-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathtraffic_gym.py
1039 lines (897 loc) · 42.3 KB
/
traffic_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import bisect
import pygame, pdb, torch
import math, numpy
import random
import numpy as np
import scipy.misc
import sys, pickle
# from skimage import measure, transform
# from matplotlib.image import imsave
import PIL
from PIL import Image
from custom_graphics import draw_dashed_line, draw_text, draw_rect
from gym import core, spaces
import os
from imageio import imwrite
# from skimage.transform import rescale
# Conversion LANE_W from real world to pixels
# A US highway lane width is 3.7 metres, here 50 pixels
LANE_W = 24 # pixels / 3.7 m, lane width
SCALE = LANE_W / 3.7 # pixels per metre
STATE_C = 3
STATE_H, STATE_W = 117, 24
STATE_D = 4
colours = {
'w': (255, 255, 255),
'k': (000, 000, 000),
'r': (255, 000, 000),
'g': (000, 255, 000),
'm': (255, 000, 255),
'b': (000, 000, 255),
'c': (000, 255, 255),
'y': (255, 255, 000),
}
# Car coordinate system, origin under the centre of the rear axis
#
# ^ y (x, y, x., y.)
# |
# +--=-------=--+
# | | z |
# -----o-------------->
# | | | x
# +--=-------=--+
# |
#
# Will approximate this as having the rear axis on the back of the car!
#
# Car sizes:
# type | width [m] | length [m]
# ---------------------------------
# Sedan | 1.8 | 4.8
# SUV | 2.0 | 5.3
# Compact | 1.7 | 4.5
MAX_SPEED = 130 # km/h
class Car:
# Global constants
SCALE = SCALE
LANE_W = LANE_W
def __init__(self, lanes, free_lanes, dt, car_id, look_ahead, screen_w, font, policy_type, policy_network=None):
"""
Initialise a sedan on a random lane
:param lanes: tuple of lanes, with ``min`` and ``max`` y coordinates
:param dt: temporal updating interval
"""
self._length = round(4.8 * self.SCALE)
self._width = round(1.8 * self.SCALE)
self.id = car_id
lane = random.choice(tuple(free_lanes))
if lane == 6 and type(self).__name__ == 'PatchedCar':
self._position = np.array((0, lanes[-1]['max'] + 42), np.float)
self._direction = np.array((1, -0.035), np.float) / np.sqrt(1 + 0.035 ** 2)
else:
self._position = np.array((
-self._length,
lanes[lane]['mid']
), np.float)
self._direction = np.array((1, 0), np.float)
self._target_speed = max(
0,
(MAX_SPEED - random.randrange(0, 15) - 10 * lane)
) * 1000 / 3600 * self.SCALE # m / s
self._speed = self._target_speed
self._dt = dt
self._colour = colours['c']
self._braked = False
self._passing = False
self._target_lane = self._position[1]
self._noisy_target_lane = self._target_lane
self.crashed = False
self._error = 0
self._states = list()
self._states_image = list()
self._ego_car_image = None
self._actions = list()
self._safe_factor = random.gauss(1.5, 0) # 0.9 Germany, 2 safe
self.pid_k1 = np.random.normal(1e-4, 1e-5)
self.pid_k2 = np.random.normal(1e-3, 1e-4)
self.look_ahead = look_ahead
self.screen_w = screen_w
self._text = self.get_text(self.id, font)
self._policy_type = policy_type
self.policy_network = policy_network
self.is_controlled = False
self.collisions_per_frame = 0
@staticmethod
def get_text(n, font):
text = font.render(str(n), True, colours['b'])
text_rect = text.get_rect()
return text, text_rect
def get_state(self):
state = torch.zeros(4)
state[0] = self._position[0] # x
state[1] = self._position[1] # y
state[2] = self._direction[0] * self._speed # dx/dt
state[3] = self._direction[1] * self._speed # dy/dt
return state
def compute_cost(self, other):
"""
Computes the cost associated with distance to the preceding vehicle
:param other: the guy in front of me
:return: cost
"""
d = self._direction
d_o = np.array((self._direction[1], -self._direction[0])) # ortho direction, pointing left
# max(0, .) required because my.front can > other.back
cost_ahead = max(0, 1 - max(0, (other - self) @ d) / self.safe_distance)
# abs() required because there are cars on the right too
cost_sideways = max(0, 1 - abs((other - self) @ d_o) / self.LANE_W)
return cost_ahead * cost_sideways
def _get_obs(self, left_vehicles, mid_vehicles, right_vehicles):
n_cars = 1 + 6 # this car + 6 neighbors
