diff --git a/_modules/graphnet/data/datamodule.html b/_modules/graphnet/data/datamodule.html index 302b2dc51..e73580794 100644 --- a/_modules/graphnet/data/datamodule.html +++ b/_modules/graphnet/data/datamodule.html @@ -642,6 +642,39 @@

Source code for graphnet.da "Unknown dataset encountered during dataloader creation." ) + if "sampler" in dataloader_args.keys(): + # If there were no kwargs provided, set it to empty dict + if "sampler_kwargs" not in dataloader_args.keys(): + dataloader_args["sampler_kwargs"] = {} + dataloader_args["sampler"] = dataloader_args["sampler"]( + dataset, **dataloader_args["sampler_kwargs"] + ) + del dataloader_args["sampler_kwargs"] + + if "batch_sampler" in dataloader_args.keys(): + if "sampler" not in dataloader_args.keys(): + raise KeyError( + "When specifying a `batch_sampler`," + "you must also provide `sampler`." + ) + # If there were no kwargs provided, set it to empty dict + if "batch_sampler_kwargs" not in dataloader_args.keys(): + dataloader_args["batch_sampler_kwargs"] = {} + + batch_sampler = dataloader_args["batch_sampler"]( + dataloader_args["sampler"], + **dataloader_args["batch_sampler_kwargs"], + ) + dataloader_args["batch_sampler"] = batch_sampler + # Remove extra keys + for key in [ + "batch_sampler_kwargs", + "drop_last", + "sampler", + "shuffle", + ]: + dataloader_args.pop(key, None) + if dataloader_args is None: raise AttributeError("Dataloader arguments not provided.") @@ -848,7 +881,6 @@

Source code for graphnet.da .sample(frac=1, replace=False, random_state=self._rng) .values.tolist() ) # shuffled list - return self._split_selection(all_events) def _construct_dataset(self, tmp_args: Dict[str, Any]) -> Dataset: diff --git a/_modules/graphnet/data/dataset/parquet/parquet_dataset.html b/_modules/graphnet/data/dataset/parquet/parquet_dataset.html index cee79309e..918502cb4 100644 --- a/_modules/graphnet/data/dataset/parquet/parquet_dataset.html +++ b/_modules/graphnet/data/dataset/parquet/parquet_dataset.html @@ -453,7 +453,7 @@

Source `"10000 random events ~ event_no % 5 > 0"` or `"20% random events ~ event_no % 5 > 0"`). graph_definition: Method that defines the graph representation. - cache_size: Number of batches to cache in memory. + cache_size: Number of files to cache in memory. Must be at least 1. Defaults to 1. labels: Dictionary of labels to be added to the dataset. """ @@ -484,8 +484,8 @@

Source self._path: str = self._path # Member Variables self._cache_size = cache_size - self._batch_sizes = self._calculate_sizes() - self._batch_cumsum = np.cumsum(self._batch_sizes) + self._chunk_sizes = self._calculate_sizes() + self._chunk_cumsum = np.cumsum(self._chunk_sizes) self._file_cache = self._initialize_file_cache( truth_table=truth_table, node_truth_table=node_truth_table, @@ -540,9 +540,14 @@

Source ) return event_index + @property + def chunk_sizes(self) -> List[int]: + """Return a list of the chunk sizes.""" + return self._chunk_sizes + def __len__(self) -> int: """Return length of dataset, i.e. number of training examples.""" - return sum(self._batch_sizes) + return sum(self._chunk_sizes) def _get_all_indices(self) -> List[int]: """Return a list of all unique values in `self._index_column`.""" @@ -550,22 +555,22 @@

Source return np.arange(0, len(files), 1) def _calculate_sizes(self) -> List[int]: - """Calculate the number of events in each batch.""" + """Calculate the number of events in each chunk.""" sizes = [] - for batch_id in self._indices: + for chunk_id in self._indices: path = os.path.join( self._path, self._truth_table, - f"{self.truth_table}_{batch_id}.parquet", + f"{self.truth_table}_{chunk_id}.parquet", ) sizes.append(len(pol.read_parquet(path))) return sizes def _get_row_idx(self, sequential_index: int) -> int: """Return the row index corresponding to a `sequential_index`.""" - file_idx = bisect_right(self._batch_cumsum, sequential_index) + file_idx = bisect_right(self._chunk_cumsum, sequential_index) if file_idx > 0: - idx = int(sequential_index - self._batch_cumsum[file_idx - 1]) + idx = int(sequential_index - self._chunk_cumsum[file_idx - 1]) else: idx = sequential_index return idx @@ -604,9 +609,9 @@

