-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathutils.py
588 lines (506 loc) · 24.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import argparse
import glob
import json
import math
import numpy
import os
import pdb
import re
import sys
from datetime import datetime
from os import path
import matplotlib.pyplot as plt
import scipy
import sklearn.manifold as manifold
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from PIL import Image, ImageDraw
from sklearn import decomposition
def printnorm(x):
print(x.norm())
def printgradnorm(self, grad_input, grad_output):
print('Inside ' + self.__class__.__name__ + ' backward')
print('Inside class:' + self.__class__.__name__)
print('')
print('grad_input: ', type(grad_input))
print('grad_input[0]: ', type(grad_input[0]))
print('grad_output: ', type(grad_output))
print('grad_output[0]: ', type(grad_output[0]))
print('')
print('grad_input size:', grad_input[0].size())
print('grad_output size:', grad_output[0].size())
print('grad_input norm:', grad_input[0].norm())
def read_images(dirname, pytorch=True):
imgs = []
for f in glob.glob(dirname + '*.png'):
im = scipy.misc.imread(f)
if pytorch:
im = torch.from_numpy(im)
imgs.append(im)
if pytorch:
imgs = torch.stack(imgs).permute(0, 3, 1, 2).clone()
return imgs
def lane_cost(images, car_size):
SCALE = 0.25
safe_factor = 1.5
bsize, npred, nchannels, crop_h, crop_w = images.size()
images = images.view(bsize * npred, nchannels, crop_h, crop_w)
width, length = car_size[:, 0], car_size[:, 1] # feet
width = width * SCALE * (0.3048 * 24 / 3.7) # pixels
length = length * SCALE * (0.3048 * 24 / 3.7) # pixels
# Create separable proximity mask
width.fill_(24 * SCALE / 2)
max_x = torch.ceil((crop_h - length) / 2)
# max_y = torch.ceil((crop_w - width) / 2)
max_y = torch.ceil(torch.zeros(width.size()).fill_(crop_w) / 2)
max_x = max_x.view(bsize, 1).expand(bsize, npred).contiguous().view(bsize * npred).cuda()
max_y = max_y.view(bsize, 1).expand(bsize, npred).contiguous().view(bsize * npred).cuda()
min_x = max_x
min_y = torch.ceil(crop_w / 2 - width) # assumes other._width / 2 = self._width / 2
min_y = min_y.view(bsize, 1).expand(bsize, npred).contiguous().view(bsize * npred).cuda()
x_filter = (1 - torch.abs(torch.linspace(-1, 1, crop_h))) * crop_h / 2
x_filter = x_filter.unsqueeze(0).expand(bsize * npred, crop_h).cuda()
x_filter = torch.min(x_filter, max_x.view(bsize * npred, 1).expand(x_filter.size()))
x_filter = (x_filter == max_x.unsqueeze(1).expand(x_filter.size())).float()
y_filter = (1 - torch.abs(torch.linspace(-1, 1, crop_w))) * crop_w / 2
y_filter = y_filter.view(1, crop_w).expand(bsize * npred, crop_w).cuda()
# y_filter = torch.min(y_filter, max_y.view(bsize * npred, 1))
y_filter = torch.max(y_filter, min_y.view(bsize * npred, 1))
y_filter = (y_filter - min_y.view(bsize * npred, 1)) / (max_y.view(bsize * npred, 1) - min_y.view(bsize * npred, 1))
x_filter = x_filter.cuda()
y_filter = y_filter.cuda()