obs = torch.zeros(n_cars, 2, 2)
mask = torch.zeros(n_cars)
obs = obs.view(n_cars, 4)
cost = 0
v_state = self.get_state()
obs[0].copy_(v_state)
if left_vehicles:
if left_vehicles[0] is not None:
s = left_vehicles[0].get_state()
obs[1].copy_(s)
mask[1] = 1
cost = max(cost, left_vehicles[0].compute_cost(self))
else:
# for bag-of-cars this will be ignored by the mask,
# but fill in with a similar value to not mess up batch norm
obs[1].copy_(v_state)
if left_vehicles[1] is not None:
s = left_vehicles[1].get_state()
obs[2].copy_(s)
mask[2] = 1
cost = max(cost, self.compute_cost(left_vehicles[1]))
else:
obs[2].copy_(v_state)
else:
obs[1].copy_(v_state)
obs[2].copy_(v_state)
if mid_vehicles[0] is not None:
s = mid_vehicles[0].get_state()
obs[3].copy_(s)
mask[3] = 1
cost = max(cost, mid_vehicles[0].compute_cost(self))
else:
obs[3].copy_(v_state)
if mid_vehicles[1] is not None:
s = mid_vehicles[1].get_state()
obs[4].copy_(s)
mask[4] = 1
cost = max(cost, self.compute_cost(mid_vehicles[1]))
else:
obs[4].copy_(v_state)
if right_vehicles:
if right_vehicles[0] is not None:
s = right_vehicles[0].get_state()
obs[5].copy_(s)
mask[5] = 1
cost = max(cost, right_vehicles[0].compute_cost(self))
else:
obs[5].copy_(v_state)
if right_vehicles[1] is not None:
s = right_vehicles[1].get_state()
obs[6].copy_(s)
mask[6] = 1
cost = max(cost, self.compute_cost(right_vehicles[1]))
else:
obs[6].copy_(v_state)
else:
obs[5].copy_(v_state)
obs[6].copy_(v_state)
# self._colour = (255 * cost, 0, 255 * (1 - cost))
# if cost and cost > 0.95:
# print(f'Car {self.id} prox cost: {cost:.2f}')
return obs, mask, cost
def draw(self, surface, mode='human', offset=0):
"""
Draw current car on screen with a specific colour
:param surface: PyGame ``Surface`` where to draw
:param mode: human or machine
:param offset: for representation cropping
"""
x, y = self._position + offset
rectangle = (int(x), int(y), self._length, self._width)
d = self._direction
if mode == 'human':
if self.is_controlled:
pygame.draw.rect(surface, (0, 255, 0),
(int(x - 10), int(y - 15), self._length + 10 + 10, 30), 2)
# # Highlight colliding vehicle / debugging purpose
# if self.collisions_per_frame > 0:
# larger_rectangle = (*((x, y) - self._direction * 10), self._length + 10 + 10, self._width + 10 + 10,)
# draw_rect(surface, colours['g'], larger_rectangle, d, 2)
# # # Remove collision, if reading it from file
# # self.collisions_per_frame = 0
# # Pick one out
# if self.id == 738: self._colour = colours['r']
# # Green / red -> left-to-right / right-to-left
# if d[0] > 0: self._colour = (0, 255, 0) # green: vehicles moving to the right
# if d[0] < 0: self._colour = (255, 0, 0) # red: vehicles moving to the left
_r = draw_rect(surface, self._colour, rectangle, d)
# Drawing vehicle number
if x < self.front[0]:
self._text[1].left = x
else:
self._text[1].right = x
self._text[1].top = y - self._width // 2
surface.blit(self._text[0], self._text[1])
if self._braked: self._colour = colours['g']
return _r
if mode == 'machine':
return draw_rect(surface, colours['g'], rectangle, d)
if mode == 'ego-car':
return draw_rect(surface, colours['b'], rectangle, d)
if mode == 'ghost':
return draw_rect(surface, colours['y'], rectangle, d)
def step(self, action): # takes also the parameter action = state temporal derivative
"""
Update current position, given current velocity and acceleration
"""
# Actions: acceleration (a), steering (b)
a, b = action
# State integration
self._position += self._speed * self._direction * self._dt
ortho_direction = np.array((self._direction[1], -self._direction[0]))
direction_vector = self._direction + ortho_direction * b * self._speed * self._dt
self._direction = direction_vector / (np.linalg.norm(direction_vector) + 1e-3)
self._speed += a * self._dt
# Deal with latent variable and visual indicator
if self._passing and abs(self._error) < 0.5:
self._passing = False
self._colour = colours['c']
def get_lane_set(self, lanes):
"""
Returns the set of lanes currently occupied
:param lanes: tuple of lanes, with ``min`` and ``max`` y coordinates