Source columns = [columns] if sequential_index is None: - file_idx = np.arange(0, len(self._batch_cumsum), 1) + file_idx = np.arange(0, len(self._chunk_cumsum), 1) else: - file_idx = [bisect_right(self._batch_cumsum, sequential_index)] + file_idx = [bisect_right(self._chunk_cumsum, sequential_index)] file_indices = [self._indices[idx] for idx in file_idx] diff --git a/_modules/graphnet/data/dataset/samplers.html b/_modules/graphnet/data/dataset/samplers.html new file mode 100644 index 000000000..5b2fd92a6 --- /dev/null +++ b/_modules/graphnet/data/dataset/samplers.html @@ -0,0 +1,695 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + graphnet.data.dataset.samplers — graphnet documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content +
+ +
+ + +
+ + + + +
+
+ +
+
+
+ +
+
+
+
+
+
+ + +
+
+
+ +
+
+ +

Source code for graphnet.data.dataset.samplers

+"""`Sampler` and `BatchSampler` objects for `graphnet`.
+
+MIT License
+
+Copyright (c) 2023 DrHB
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+_____________________
+"""
+
+from typing import (
+    Any,
+    List,
+    Optional,
+    Tuple,
+    Iterator,
+    Sequence,
+)
+
+from collections import defaultdict
+from multiprocessing import Pool, cpu_count, get_context
+
+import numpy as np
+import torch
+from torch.utils.data import Sampler, BatchSampler
+from graphnet.data.dataset import Dataset
+from graphnet.utilities.logging import Logger
+
+
+
+[docs] +class RandomChunkSampler(Sampler[int]): + """A `Sampler` that randomly selects chunks. + + Original implementation: + https://github.com/DrHB/icecube-2nd-place/blob/main/src/dataset.py + """ + + def __init__( + self, + data_source: Dataset, + num_samples: Optional[int] = None, + generator: Optional[torch.Generator] = None, + ) -> None: + """Construct `RandomChunkSampler`.""" + self._data_source = data_source + self._num_samples = num_samples + self._chunks = data_source.chunk_sizes + + # Create a random number generator if one was not provided + if generator is None: + seed = int(torch.empty((), dtype=torch.int64).random_().item()) + self._generator = torch.Generator() + self._generator.manual_seed(seed) + else: + self._generator = generator + + if not isinstance(self.num_samples, int) or self.num_samples <= 0: + raise ValueError( + "num_samples should be a positive integer " + "value, but got num_samples={}".format(self.num_samples) + ) + + @property + def data_source(self) -> Sequence[Any]: + """Return the data source.""" + return self._data_source + + @property + def num_samples(self) -> int: + """Return the number of samples in the data source.""" + if self._num_samples is None: + return len(self.data_source) + return self._num_samples + + def __len__(self) -> int: + """Return the number of sampled.""" + return self.num_samples + + @property + def chunks(self) -> List[int]: + """Return the list of chunks.""" + return self._chunks + + def __iter__(self) -> Iterator[List[int]]: + """Return a list of indices from a randomly sampled chunk.""" + cumsum = np.cumsum(self.chunks) + chunk_list = torch.randperm( + len(self.chunks), generator=self._generator + ).tolist() + + # sample indexes chunk by chunk + yield_samples = 0 + for i in chunk_list: + chunk_len = self.chunks[i] + offset = cumsum[i - 1] if i > 0 else 0 + samples = ( + offset + torch.randperm(chunk_len, generator=self._generator) + ).tolist() + if len(samples) <= self.num_samples - yield_samples: + yield_samples += len(samples) + else: + samples = samples[: self.num_samples - yield_samples] + yield_samples = self.num_samples + yield from samples
+ + + +
+[docs] +def gather_len_matched_buckets( + params: Tuple[range, Sequence[Any], int, int], +) -> Tuple[List[List[int]], List[List[int]]]: + """Gather length-matched buckets of events. + + The function that will be used to gather batches of events for the + `LenMatchBatchSampler`. When using multiprocessing, each worker will call + this function. Given indices, this function will group events based on + their length. If the length of event is N, then it will go into the + (N // bucket_width) bucket. This returns completed batches and a + list of incomplete batches that did not fill to batch_size at the end. + + Args: + params: A tuple containg the list of indices to process, + the data_source (typically a `Dataset`), the batch size, and the + bucket width. + + Returns: + batches: A list containing batches. + remaining_batches: Incomplete batches. + """ + indices, data_source, batch_size, bucket_width = params + buckets = defaultdict(list) + batches = [] + + for idx in indices: + s = data_source[idx] + L = max(1, s.num_nodes // bucket_width) + buckets[L].append(idx) + if len(buckets[L]) == batch_size: + batches.append(list(buckets[L])) + buckets[L] = [] + + # Include any remaining items in partially filled buckets + remaining_batches = [b for b in buckets.values() if b] + return batches, remaining_batches