proximity_mask = torch.bmm(x_filter.view(-1, crop_h, 1), y_filter.view(-1, 1, crop_w))
proximity_mask = proximity_mask.view(bsize, npred, crop_h, crop_w)
images = images.view(bsize, npred, nchannels, crop_h, crop_w)
costs = torch.max((proximity_mask * images[:, :, 0].float()).view(bsize, npred, -1), 2)[0]
return costs.view(bsize, npred), proximity_mask
def offroad_cost(images, proximity_mask):
bsize, npred, nchannels, crop_h, crop_w = images.size()
images = images.view(bsize, npred, nchannels, crop_h, crop_w)
costs = torch.max((proximity_mask * images[:, :, 2].float()).view(bsize, npred, -1), 2)[0]
return costs.view(bsize, npred)
def proximity_cost(images, states, car_size=(6.4, 14.3), green_channel=1, unnormalize=False, s_mean=None, s_std=None):
SCALE = 0.25
safe_factor = 1.5
bsize, npred, nchannels, crop_h, crop_w = images.size()
images = images.view(bsize * npred, nchannels, crop_h, crop_w)
states = states.view(bsize * npred, 4).clone()
if unnormalize:
states = states * (1e-8 + s_std.view(1, 4).expand(states.size())).cuda()
states = states + s_mean.view(1, 4).expand(states.size()).cuda()
speed = states[:, 2:].norm(2, 1) * SCALE # pixel/s
width, length = car_size[:, 0], car_size[:, 1] # feet
width = width * SCALE * (0.3048 * 24 / 3.7) # pixels
length = length * SCALE * (0.3048 * 24 / 3.7) # pixels
safe_distance = torch.abs(speed) * safe_factor + (1 * 24 / 3.7) * SCALE # plus one metre (TODO change)
# Compute x/y minimum distance to other vehicles (pixel version)
# Account for 1 metre overlap (low data accuracy)
alpha = 1 * SCALE * (24 / 3.7) # 1 m overlap collision
# Create separable proximity mask
max_x = torch.ceil((crop_h - torch.clamp(length - alpha, min=0)) / 2)
max_y = torch.ceil((crop_w - torch.clamp(width - alpha, min=0)) / 2)
max_x = max_x.view(bsize, 1).expand(bsize, npred).contiguous().view(bsize * npred).cuda()
max_y = max_y.view(bsize, 1).expand(bsize, npred).contiguous().view(bsize * npred).cuda()
min_x = torch.clamp(max_x - safe_distance, min=0)
min_y = torch.ceil(crop_w / 2 - width) # assumes other._width / 2 = self._width / 2
min_y = min_y.view(bsize, 1).expand(bsize, npred).contiguous().view(bsize * npred).cuda()
x_filter = (1 - torch.abs(torch.linspace(-1, 1, crop_h))) * crop_h / 2
x_filter = x_filter.unsqueeze(0).expand(bsize * npred, crop_h).cuda()
x_filter = torch.min(x_filter, max_x.view(bsize * npred, 1).expand(x_filter.size()))
x_filter = torch.max(x_filter, min_x.view(bsize * npred, 1))
x_filter = (x_filter - min_x.view(bsize * npred, 1)) / (max_x - min_x).view(bsize * npred, 1)
y_filter = (1 - torch.abs(torch.linspace(-1, 1, crop_w))) * crop_w / 2
y_filter = y_filter.view(1, crop_w).expand(bsize * npred, crop_w).cuda()
y_filter = torch.min(y_filter, max_y.view(bsize * npred, 1))
y_filter = torch.max(y_filter, min_y.view(bsize * npred, 1))
y_filter = (y_filter - min_y.view(bsize * npred, 1)) / (max_y.view(bsize * npred, 1) - min_y.view(bsize * npred, 1))
x_filter = x_filter.cuda()
y_filter = y_filter.cuda()