:return: busy lanes set
"""
busy_lanes = set()
y = self._position[1]
half_w = self._width // 2
for lane_idx, lane in enumerate(lanes):
if lane['min'] <= y - half_w <= lane['max'] or lane['min'] <= y + half_w <= lane['max']:
busy_lanes.add(lane_idx)
return busy_lanes
@property
def safe_distance(self):
return abs(self._speed) * self._safe_factor + 1 * self.SCALE # plus one metre
@property
def front(self):
return self._position + self._length * self._direction
@property
def back(self):
return self._position
def _brake(self, fraction):
if self._passing: return 0
# Maximum braking acceleration, eq. (1) from
# http://www.tandfonline.com/doi/pdf/10.1080/16484142.2007.9638118
g, mu = 9.81, 0.9 # gravity and friction coefficient
acceleration = -fraction * g * mu * self.SCALE
self._colour = colours['y']
self._braked = True
return acceleration
def _pass_left(self):
self._target_lane = self._position[1] - self.LANE_W
self._noisy_target_lane = self._noisy_target_lane
self._passing = True
self._colour = colours['m']
self._braked = False
def _pass_right(self):
self._target_lane = self._position[1] + self.LANE_W
self._noisy_target_lane = self._noisy_target_lane
self._passing = True
self._colour = colours['m']
self._braked = False
def __gt__(self, other):
"""
Check if self is in front of other: self.front[0] > other.front[0]
"""
return self.front[0] > other.front[0]
def __lt__(self, other):
"""
Check if self is behind of other: self.front[0] < other.front[0]
"""
return self.front[0] < other.front[0]
def __sub__(self, other):
"""
Return the distance between self.back and other.front
"""
return self.back - other.front
def policy(self, observation, policy_type):
if policy_type == 'hardcoded':
return self.policy_hardcoded(observation)
elif policy_type == 'imitation':
return self.policy_imitation(observation)
def policy_hardcoded(self, observation):
"""
Bring together _pass, brake
:return: acceleration, d_theta
"""
a = 0
car_ahead = observation[1][1]
if car_ahead:
distance = (car_ahead - self)[0]
if self.safe_distance > distance > 0:
if random.random() < 0.5:
if self._safe_left(observation):
self._pass_left()
elif self._safe_right(observation):
self._pass_right()
else:
a = self._brake(min((self.safe_distance / distance) ** 0.2 - 1, 1))
else:
if self._safe_right(observation):
self._pass_right()
elif self._safe_left(observation):
self._pass_left()
else:
a = self._brake(min((self.safe_distance / distance) ** 0.2 - 1, 1))
elif distance <= 0:
self._colour = colours['r']
self.crashed = True
if random.random() < 0.05:
if self._safe_right(observation):
self._pass_right()
self._target_speed *= 0.95
if a == 0:
a = 1 * (self._target_speed - self._speed)
# if random.random() < 0.1:
# self._noisy_target_lane = self._target_lane + np.random.normal(0, LANE_W * 0.1)
# error = -(self._noisy_target_lane - self._position[1])
# if random.random() < 0.05 and not self._passing:
# self._target_speed *= (1 + np.random.normal(0, 0.05))
error = -(self._target_lane - self._position[1])
d_error = error - self._error
d_clip = 2
if abs(d_error) > d_clip:
d_error *= d_clip / abs(d_error)
self._error = error
b = self.pid_k1 * error + self.pid_k2 * d_error
action = np.array((a, b)) # dx/dt, car state temporal derivative
return action
def _safe_left(self, state):
if self.back[0] < self.safe_distance: return False # Cannot see in the future
if self._passing: return False
if state[0] is None: return False # On the leftmost lane
if state[0][0] and (self - state[0][0])[0] < state[0][0].safe_distance: return False
if state[0][1] and (state[0][1] - self)[0] < self.safe_distance: return False
return True
def _safe_right(self, state):
if self.back[0] < self.safe_distance: return False # Cannot see in the future
if self._passing: return False
if state[2] is None: return False # On the rightmost lane
if state[2][0] and (self - state[2][0])[0] < state[2][0].safe_distance: return False
if state[2][1] and (state[2][1] - self)[0] < self.safe_distance: return False
return True
