-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplotting.py
206 lines (159 loc) · 6.51 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
from scipy import stats
from tensorboard.backend.event_processing import event_accumulator
'''plotting functions'''
def anova_2way(base_path, mode, n_seeds=10, base_seed=1111):
data = []
for seed_idx in range(1, n_seeds + 1):
basename = os.path.basename(base_path)
subpath = f"{basename}_{seed_idx}_{base_seed*seed_idx}.npy"
if mode is not None:
subpath = f"{basename}_{seed_idx}_{base_seed*seed_idx}_{mode}.npy"
path = os.path.join(base_path, basename+f"_{seed_idx}", subpath)
stay_probs = np.load(path)
for i in range(stay_probs.shape[0]):
for j in range(stay_probs.shape[1]):
data += [{
'reward': 1-i,
'common': 1-j,
'prob': stay_probs[i,j,0]
}]
df = pd.DataFrame(data)
import statsmodels.api as sm
from statsmodels.formula.api import ols
#perform two-way ANOVA
model = ols('prob ~ C(reward) + C(common) + C(reward):C(common)', data=df).fit()
result = sm.stats.anova_lm(model, typ=2)
print(result)
def plot_seeds(save_path,
load_path,
mode,
y_lim=0.5,
n_seeds=8,
base_seed=1111,
title="Two-Step Task"):
_, ax = plt.subplots()
common_sum = np.array([0.,0.])
uncommon_sum = np.array([0.,0.])
dir_base_path = os.path.basename(load_path)
for seed_idx in range(1, n_seeds + 1):
ax.set_ylim([y_lim, 1.0])
ax.set_ylabel('Stay Probability')
base_path = f"{os.path.basename(load_path)}_{seed_idx}_{base_seed*seed_idx}.npy"
if mode is not None:
base_path = f"{os.path.basename(load_path)}_{seed_idx}_{base_seed*seed_idx:04d}_{mode}.npy"
path = os.path.join(load_path, dir_base_path+f"_{seed_idx}", base_path)
stay_probs = np.load(path)
common = [stay_probs[0,0,0], stay_probs[1,0,0]]
uncommon = [stay_probs[0,1,0], stay_probs[1,1,0]]
common_sum += np.array(common)
uncommon_sum += np.array(uncommon)
ax.set_xticks([1.5,3.5])
ax.set_xticklabels(['Rewarded', 'Unrewarded'])
plt.plot([1,3], common, 'o', color='black')
plt.plot([2,4], uncommon, 'o', color='black')
c = plt.bar([1,3], (1. / n_seeds) * common_sum, color='b', width=0.5)
uc = plt.bar([2,4], (1. / n_seeds) * uncommon_sum, color='r', width=0.5)
ax.legend( (c[0], uc[0]), ('Common', 'Uncommon') )
ax.set_title(title)
plt.show()
# plt.savefig(save_path)
def compare_rewards(load_path_mrl, load_path_emrl, save_path, title):
mrl_cued = np.load(os.path.join(load_path_mrl, "mrl_reward_cued.npy"))
mrl_uncued = np.load(os.path.join(load_path_mrl, "mrl_reward_uncued.npy"))
emrl_cued = np.load(os.path.join(load_path_emrl, "emrl_reward_cued.npy"))
emrl_uncued = np.load(os.path.join(load_path_emrl, "emrl_reward_uncued.npy"))
t_state, p_val = stats.ttest_ind(mrl_cued, emrl_cued)
print(f"Cued --> P-Value: {p_val} | T-Statistic: {t_state}")
t_state, p_val = stats.ttest_ind(mrl_uncued, emrl_uncued)
print(f"Uncued --> P-Value: {p_val} | T-Statistic: {t_state}")
t_state, p_val = stats.ttest_ind(np.stack([mrl_cued, mrl_uncued]).mean(axis=0), np.stack([emrl_cued, emrl_uncued]).mean(axis=0))
print(f"Total --> P-Value: {p_val} | T-Statistic: {t_state}")
_, ax = plt.subplots()
ax.set_ylim([0.5, 0.8])
ax.set_xticks([1.5,3.5])
ax.set_xticklabels(['Uncued', 'Cued'])
mrl = plt.bar([1.2,3.2],
[mrl_uncued.mean(), mrl_cued.mean()],
yerr=[mrl_uncued.std(), mrl_cued.std()],
color='orange',
width=0.5
)
emrl = plt.bar([1.8,3.8],
[emrl_uncued.mean(), emrl_cued.mean()],
yerr=[emrl_uncued.std(), emrl_cued.std()],
color='gray',
width=0.5
)
ax.legend((mrl[0], emrl[0]), ('MRL', 'EMRL'))
# ax.set_title(title)
ax.set_ylabel(title)
plt.show()
print(f"MRL: Cued {mrl_cued.mean()} | Uncued {mrl_uncued.mean()}")
print(f"EMRL: Cued {emrl_cued.mean()} | Uncued {emrl_uncued.mean()}")
def read_data(load_dir, tag="perf/avg_reward_10"):
events = os.listdir(load_dir)
for event in events:
path = os.path.join(load_dir, event)
ea = event_accumulator.EventAccumulator(path, size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 0,
event_accumulator.IMAGES: 0,
event_accumulator.AUDIO: 0,
event_accumulator.SCALARS: 10_000,
event_accumulator.HISTOGRAMS: 0,
})
ea.Reload()
tags = ea.Tags()
if tag not in tags["scalars"]: continue
if len(ea.Scalars(tag)) == 10_000:
return np.array([s.value for s in ea.Scalars(tag)])
return None
def plot_rewards_curve(save_path, load_path_epi, load_path_inc, n_seeds=10):
epi_data = np.zeros((n_seeds, 10_000))
inc_data = np.zeros((n_seeds, 10_000))
for seed_idx in tqdm(range(n_seeds)):
epi_event = read_data(load_dir=load_path_epi+f"_{seed_idx+1}")
inc_event = read_data(load_dir=load_path_inc+f"_{seed_idx+1}")
if epi_event is None or inc_event is None:
raise ValueError()
epi_data[seed_idx] = epi_event
inc_data[seed_idx] = inc_event
epi_mean = epi_data.mean(axis=0)
inc_mean = inc_data.mean(axis=0)
plt.plot(epi_mean)
plt.plot(inc_mean)
plt.legend(["Episodic", "Incremental"])
plt.title("Episodic vs Incremental Training Curves")
plt.savefig(save_path)
if __name__ == "__main__":
#### Two-Way ANOVA ####
# anova_2way("ckpt/TwoStepEp_12", mode="episodic")
# anova_2way("ckpt/TwoStep_60", mode=None, n_seeds=8)
#### Episodic Plot ####
plot_seeds(
save_path="ckpt/TwoStepEp_14",
load_path="ckpt/TwoStepEp_14",
mode="episodic",
y_lim=0,
n_seeds=8,
base_seed=42,
title="Episodic"
)
#### Compare Training Curves ####
# plot_rewards_curve(
# save_path="./assets/epi_inc_rewards.png",
# load_path_epi="./logs_ep/TwoStepEp_12",
# load_path_inc="./logs_ep/TwoStepEp_13",
# n_seeds=10
# )
#### Compare Rewards ####
# compare_rewards(
# load_path_mrl="./ckpt/TwoStepEp_12",
# load_path_emrl="./ckpt/TwoStepEp_12",
# save_path=None,
# title="Performance"
# )