proximity_mask = torch.bmm(x_filter.view(-1, crop_h, 1), y_filter.view(-1, 1, crop_w))
proximity_mask = proximity_mask.view(bsize, npred, crop_h, crop_w)
images = images.view(bsize, npred, nchannels, crop_h, crop_w)
costs = torch.max((proximity_mask * images[:, :, green_channel].float()).view(bsize, npred, -1), 2)[0]
# costs = torch.sum((proximity_mask * images[:, :, green_channel].float()).view(bsize, npred, -1), 2)
# costs = torch.max((proximity_mask * images[:, :, green_channel].float()).view(bsize, npred, -1), 2)[0]
return costs, proximity_mask
def parse_car_path(path):
splits = path.split('/')
time_slot = splits[-2]
car_id = int(re.findall('car(\d+).pkl', splits[-1])[0])
data_files = {'trajectories-0400-0415': 0,
'trajectories-0500-0515': 1,
'trajectories-0515-0530': 2}
time_slot = data_files[time_slot]
return time_slot, car_id
def plot_mean_and_CI(mean, lb, ub, color_mean=None, color_shading=None):
# plot the shaded range of the confidence intervals
time_steps = [i + 3 for i in range(len(mean))]
plt.fill_between(time_steps, ub, lb,
color=color_shading, alpha=0.2)
# plot the mean on top
plt.plot(time_steps, mean, color_mean)
def mean_confidence_interval(data, confidence=0.95):
n = data.shape[0]
m, se = numpy.mean(data, 0), scipy.stats.sem(data, 0)
h = numpy.std(data, 0)
# h = se * scipy.stats.t._ppf((1+confidence)/2., n-1)
return m, m - h, m + h
# Logging function
def log(fname, s):
if not os.path.isdir(os.path.dirname(fname)):
os.system(f'mkdir -p {os.path.dirname(fname)}')
f = open(fname, 'a')
f.write(f'{str(datetime.now())}: {s}\n')
f.close()
def combine(x, y, method):
if method == 'add':
return x + y
elif method == 'mult':
return x * y
def format_losses(loss_i, loss_s, loss_p=None, split='train'):
log_string = ' '
log_string += f'{split} loss ['
log_string += f'i: {loss_i:.5f}, '
log_string += f's: {loss_s:.5f}, '
if loss_p is not None:
log_string += f', p: {loss_p:.5f}'
log_string += ']'
return log_string
def test_actions(mdir, model, inputs, actions, targets_, std=1.5):
targets = [targets_[i] for i in range(0, 3)]
# speed up
actions_ = torch.zeros(actions.size()).cuda()
actions_.data[:, :, 0].fill_(std)
pred_speed, _ = model(inputs, actions_, targets)
for p in pred_speed:
if p is not None:
p.detach()
model.zero_grad()
for b in range(min(actions.size(0), 10)):
movie_dir = f'{mdir}/pred_speed/mov{b}/'
save_movie(movie_dir, pred_speed[0][b].data, pred_speed[1][b].data, pred_speed[2][b].data, actions[b].data)
del pred_speed, _
# brake
actions_ = torch.zeros(actions.size()).cuda()
actions_.data[:, :, 0].fill_(-std)
pred_brake, _ = model(inputs, actions_, targets)
for p in pred_brake:
if p is not None:
p.detach()
model.zero_grad()
for b in range(min(actions.size(0), 10)):
movie_dir = f'{mdir}/pred_brake/mov{b}/'
save_movie(movie_dir, pred_brake[0][b].data, pred_brake[1][b].data, pred_brake[2][b].data, actions[b].data)
del pred_brake, _
# turn left
actions_ = torch.zeros(actions.size()).cuda()