def _get_observation_image(self, m, screen_surface, width_height, scale, global_frame):
d = self._direction
x_y = np.ceil(np.array((abs(d) @ width_height, abs(d) @ width_height[::-1])))
centre = self._position + (d * self._length) // 2
try:
sub_surface = screen_surface.subsurface((*(centre + m - x_y / 2), *x_y))
except ValueError as ex: # if the agent fucks up
print(f'{self} fucked up') # notify about the event
self.off_screen = True # we're off_screen
return self._states_image[-1] # return last state
theta = np.arctan2(*d[::-1]) * 180 / np.pi # in degrees
rot_surface = pygame.transform.rotate(sub_surface, theta)
width_height = np.floor(np.array(width_height))
surf_w = rot_surface.get_width()
surf_h = rot_surface.get_height()
x = (surf_w - width_height[0]) // 2
y = (surf_h - width_height[1]) // 2
sub_rot_surface = rot_surface.subsurface(x, y, *width_height)
sub_rot_array = pygame.surfarray.array3d(sub_rot_surface).transpose(1, 0, 2) # flip x and y
# sub_rot_array_scaled = rescale(sub_rot_array, scale, mode='constant') # output not consistent with below
new_h = int(scale*sub_rot_array.shape[0])
new_w = int(scale*sub_rot_array.shape[1])
sub_rot_array_scaled = np.array(PIL.Image.fromarray(sub_rot_array).resize((new_w, new_h), resample=2)) #bilinear
sub_rot_array_scaled_up = np.rot90(sub_rot_array_scaled) # facing upward, not flipped
sub_rot_array_scaled_up[:, :, 0] *= 4
assert sub_rot_array_scaled_up.max() <= 255
# Compute cost relative to position within the lane
x = np.ceil((surf_w - self._length) / 2)
y = np.ceil((surf_h - self.LANE_W) / 2)
neighbourhood = rot_surface.subsurface(x, y, self._length, self.LANE_W)
neighbourhood_array = pygame.surfarray.array3d(neighbourhood).transpose(1, 0, 2) # flip x and y
lanes = neighbourhood_array[:, :, 0]
lane_mask = np.broadcast_to((1 - abs(np.linspace(-1, 1, self.LANE_W))).reshape(-1, 1), lanes.shape)
lane_cost = (lanes * lane_mask).max() / 255
# Compute x/y minimum distance to other vehicles (pixel version)
# Account for 1 metre overlap (low data accuracy)
alpha = 1 * self.SCALE # 1 m overlap collision
# Create separable proximity mask
crop_h, crop_w, _ = sub_rot_array.shape
max_x = np.ceil((crop_w - max(self._length - alpha, 0)) / 2)
max_y = np.ceil((crop_h - max(self._width - alpha, 0)) / 2)
min_x = max(np.ceil(max_x - self.safe_distance), 0)
min_y = np.ceil(crop_h / 2 - self._width) # assumes other._width / 2 = self._width / 2
x_filter = (1 - abs(np.linspace(-1, 1, crop_w))) * crop_w / 2 # 45 degree
x_filter[x_filter > max_x] = max_x # chop off top
x_filter[x_filter < min_x] = min_x # chop off bottom
x_filter = (x_filter - min_x) / (max_x - min_x) # normalise
y_filter = (1 - abs(np.linspace(-1, 1, crop_h))) * crop_h / 2 # 45 degree
y_filter[y_filter > max_y] = max_y # chop off top
y_filter[y_filter < min_y] = min_y # chop off bottom
y_filter = (y_filter - min_y) / (max_y - min_y) # normalise
proximity_mask = y_filter.reshape(-1, 1) @ x_filter.reshape(1, -1)
# Compute cost
vehicles = sub_rot_array[:, :, 1] # flip x and y, get green
proximity_cost = (vehicles * proximity_mask).max() / 255
# Inspecting collisions
# if proximity_cost > 0.99:
# with open(f'scratch/collisions/{self}-{self._frame}.pkl', 'wb') as f:
# pickle.dump({
# 'vehicles': vehicles,
# 'proximity_mask': proximity_mask,
# 'proximity_cost': proximity_cost,
# 'sub_rot_array': sub_rot_array,
# }, f)
# # Draw boxes, for visualisation purpose
# # init as: env.reset(time_interval=1, frame=2510, control=False)
# if self.id in (1033, 987, 992, 958, 961):
# w, h = width_height
# points = np.array(((w, -h), (-w, -h), (-w, h), (w, h))) / 2
# c, s = d
# rot = np.array(((c, -s), (s, c)))
# rot_points = (rot @ points.T).T + centre + m
# pygame.draw.polygon(screen_surface, colours['c'], rot_points, 1)
# imsave(f'car {self.id}.png', sub_rot_array_scaled_up)
# self._colour = (255 * lane_cost, 0, 255 * (1 - lane_cost))
# return state_image, lane_cost, proximity_cost, frame
return torch.from_numpy(sub_rot_array_scaled_up.copy()), lane_cost, proximity_cost, global_frame
def store(self, object_name, object_):