+ + + +
+[docs] +class LenMatchBatchSampler(BatchSampler, Logger): + """A `BatchSampler` that batches similar length events. + + Original implementation: + https://github.com/DrHB/icecube-2nd-place/blob/main/src/dataset.py + """ + + def __init__( + self, + sampler: Sampler, + batch_size: int = 1, + num_workers: int = 1, + bucket_width: int = 16, + chunks_per_segment: int = 4, + multiprocessing_context: str = "spawn", + drop_last: Optional[bool] = False, + ) -> None: + """Construct `LenMatchBatchSampler`. + + This `BatchSampler` groups data with similar lengths to be more + efficient in operations like masking for MultiHeadAttention. Since + batch samplers run on the main process and can result in a CPU + bottleneck, `num_workers` can be specified to use multiprocessing for + creating the batches. The `bucket_width` argument specifies how wide + the bins are for grouping batches. For example, with `bucket_width=16`, + data with length [1, 16] are grouped into a bucket, data with length + [17, 32] into another, etc. + + Args: + sampler: A `Sampler` object that selects/draws data in some way. + batch_size: Batch size. + num_workers: Number of workers to spawn to create batches. + bucket_width: Size of length buckets for grouping data. + chunks_per_segment: Number of chunks to group together. + multiprocessing_context: Start method for multiprocessing. + drop_last: (Optional) Drop the last incomplete batch. + """ + Logger.__init__(self) + super().__init__( + sampler=sampler, batch_size=batch_size, drop_last=drop_last + ) + assert num_workers >= 0, "`num_workers` must be >= 0!" + + self._num_workers = num_workers + self._bucket_width = bucket_width + self._chunks_per_segment = chunks_per_segment + self._multiprocessing_context = multiprocessing_context + + self.info( + f"Setting up batch sampler with {self._num_workers} workers." + ) + + def __iter__(self) -> Iterator[List[int]]: + """Return length-matched batches.""" + indices = list(self.sampler) + data_source = self.sampler.data_source + + if self._num_workers > 0: + + n_chunks = len(self.sampler.chunks) + n_segments = n_chunks // self._chunks_per_segment + + # Split indices into nearly equal-sized segments amongst workers + segments = [ + range( + sum(self.sampler.chunks[: i * self._chunks_per_segment]), + sum( + self.sampler.chunks[ + : (i + 1) * self._chunks_per_segment + ] + ), + ) + for i in range(n_segments) + ] + segments.extend( + [range(segments[-1][-1], len(indices) - 1)] + ) # Make a segment w/ the leftover indices + + remaining_indices = [] + with get_context(self._multiprocessing_context).Pool( + processes=self._num_workers + ) as pool: + results = pool.imap_unordered( + gather_len_matched_buckets, + [ + ( + segments[i], + data_source, + self.batch_size, + self._bucket_width, + ) + for i in range(n_segments) + ], + ) + for result in results: + batches, leftovers = result + for batch in batches: + yield batch + remaining_indices.extend(leftovers) + + # Process any remaining indices + batch = [] + for incomplete_batch in remaining_indices: + batch.extend(incomplete_batch) + if len(batch) >= self.batch_size: + yield batch[: self.batch_size] + batch = batch[self.batch_size :] + + if len(batch) > 0 and not self.drop_last: + yield batch + else: # n_workers = 0, no multiprocessing + buckets = defaultdict(list) + + for idx in self.sampler: + s = self.sampler.data_source[idx] + L = max(1, s.num_nodes // self._bucket_width) + buckets[L].append(idx) + if len(buckets[L]) == self.batch_size: + batch = list(buckets[L]) + yield batch + buckets[L] = [] + + batch = [] + leftover = [idx for bucket in buckets for idx in bucket] + + for idx in leftover: + batch.append(idx) + if len(batch) == self.batch_size: + yield batch + batch = [] + + if len(batch) > 0 and not self.drop_last: + yield batch
+ +
+ +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/_modules/graphnet/models/easy_model.html b/_modules/graphnet/models/easy_model.html index 53e476919..2a394bb5b 100644 --- a/_modules/graphnet/models/easy_model.html +++ b/_modules/graphnet/models/easy_model.html @@ -683,6 +683,7 @@

