_name +'.' + str(tm_id) + ".timesteps", 'w') as fp:
json.dump(new_timesteps, fp)