if object_name == 'action':
self._actions.append(torch.Tensor(object_))
elif object_name == 'state':
self._states.append(self._get_obs(*object_))
elif object_name == 'state_image':
self._states_image.append(self._get_observation_image(*object_))
elif object_name == 'ego_car_image' and self._ego_car_image is None:
self._ego_car_image = self._get_observation_image(*object_)[0]
def get_last(self, n, done, norm_state=False, return_reward=False, gamma=0.99):
if len(self._states_image) < n: return None # no enough samples
# n × (state_image, lane_cost, proximity_cost, frame) ->
# -> (n × state_image, n × lane_cost, n × proximity_cost, n × frame)
transpose = list(zip(*self._states_image))
state_images = transpose[0]
state_images = torch.stack(state_images).permute(0, 3, 1, 2)[-n:]
ego_car_new_shape = list(state_images.shape)
ego_car_new_shape[1] = 1
ego_car_channel = self._ego_car_image[:, :, 2][None, None, :].expand(ego_car_new_shape)
state_images = torch.cat((state_images, ego_car_channel), 1)
zip_ = list(zip(*self._states)) # n × (obs, mask, cost) -> (n × obs, n × mask, n × cost)
states = torch.stack(zip_[0])[:, 0][-n:] # select the ego-state (of 1 + 6 states we keep track)
if norm_state is not False: # normalise the states, if requested
states = states.sub(norm_state['s_mean']).div(norm_state['s_std']) # N(0, 1) range
state_images = state_images.float().div(255) # [0, 1] range
observation = dict(context=state_images, state=states)
cost = dict(
proximity_cost=self._states[-1][2],
lane_cost=self._states_image[-1][1],
pixel_proximity_cost=self._states_image[-1][2],
collisions_per_frame=self.collisions_per_frame,
arrived_to_dst=self.arrived_to_dst,
)
if return_reward: # if we're playing with model free RL, have fun with reward shaping
arrived = self.arrived_to_dst
collision = self.collisions_per_frame > 0
done = done or collision # die if collide
lambda_lane = 0.2
max_rew = 1 + lambda_lane
win = max_rew / (1 - gamma)
reward = max_rew - cost['pixel_proximity_cost'] - lambda_lane * cost['lane_cost'] + win * arrived
# So, observation must be just one damn numpy thingy
observation = torch.cat((
states.view(n, -1),
state_images.view(n, -1),
), dim=1).numpy()
return observation, reward, self.off_screen or done, dict(v=str(self), a=self.arrived_to_dst)
return observation, cost, self.off_screen or done, self
def dump_state_image(self, save_dir='scratch/', mode='img'):
os.system('mkdir -p ' + save_dir)
transpose = list(zip(*self._states_image))
if len(transpose) == 0:
print(f'failure, {save_dir}')
# print(transpose)
return
im = transpose[0]
if mode == 'tensor':
lane_cost = torch.Tensor(transpose[1])
pixel_proximity_cost = torch.Tensor(transpose[2])
frames = np.array(transpose[3])
zip_ = list(zip(*self._states))
proximity_cost = torch.Tensor(zip_[2])
states = torch.stack(zip_[0])
mask = torch.stack(zip_[1])
# save in torch format
im_pth = torch.stack(im).permute(0, 3, 1, 2)
with open(os.path.join(save_dir, f'car{self.id}.pkl'), 'wb') as f:
pickle.dump({
'images': im_pth,
'actions': torch.stack(self._actions),
'lane_cost': lane_cost,
'pixel_proximity_cost': pixel_proximity_cost,
'states': states,
'proximity_cost': proximity_cost,
'mask': mask,
'frames': frames,
'ego_car': self._ego_car_image.permute(2, 0, 1),
}, f)
elif mode == 'img':
save_dir = os.path.join(save_dir, str(self.id))
os.system('mkdir -p ' + save_dir)
for t in range(len(im)):
imwrite(f'{save_dir}/im{t:05d}.png', im[t].numpy())
@property
def valid(self):
return self.back[0] > self.look_ahead and self.front[0] < self.screen_w - 1.75 * self.look_ahead
def __repr__(self) -> str:
cls = self.__class__
return f'{cls.__module__}.{cls.__name__}.{self.id}'
@property
def shape(self):
return self._length, self._width
class Simulator(core.Env):
# Environment's car class
EnvCar = Car
# Global constants
SCALE = SCALE
LANE_W = LANE_W
DUMP_NAME = 'data_ai_v0'
# Action space definition
action_space = spaces.Box(low=-1, high=1, shape=(2,), dtype=np.float32) # brake / accelerate, right / left