actions_.data[:, :, 1].fill_(std)
pred_left, _ = model(inputs, actions_, targets)
for p in pred_left:
if p is not None:
p.detach()
model.zero_grad()
for b in range(min(actions.size(0), 10)):
movie_dir = f'{mdir}/pred_left/mov{b}/'
save_movie(movie_dir, pred_left[0][b].data, pred_left[1][b].data, pred_left[2][b].data, actions[b].data)
del pred_left, _
# turn right
actions_ = torch.zeros(actions.size()).cuda()
actions_.data[:, :, 1].fill_(-std)
pred_right, _ = model(inputs, actions_, targets)
for p in pred_right:
if p is not None:
p.detach()
model.zero_grad()
for b in range(min(actions.size(0), 10)):
movie_dir = f'{mdir}/pred_right/mov{b}/'
save_movie(movie_dir, pred_right[0][b].data, pred_right[1][b].data, pred_right[2][b].data, actions[b].data)
del pred_right, _
def save_movie(dirname, images, states, costs=None, actions=None, mu=None, std=None, pytorch=True, raw=False):
images = images.data if hasattr(images, 'data') else images
states = states.data if hasattr(states, 'data') else states
if costs is not None:
costs = costs.data if hasattr(costs, 'data') else costs
if actions is not None:
actions = actions.data if hasattr(actions, 'data') else actions
os.system('mkdir -p ' + dirname)
print(f'[saving movie to {dirname}]')
if mu is not None:
mu = mu.squeeze()
std = std.squeeze()
else:
mu = actions
if pytorch:
images = images.permute(0, 2, 3, 1).cpu().numpy() * 255
if raw:
for t in range(images.shape[0]):
img = images[t]
img = numpy.uint8(img)
Image.fromarray(img).save(path.join(dirname, f'im{t:05d}.png'))
return
for t in range(images.shape[0]):
img = images[t]
img = numpy.concatenate((img, numpy.zeros((24, 24, 3)).astype('float')), axis=0)
img = numpy.uint8(img)
pil = Image.fromarray(img).resize((img.shape[1] * 5, img.shape[0] * 5), Image.NEAREST)
draw = ImageDraw.Draw(pil)
text = ''
if states is not None:
text += f'x: [{states[t][0]:.2f}, {states[t][1]:.2f} \n'
text += f'dx: {states[t][2]:.2f}, {states[t][3]:.2f}]\n'
if costs is not None:
text += f'c: [{costs[t][0]:.2f}, {costs[t][1]:.2f}]\n'
if actions is not None:
text += f'a: [{actions[t][0]:.2f}, {actions[t][1]:.2f}]\n'
x = int(images[t].shape[1] * 5 / 2 - mu[t][1] * 30)
y = int(images[t].shape[0] * 5 / 2 - mu[t][0] * 30)
if std is not None:
ex = max(3, int(std[t][1] * 100))
ey = max(3, int(std[t][0] * 100))
else:
ex, ey = 3, 3
bbox = (x - ex, y - ey, x + ex, y + ey)
draw.ellipse(bbox, fill=(200, 200, 200))
draw.text((10, 130 * 5 - 10), text, (255, 255, 255))
pil.save(dirname + f'/im{t:05d}.png')
def grad_norm(net):
total_norm = 0
for p in net.parameters():
if p.grad is None:
pdb.set_trace()
param_norm = p.grad.data.norm(2)
total_norm += param_norm ** 2
total_norm = total_norm ** (1. / 2)
return total_norm
def read_config(file_path):
"""Read JSON config."""
json_object = json.load(open(file_path, 'r'))
return json_object
def log_pdf(z, mu, sigma):
a = 0.5 * torch.sum(((z - mu) / sigma) ** 2, 1)
b = torch.log(2 * math.pi * torch.prod(sigma, 1))
loss = a.squeeze() + b.squeeze()
