-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
64 lines (55 loc) · 2.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import random
import os
import numpy as np
import torch
from torch import distributed as dist
from rdkit import RDLogger
from grover.util.parsing import parse_args, get_newest_train_args
from grover.util.utils import create_logger
from task.cross_validate import cross_validate
from task.fingerprint import generate_fingerprints
from task.predict import make_predictions, write_prediction
from task.pretrain import pretrain_model
from grover.data.torchvocab import MolVocab
def setup(seed, args):
# frozen random seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if args.data_parallel or args.task_parallel or args.pipeline_parallel:
print("init process group")
world_rank = int(os.environ['RANK'])
print("world rank: ", world_rank)
dist.init_process_group(backend='nccl', world_size=args.world_size, rank=world_rank)
print("init process group done")
if __name__ == '__main__':
args = parse_args()
# setup random seed
setup(42, args)
# Avoid the pylint warning.
a = MolVocab
# supress rdkit logger
lg = RDLogger.logger()
lg.setLevel(RDLogger.CRITICAL)
# Initialize MolVocab
mol_vocab = MolVocab
if args.parser_name == 'finetune':
logger = create_logger(name='train', save_dir=args.save_dir, quiet=False)
cross_validate(args, logger)
elif args.parser_name == 'pretrain':
logger = create_logger(name='pretrain', save_dir=args.save_dir)
pretrain_model(args, logger)
elif args.parser_name == "eval":
logger = create_logger(name='eval', save_dir=args.save_dir, quiet=False)
cross_validate(args, logger)
elif args.parser_name == 'fingerprint':
train_args = get_newest_train_args()
logger = create_logger(name='fingerprint', save_dir=None, quiet=False)
feas = generate_fingerprints(args, logger)
np.savez_compressed(args.output_path, fps=feas)
elif args.parser_name == 'predict':
train_args = get_newest_train_args()
avg_preds, test_smiles = make_predictions(args, train_args)
write_prediction(avg_preds, test_smiles, args)