def __init__(self, display=True, nb_lanes=4, fps=30, delta_t=None, traffic_rate=15, state_image=False, store=False,
policy_type='hardcoded', nb_states=0, data_dir='', normalise_action=False, normalise_state=False,
return_reward=False, gamma=0.99, show_frame_count=True, store_simulator_video=False):
# Observation spaces definition
self.observation_space = spaces.Box(low=-1, high=1, shape=(nb_states, STATE_D + STATE_C * STATE_H * STATE_W), dtype=np.float32)
self.offset = int(1.5 * self.LANE_W)
self.screen_size = (80 * self.LANE_W, nb_lanes * self.LANE_W + self.offset + self.LANE_W // 2)
self.fps = fps # updates per second
self.delta_t = delta_t or 1 / fps # simulation timing interval
self.nb_lanes = nb_lanes # total number of lanes
self.frame = 0 # frame index
self.lanes = self.build_lanes(nb_lanes) # create lanes object, list of dicts
self.vehicles = None # vehicles list
self.traffic_rate = traffic_rate # new cars per second
self.lane_occupancy = None # keeps track of what vehicle are in each lane
self.collision = None # an accident happened
self.episode = 0 # episode counter
self.car_id = None # car counter init
self.state_image = state_image or policy_type == 'imitation'
self.mean_fps = None
self.store = store or policy_type == 'imitation'
self.next_car_id = None
self.photos = None
self.look_ahead = MAX_SPEED * 1000 / 3600 * self.SCALE
self.look_sideways = 2 * self.LANE_W
self.policy_type = policy_type
self.actions_buffer = []
self.policy_network = None
self._lane_surfaces = dict()
self.time_counter = None
self.controlled_car = None
self.nb_states = nb_states
self.data_dir = data_dir
self.user_is_done = None
self.display = display
if self.display: # if display is required
pygame.init() # init PyGame
self.screen = pygame.display.set_mode(self.screen_size) # set screen size
self.clock = pygame.time.Clock() # set up timing
self.font = {
20: pygame.font.SysFont(None, 20),
30: pygame.font.SysFont(None, 30),
}
self.random = random.Random()
self.normalise_action = normalise_action
self.normalise_state = normalise_state
self.return_reward = return_reward
self.gamma = gamma
self.done = None
self.show_frame_count = show_frame_count
self.ghost = None
self.store_sim_video = store_simulator_video
def seed(self, seed=None):
self.random.seed(seed)
def build_lanes(self, nb_lanes):
return tuple(
{'min': self.offset + n * self.LANE_W,
'mid': self.offset + self.LANE_W / 2 + n * self.LANE_W,
'max': self.offset + (n + 1) * self.LANE_W}
for n in range(nb_lanes)
)
def set_policy(self, policy_network):
self.policy_network = policy_network
def reset(self, control=True, **kwargs):
# Initialise environment state
self.frame = 0
self.vehicles = list()
self.lane_occupancy = [[] for _ in range(self.nb_lanes)]
self.episode += 1
# keep track of the car we are controlling
self.next_car_id = 0
self.mean_fps = None
self.time_counter = 0
pygame.display.set_caption(f'Traffic simulator, episode {self.episode}, start from frame {self.frame}')
if control:
self.controlled_car = {
'locked': False,
}
self.user_is_done = False
self.done = False
def policy_imitation(self, observation):
s_mean = torch.Tensor([891.5662, 116.9270, 39.2255, -0.2574])
s_std = torch.Tensor([391.5376, 43.8825, 25.1841, 1.0992])
# observation is a tuple (images, states)
images = observation[0].contiguous()
states = observation[1].contiguous()
images.div_(255.0)
bsize = images.size(0)
states -= s_mean.view(1, 1, 4).expand(states.size())
states /= (1e-8 + s_std.view(1, 1, 4).expand(states.size()))
images = images.float()
states = states.float()
_, _, _, actions = self.policy_network(images, states, sample=True, unnormalize=True)
actions = actions.view(bsize, -1, 2)
return actions
def step(self, policy_action=None):
self.collision = False
# Free lane beginnings
# free_lanes = set(range(self.nb_lanes))
free_lanes = set(range(1, self.nb_lanes))
# For every vehicle
# t <- t + dt
# leave or enter lane
# remove itself if out of screen
# update free lane beginnings
for v in self.vehicles[:]:
lanes_occupied = v.get_lane_set(self.lanes)
# Check for any passing and update lane_occupancy
for l in range(self.nb_lanes):