return loss
def log_gaussian_distribution(y, mu, sigma):
Z = 1.0 / ((2.0 * numpy.pi) ** (
mu.size(2) / 2)) # normalization factor for Gaussians (!!can be numerically unstable)
result = (y.unsqueeze(1).expand_as(mu) - mu) * torch.reciprocal(sigma)
result = 0.5 * torch.sum(result * result, 2)
result += torch.log(2 * math.pi * torch.prod(sigma, 2))
# result = torch.exp(result) / (1e-6 + torch.sqrt(torch.prod(sigma, 2)))
# result *= oneDivSqrtTwoPI
return result
def gaussian_distribution(y, mu, sigma):
oneDivSqrtTwoPI = 1.0 / ((2.0 * numpy.pi) ** (
mu.size(2) / 2)) # normalization factor for Gaussians (!!can be numerically unstable)
result = (y.unsqueeze(1).expand_as(mu) - mu) * torch.reciprocal(sigma)
result = -0.5 * torch.sum(result * result, 2)
result = torch.exp(result) / (1e-6 + torch.sqrt(torch.prod(sigma, 2)))
result *= oneDivSqrtTwoPI
return result
def hinge_loss(u, z):
bsize = z.size(0)
nz = z.size(1)
uexp = u.view(bsize, 1, nz).expand(bsize, bsize, nz).contiguous()
zexp = z.view(1, bsize, nz).expand(bsize, bsize, nz).contiguous()
uexp = uexp.view(bsize * bsize, nz)
zexp = zexp.view(bsize * bsize, nz)
sim = torch.sum(uexp * zexp, 1).view(bsize, bsize)
loss = sim - torch.diag(sim).view(-1, 1)
loss = F.relu(loss)
loss = torch.mean(loss)
return loss
# second represents the prior
def kl_criterion(mu1, logvar1, mu2, logvar2):
# KL( N(mu_1, sigma2_1) || N(mu_2, sigma2_2)) =
# log( sqrt(
#
bsize = mu1.size(0)
sigma1 = logvar1.mul(0.5).exp()
sigma2 = logvar2.mul(0.5).exp()
kld = torch.log(sigma2 / sigma1) + (torch.exp(logvar1) + (mu1 - mu2) ** 2) / (2 * torch.exp(logvar2)) - 1 / 2
return kld.sum() / bsize
def log_sum_exp(value, dim=None, keepdim=False):
"""Numerically stable implementation of the operation
value.exp().sum(dim, keepdim).log()
"""
# TODO: torch.max(value, dim=None) threw an error at time of writing
if dim is not None:
m, _ = torch.max(value, dim=dim, keepdim=True)
value0 = value - m
if keepdim is False:
m = m.squeeze(dim)
return m + torch.log(torch.sum(torch.exp(value0),
dim=dim, keepdim=keepdim))
else:
m = torch.max(value)
sum_exp = torch.sum(torch.exp(value - m))
if isinstance(sum_exp, Number):
return m + math.log(sum_exp)
else:
return m + torch.log(sum_exp)
# inputs are:
# pi: categorical distribution over mixture components
# mu: means of mixture components
# sigma: variances of mixture components (note, all mixture components are assumed to be diagonal)
# y: points to evaluate the negative-log-likelihood of, under the model determined by these parameters
def mdn_loss_fn(pi, sigma, mu, y, avg=True):
minsigma = sigma.min().item()
assert minsigma >= 0, f'{minsigma} < 0'
c = mu.size(2)
result = (y.unsqueeze(1).expand_as(mu) - mu) * torch.reciprocal(sigma)
result = 0.5 * torch.sum(result * result, 2)
result -= torch.log(pi)
result += 0.5 * c * math.log(2 * math.pi)
result += torch.sum(torch.log(sigma), 2)
result = -result
result = -log_sum_exp(result, dim=1)
if avg:
result = torch.mean(result)
