Skip to content

Latest commit

 

History

History
5 lines (3 loc) · 2.33 KB

2408.13055.md

File metadata and controls

5 lines (3 loc) · 2.33 KB

Atlas Gaussians Diffusion for 3D Generation with Infinite Number of Points

Using the latent diffusion model has proven effective in developing novel 3D generation techniques. To harness the latent diffusion model, a key challenge is designing a high-fidelity and efficient representation that links the latent space and the 3D space. In this paper, we introduce Atlas Gaussians, a novel representation for feed-forward native 3D generation. Atlas Gaussians represent a shape as the union of local patches, and each patch can decode 3D Gaussians. We parameterize a patch as a sequence of feature vectors and design a learnable function to decode 3D Gaussians from the feature vectors. In this process, we incorporate UV-based sampling, enabling the generation of a sufficiently large, and theoretically infinite, number of 3D Gaussian points. The large amount of 3D Gaussians enables high-quality details of generation results. Moreover, due to local awareness of the representation, the transformer-based decoding procedure operates on a patch level, ensuring efficiency. We train a variational autoencoder to learn the Atlas Gaussians representation, and then apply a latent diffusion model on its latent space for learning 3D Generation. Experiments show that our approach outperforms the prior arts of feed-forward native 3D generation.

使用潜在扩散模型在开发新型 3D 生成技术方面已被证明是有效的。要利用潜在扩散模型,一个关键挑战是设计一种高保真且高效的表示方式,将潜在空间和 3D 空间连接起来。本文介绍了 Atlas Gaussians,一种用于前馈本地 3D 生成的新型表示。Atlas Gaussians 将形状表示为局部补丁的并集,每个补丁可以解码 3D 高斯。我们将补丁参数化为一系列特征向量,并设计了一个可学习的函数,从特征向量中解码 3D 高斯。在此过程中,我们结合了基于 UV 的采样,允许生成足够大且理论上无限的 3D 高斯点。大量的 3D 高斯点能够生成高质量的细节。此外,由于表示的局部特性,基于变压器的解码过程在补丁级别上操作,确保了效率。我们训练了一个变分自编码器来学习 Atlas Gaussians 表示,然后在其潜在空间上应用潜在扩散模型进行 3D 生成。实验表明,我们的方法优于以前的前馈本地 3D 生成技术。