if l in lanes_occupied and v not in self.lane_occupancy[l]:
# Enter lane
bisect.insort(self.lane_occupancy[l], v)
elif l not in lanes_occupied and v in self.lane_occupancy[l]:
# Leave lane
self.lane_occupancy[l].remove(v)
# Remove from the environment cars outside the screen
if v.back[0] > self.screen_size[0]:
for l in lanes_occupied: self.lane_occupancy[l].remove(v)
self.vehicles.remove(v)
# Update available lane beginnings
if v.back[0] < v.safe_distance: # at most safe_distance ahead
free_lanes -= lanes_occupied
# Randomly add vehicles, up to 1 / dt per second
if random.random() < self.traffic_rate * np.sin(2 * np.pi * self.frame * self.delta_t) * self.delta_t:
if free_lanes:
car = self.EnvCar(self.lanes, free_lanes, self.delta_t, self.next_car_id,
self.look_ahead, self.screen_size[0], self.font[20], policy_type=self.policy_type,
policy_network=self.policy_network)
self.next_car_id += 1
self.vehicles.append(car)
for l in car.get_lane_set(self.lanes):
# Prepend the new car to each lane it can be found
self.lane_occupancy[l].insert(0, car)
if self.state_image:
self.render(mode='machine', width_height=(2 * self.look_ahead, 2 * self.look_sideways), scale=0.25)
# Generate state representation for each vehicle
# remove vehicles that need to be removed first
for v in self.vehicles:
lane_set = v.get_lane_set(self.lanes)
if len(lane_set) == 0:
lanes_occupied = v.get_lane_set(self.lanes)
for l in lanes_occupied: self.lane_occupancy[l].remove(v)
self.vehicles.remove(v)
states_images, states_raw, update = [], [], []
# print(len(self.vehicles))
for v in self.vehicles:
lane_set = v.get_lane_set(self.lanes)
# If v is in one lane only
# Provide a list of (up to) 6 neighbouring vehicles
if len(lane_set) == 0:
lanes_occupied = v.get_lane_set(self.lanes)
for l in lanes_occupied: self.lane_occupancy[l].remove(v)
self.vehicles.remove(v)
continue
current_lane_idx = lane_set.pop()
# Given that I'm not in the left/right-most lane
left_vehicles = self._get_neighbours(current_lane_idx, - 1, v) \
if current_lane_idx > 0 and len(lane_set) == 0 else None
mid_vehicles = self._get_neighbours(current_lane_idx, 0, v)
right_vehicles = self._get_neighbours(current_lane_idx, + 1, v) \
if current_lane_idx < len(self.lanes) - 1 else None
state = left_vehicles, mid_vehicles, right_vehicles
if self.policy_type == 'imitation':
if len(v._states_image) > 10: # and v.id == self.policy_car_id:
state_image, state_raw = v.get_last(10)
v.update = 1
else:
state_image, state_raw = torch.zeros(10, 3, 117, 24), torch.zeros(10, 4)
v.update = 0
states_images.append(state_image.float())
states_raw.append(state_raw.float())
v.store('state', state)
if self.policy_type == 'hardcoded':
# Compute the action
if v.is_controlled and policy_action is not None:
action = policy_action
else:
# if len(v._states_image) >= 10 and self.policy_type == 'imitation':
# state_ = v.get_last_state_image(10)
# action = v.policy(state_, 'imitation')
# # print('here')
# else:
# # if len(v._states_image) > 15:
# # pdb.set_trace()
action = v.policy(state, 'hardcoded')
# Check for accident
if v.crashed: self.collision = v
if (self.store or v.is_controlled) and v.valid:
v.store('state', state)
v.store('action', action)
# update the cars
v.step(action)
if self.policy_type == 'imitation' and len(self.vehicles) > 0:
# update the cars
predictions_nb = 20
if self.time_counter == 0 or len(self.vehicles) != self.actions_buffer.size(0):
print('new actions')
states_images = torch.stack(states_images)
states_raw = torch.stack(states_raw)
self.actions_buffer = self.policy_imitation([states_images, states_raw])
self.time_counter = 0
car_counter = 0
for v in self.vehicles:
if v.update == 1:
if car_counter >= self.actions_buffer.size(0):
pdb.set_trace()
action = self.actions_buffer[car_counter][self.time_counter].numpy()
else:
action = np.array([0, 0])
# print(action)
# action = np.array([0, 0])
b = action[1]
action[1] = min(abs(b), v._speed / MAX_SPEED / SCALE * .01) * np.sign(b)
v.step(action)