return result
# embed Z distribution as well as some special z's (ztop) using PCA and tSNE.
# Useful for visualizing predicted z vectors.
def embed(Z, ztop, ndim=3):
bsize = ztop.shape[0]
nsamples = ztop.shape[1]
dim = ztop.shape[2]
ztop = ztop.reshape(bsize * nsamples, dim)
Z_all = numpy.concatenate((ztop, Z), axis=0)
# PCA
Z_all_pca = decomposition.PCA(n_components=ndim).fit_transform(Z_all)
ztop_pca = Z_all_pca[0:bsize * nsamples].reshape(bsize, nsamples, ndim)
Z_pca = Z_all_pca[bsize * nsamples:]
ztop_only_pca = decomposition.PCA(n_components=3).fit_transform(ztop)
# Spectral
Z_all_laplacian = manifold.SpectralEmbedding(n_components=ndim).fit_transform(Z_all)
ztop_laplacian = Z_all_laplacian[0:bsize * nsamples].reshape(bsize, nsamples, ndim)
Z_laplacian = Z_all_laplacian[bsize * nsamples:]
ztop_only_laplacian = manifold.SpectralEmbedding(n_components=3).fit_transform(ztop)
# Isomap
Z_all_isomap = manifold.Isomap(n_components=ndim).fit_transform(Z_all)
ztop_isomap = Z_all_isomap[0:bsize * nsamples].reshape(bsize, nsamples, ndim)
Z_isomap = Z_all_isomap[bsize * nsamples:]
ztop_only_isomap = manifold.Isomap(n_components=3).fit_transform(ztop)
# TSNE
'''
Z_all_tsne = TSNE(n_components=2).fit_transform(Z_all)
ztop_tsne = Z_all_tsne[0:bsize*nsamples].reshape(bsize, nsamples, 2)
Z_tsne = Z_all_tsne[bsize*nsamples:]
'''
# Z_tsne, ztop_tsne = None, None
return {'Z_pca': Z_pca, 'ztop_pca': ztop_pca,
'Z_laplacian': Z_laplacian, 'ztop_laplacian': ztop_laplacian,
'Z_isomap': Z_isomap, 'ztop_isomap': ztop_isomap,
'ztop_only_pca': ztop_only_pca,
'ztop_only_laplacian': ztop_only_laplacian,
'ztop_only_isomap': ztop_only_isomap}
def parse_command_line(parser=None):
if parser is None: parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
# data params
parser.add_argument('-seed', type=int, default=1)
parser.add_argument('-dataset', type=str, default='i80')
parser.add_argument('-v', type=int, default=4)
parser.add_argument('-model', type=str, default='fwd-cnn')
parser.add_argument('-policy', type=str, default='policy-deterministic')
parser.add_argument('-model_dir', type=str, default='models/')
parser.add_argument('-ncond', type=int, default=20)
parser.add_argument('-npred', type=int, default=30)
parser.add_argument('-layers', type=int, default=3)
parser.add_argument('-batch_size', type=int, default=6)
parser.add_argument('-nfeature', type=int, default=256)
parser.add_argument('-n_hidden', type=int, default=256)
parser.add_argument('-dropout', type=float, default=0.0, help='regular dropout')
parser.add_argument('-lrt', type=float, default=0.0001, help='learning rate')
parser.add_argument('-grad_clip', type=float, default=50.0)
parser.add_argument('-epoch_size', type=int, default=500)
parser.add_argument('-n_futures', type=int, default=10)
parser.add_argument('-u_reg', type=float, default=0.05, help='coefficient of uncertainty regularization term')
parser.add_argument('-u_hinge', type=float, default=0.5)
parser.add_argument('-lambda_a', type=float, default=0.0, help='l2 regularization on actions')
parser.add_argument('-lambda_l', type=float, default=0.2, help='coefficient of lane cost')
parser.add_argument('-lambda_o', type=float, default=1.0, help='coefficient of offroad cost')
parser.add_argument('-lrt_z', type=float, default=0.0)
parser.add_argument('-z_updates', type=int, default=0)
parser.add_argument('-infer_z', action='store_true')
parser.add_argument('-gamma', type=float, default=0.99)
parser.add_argument('-learned_cost', action='store_true')
m1 = 'model=fwd-cnn-vae-fp-layers=3-bsize=64-ncond=20-npred=20-lrt=0.0001-nfeature=256-dropout=0.1-nz=32-' + \
'beta=1e-06-zdropout=0.5-gclip=5.0-warmstart=1-seed=1.step200000.model'
m2 = 'model=fwd-cnn-layers=3-bsize=64-ncond=20-npred=20-lrt=0.0001-nfeature=256-dropout=0.1-gclip=5.0-' + \
'warmstart=0-seed=1.step200000.model'
m3 = 'model=fwd-cnn-vae-fp-layers=3-bsize=64-ncond=20-npred=20-lrt=0.0001-nfeature=256-dropout=0.1-nz=32-' + \
'beta=1e-06-zdropout=0.5-gclip=5.0-warmstart=1-seed=1.step400000.model'
parser.add_argument('-mfile', type=str, default=m3, help='dynamics model used to train the policy network')
parser.add_argument('-value_model', type=str, default='')
parser.add_argument('-load_model_file', type=str, default='')
parser.add_argument('-combine', type=str, default='add')
parser.add_argument('-debug', action='store_true')
parser.add_argument('-save_movies', action='store_true')
parser.add_argument('-l2reg', type=float, default=0.0)
parser.add_argument('-no_cuda', action='store_true')
parser.add_argument('-enable_tensorboard', action='store_true',
help='Enables tensorboard logging.')
