int Smooth(cv::Mat &seg, std::vector<unsigned char> &history_seg_image) {
// seg为当前帧mask
// history_seg_image为上一帧mask
// diff为seg和history_seg_image的绝对值差异图
int size = seg.rows * seg.cols;
if (history_seg_image.size() != size) {
history_seg_image.resize(size);
memcpy(history_seg_image.data(), seg.data, size);
}
cv::Mat history_seg(seg.rows, seg.cols, CV_8UC1, history_seg_image.data());
cv::Mat diff(seg.rows, seg.cols, CV_8UC1);
cv::absdiff(seg, history_seg, diff); // cv::absdiff
for (int y = 0; y < seg.rows; ++y) {
uchar *ptr_y_seg = seg.ptr(y);
uchar *ptr_y_seg_his = history_seg.ptr(y);
uchar *ptr_diff = diff.ptr(y);
for (int x = 0; x < seg.cols; ++x) {
uchar _diff = ptr_diff[x];
uchar _seg_his = ptr_y_seg_his[x];
uchar _seg = ptr_y_seg[x];
// 遍历gray图像的每个像素点,根据diff的值确定mix值(hist_ratio),将seg和his_seg进行混合,输出到seg上
float hist_ratio = 1.0f;
if (_diff < 60) {
hist_ratio = 0.9f;
} else if (_diff < 80) {
hist_ratio = 0.85f;
} else if (_diff < 100) {
hist_ratio = 0.8f;
} else if (_diff < 120) {
hist_ratio = 0.3f;
} else if (_diff < 140) {
hist_ratio = 0.2f;
} else {
hist_ratio = 0.0f;
}
ptr_y_seg[x] = hist_ratio * _seg_his + (1 - hist_ratio) * _seg;
}
}
memcpy(history_seg_image.data(), seg.data, size);
return 0;
}
int SmoothOpt(cv::Mat &seg, std::vector<unsigned char> &history_seg_image) {
int size = seg.rows * seg.cols;
if (history_seg_image.size() != size) {
history_seg_image.resize(size);
memcpy(history_seg_image.data(), seg.data, size);
}
cv::Mat history_seg(seg.rows, seg.cols, CV_8UC1, history_seg_image.data());
cv::Mat diff(seg.rows, seg.cols, CV_8UC1);
cv::absdiff(seg, history_seg, diff);
Mat history_seg_float(seg.size(), CV_32FC1, Scalar(0.0));
history_seg.convertTo(history_seg_float, CV_32FC1, 1.0, 0);
Mat seg_float(seg.size(), CV_32FC1, Scalar(0.0));
seg.convertTo(seg_float, CV_32FC1, 1.0, 0);
Mat diff_geater_0 = 0 <= diff;
Mat diff_less_60 = diff < 60;
Mat mask_0_60(seg.size(), CV_8UC1, Scalar(0));
Mat mask_nor_0_60(seg.size(), CV_32FC1, Scalar(0.0));
mask_0_60 = diff_geater_0.mul(diff_less_60); // 0-60 diff为255*255=255,其余为0
mask_0_60.convertTo(mask_nor_0_60, CV_32FC1, 1.0 / 255, 0); // 0-60 diff为1.0,其余为0
Mat his_weight_mask_0_60 = mask_nor_0_60 * 0.6;
Mat seg_weight_mask_0_60 = mask_nor_0_60 * (1 - 0.6);
Mat mat_0_60 = his_weight_mask_0_60.mul(history_seg_float) + seg_weight_mask_0_60.mul(seg_float);
Mat diff_geater_60 = 60 <= diff;
Mat diff_less_255 = diff < 255;
Mat mask_60_255(seg.size(), CV_8UC1, Scalar(0));
Mat mask_nor_60_255(seg.size(), CV_32FC1, Scalar(0.0));
mask_60_255 = diff_geater_60.mul(diff_less_255);
mask_0_60.convertTo(mask_nor_60_255, CV_32FC1, 1.0 / 255, 0);
Mat his_weight_mask_60_255 = mask_nor_60_255 * 0.1;
Mat seg_weight_mask_60_255 = mask_nor_60_255 * (1 - 0.1);
Mat mat_60_255 = his_weight_mask_60_255.mul(history_seg_float)
+ seg_weight_mask_60_255.mul(seg_float);
seg_float = mat_0_60 + mat_60_255;
seg_float.convertTo(seg, CV_8UC1, 1, 0);
memcpy(history_seg_image.data(), seg.data, size);
return 0;
}