# if v.id == 2:
# print(v.id, *action, v._speed / SCALE, v._target_speed / SCALE)
# v.store('action', action)
car_counter += 1
self.time_counter += 1
if self.time_counter >= predictions_nb:
self.time_counter = 0
self.frame += 1
# return observation, reward, done, info
return None, None, False, self.vehicles
def _get_neighbours(self, current_lane_idx, d_lane, v):
# Shallow copy the target lane
target_lane = self.lane_occupancy[current_lane_idx + d_lane][:]
# If I find myself in the target list, remove me
if v in target_lane: target_lane.remove(v)
# Find me in the lane
my_idx = bisect.bisect(target_lane, v)
behind = target_lane[my_idx - 1] if my_idx > 0 else None
ahead = target_lane[my_idx] if my_idx < len(target_lane) else None
return behind, ahead
def render(self, mode='human', width_height=None, scale=1.):
if mode == 'human' and self.display:
# if self.frame % 1000 == 0:
# pygame.image.save(self.screen, "Peachtree/ghosts.png")
# self.screen.fill(colours['k'])
# self._pause()
# measure time elapsed, enforce it to be >= 1/fps
fps = int(1 / self.clock.tick(self.fps) * 1e3)
self.mean_fps = 0.9 * self.mean_fps + 0.1 * fps if self.mean_fps is not None else fps
# clear the screen
self.screen.fill(colours['k'])
# background pictures
if self.photos:
for i in range(len(self.photos)):
self.screen.blit(self.photos[i], self.photos_rect[i])
# draw lanes
self._draw_lanes(self.screen)
for v in self.vehicles:
v.draw(self.screen)
draw_text(self.screen, f'# cars: {len(self.vehicles)}', (10, 2), font=self.font[30])
draw_text(self.screen, f'frame #: {self.frame}', (120, 2), font=self.font[30])
draw_text(self.screen, f'fps: {self.mean_fps:.0f}', (270, 2), font=self.font[30])
pygame.display.flip()
# # save surface as image, for visualisation only
# pygame.image.save(self.screen, "screen_surface.png")
# pygame.image.save(self.screen, f'screen-dumps/{self.dump_folder}/{self.frame:08d}.png')
# capture the closing window and mouse-button-up event
for event in pygame.event.get():
if event.type == pygame.QUIT:
sys.exit()
elif event.type == pygame.MOUSEBUTTONUP:
self._pause()
elif event.type == pygame.KEYDOWN and event.key == pygame.K_d:
self.user_is_done = True
# if self.collision:
# self._pause()
# self.collision = False
if mode == 'machine':
max_extension = int(np.linalg.norm(width_height) / 2)
machine_screen_size = np.array(self.screen_size) + 2 * max_extension
vehicle_surface = pygame.Surface(machine_screen_size)
# draw lanes
try:
lane_surface = self._lane_surfaces[mode]
except KeyError:
lane_surface = pygame.Surface(machine_screen_size)
self._draw_lanes(lane_surface, mode=mode, offset=max_extension)
# # draw vehicles
# for v in self.vehicles:
# v.draw(vehicle_surface, mode=mode, offset=max_extension)
#
# vehicle_surface.blit(lane_surface, (0, 0), special_flags=pygame.BLEND_MAX)
# extract states
ego_surface = pygame.Surface(machine_screen_size)
for i, v in enumerate(self.vehicles):
if (self.store or v.is_controlled) and v.valid:
# For every vehicle we want to extract the state, start with a black surface
vehicle_surface.fill((0, 0, 0))
# Draw all the other vehicles (in green)
for vv in set(self.vehicles) - {v}:
vv.draw(vehicle_surface, mode=mode, offset=max_extension)
# Superimpose the lanes
vehicle_surface.blit(lane_surface, (0, 0), special_flags=pygame.BLEND_MAX)
# Empty ego-surface
ego_surface.fill((0, 0, 0))
# Draw myself blue on the ego_surface
ego_rect = v.draw(ego_surface, mode='ego-car', offset=max_extension)
# Add me on top of others without shadowing
# vehicle_surface.blit(ego_surface, ego_rect, ego_rect, special_flags=pygame.BLEND_MAX)
v.store('state_image', (max_extension, vehicle_surface, width_height, scale, self.frame))
v.store('ego_car_image', (max_extension, ego_surface, width_height, scale, self.frame))
# Store whole history, if requested
if self.store_sim_video:
if self.ghost:
self.ghost.draw(vehicle_surface, mode='ghost', offset=max_extension)
v.frames.append(pygame.surfarray.array3d(vehicle_surface).transpose(1, 0, 2)) # flip x and y
# # save surface as image, for visualisation only