parser.add_argument('-tensorboard_dir', type=str, default='models/policy_networks',
help='path to the directory where to save tensorboard log. If passed empty path' \
' no logs are saved.')
opt = parser.parse_args()
opt.n_inputs = 4
opt.n_actions = 2
opt.height = 117
opt.width = 24
opt.h_height = 14
opt.h_width = 3
opt.hidden_size = opt.nfeature * opt.h_height * opt.h_width
return opt
def build_model_file_name(opt):
if 'vae' in opt.mfile:
opt.model_file += f'-model=vae'
if 'zdropout=0.5' in opt.mfile:
opt.model_file += '-zdropout=0.5'
elif 'zdropout=0.0' in opt.mfile:
opt.model_file += '-zdropout=0.0'
if 'model=fwd-cnn-layers' in opt.mfile:
opt.model_file += '-deterministic'
opt.model_file += f'-nfeature={opt.nfeature}'
opt.model_file += f'-bsize={opt.batch_size}'
opt.model_file += f'-npred={opt.npred}'
opt.model_file += f'-ureg={opt.u_reg}'
opt.model_file += f'-lambdal={opt.lambda_l}'
opt.model_file += f'-lambdaa={opt.lambda_a}'
opt.model_file += f'-gamma={opt.gamma}'
opt.model_file += f'-lrtz={opt.lrt_z}'
opt.model_file += f'-updatez={opt.z_updates}'
opt.model_file += f'-inferz={opt.infer_z}'
opt.model_file += f'-learnedcost={opt.learned_cost}'
opt.model_file += f'-seed={opt.seed}'
if opt.value_model == '':
opt.model_file += '-novalue'
print(f'[will save as: {opt.model_file}]')
def create_tensorboard_writer(opt):
tensorboard_enabled = opt.tensorboard_dir != '' and opt.enable_tensorboard
if tensorboard_enabled:
date_str = datetime.now().strftime('%Y_%m_%d_%H_%M_%S_%f')
if hasattr(opt, 'model_file'):
model_name = os.path.basename(opt.model_file)
elif hasattr(opt, 'mfile'):
model_name = os.path.basename(opt.policy_model) # eval_policy has mfile
else:
raise AttributeError("options doesn't contain neither model_file nor mfile field")
script_name = os.path.splitext(sys.argv[0])[0]
tensorboard_log_dir = os.path.join(opt.tensorboard_dir, f'tb_log_{script_name}_{model_name}_{date_str}')
print('saving tensorboard logs to', tensorboard_log_dir)
writer = SummaryWriter(log_dir=tensorboard_log_dir)
return writer
else:
return None
def denormalise_state(state, model_stats):
return (model_stats['s_mean'] + model_stats['s_std'] * state.detach().cpu())[:,:,2:] / 24 * 3.7 * 3.6
def normalize_inputs(images, states, stats, device='cuda'):
images = images.clone().float().div_(255.0)
states -= stats['s_mean'].view(1, 4).expand(states.size())
states /= stats['s_std'].view(1, 4).expand(states.size())
if images.dim() == 4: # if processing single vehicle
images = images.to(device).unsqueeze(0)
states = states.to(device).unsqueeze(0)
return images, states