Source code for graphnet. dataloader: DataLoader, gpus: Optional[Union[List[int], int]] = None, distribution_strategy: Optional[str] = "auto", + **trainer_kwargs: Any, ) -> List[Tensor]: """Return predictions for `dataloader`.""" self.inference() @@ -696,6 +697,7 @@

Source code for graphnet. gpus=gpus, distribution_strategy=distribution_strategy, callbacks=callbacks, + **trainer_kwargs, ) predictions_list = inference_trainer.predict(self, dataloader) @@ -719,6 +721,7 @@

Source code for graphnet. additional_attributes: Optional[List[str]] = None, gpus: Optional[Union[List[int], int]] = None, distribution_strategy: Optional[str] = "auto", + **trainer_kwargs: Any, ) -> pd.DataFrame: """Return predictions for `dataloader` as a DataFrame. @@ -751,6 +754,7 @@

Source code for graphnet. dataloader=dataloader, gpus=gpus, distribution_strategy=distribution_strategy, + **trainer_kwargs, ) predictions = ( torch.cat(predictions_torch, dim=1).detach().cpu().numpy() diff --git a/_modules/graphnet/models/gnn/particlenet.html b/_modules/graphnet/models/gnn/particlenet.html new file mode 100644 index 000000000..a744d3aa5 --- /dev/null +++ b/_modules/graphnet/models/gnn/particlenet.html @@ -0,0 +1,655 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + graphnet.models.gnn.particlenet — graphnet documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content +
+ +
+ + +
+ + + + +
+
+ +
+
+
+ +
+
+
+
+
+
+ + +
+
+
+ +
+
+ +

Source code for graphnet.models.gnn.particlenet

+"""Implementation of the ParticleNet GNN model architecture."""
+from typing import List, Optional, Callable, Tuple, Union
+
+import torch
+from torch import Tensor, LongTensor
+from torch_geometric.data import Data
+from torch_scatter import scatter_max, scatter_mean, scatter_min, scatter_sum
+
+from graphnet.models.components.layers import DynEdgeConv
+from graphnet.models.gnn.gnn import GNN
+
+GLOBAL_POOLINGS = {
+    "min": scatter_min,
+    "max": scatter_max,
+    "sum": scatter_sum,
+    "mean": scatter_mean,
+}
+
+
+
+[docs] +class ParticleNeT(GNN): + """ParticleNeT (dynamical edge convolutional) model. + + Inspired by: https://arxiv.org/abs/1902.08570 + """ + + def __init__( + self, + nb_inputs: int, + *, + nb_neighbours: int = 16, + features_subset: Optional[Union[List[int], slice]] = None, + dynamic: bool = True, + dynedge_layer_sizes: Optional[List[Tuple[int, ...]]] = [ + (64, 64, 64), + (128, 128, 128), + (256, 256, 256), + ], + readout_layer_sizes: Optional[List[int]] = [256], + global_pooling_schemes: Optional[Union[str, List[str]]] = "mean", + activation_layer: Optional[str] = "relu", + add_batchnorm_layer: bool = True, + dropout_readout: float = 0.1, + skip_readout: bool = False, + ): + """Construct `ParticleNeT`. + + Args: + nb_inputs: Number of input features on each node. + nb_neighbours: Number of neighbours to used in the k-nearest + neighbour clustering which is performed after each (dynamical) + edge convolution. + features_subset: The subset of latent features on each node that + are used as metric dimensions when performing the k-nearest + neighbours clustering. Defaults to [0,1,2]. + dynamic: wether or not update the edges after every `DynEdgeConv` + block. + dynedge_layer_sizes: The layer sizes, or latent feature dimenions, + used in the `DynEdgeConv` layer. Each entry in + `dynedge_layer_sizes` corresponds to a single `DynEdgeConv` + layer; the integers in the corresponding tuple corresponds to + the layer sizes in the multi-layer perceptron (MLP) that is + applied within each `DynEdgeConv` layer. That is, a list of + size-three tuples means that all `DynEdgeConv` layers contain + a three-layer MLP. + Defaults to [(64, 64, 64), (128, 128, 128), (256, 256, 256)]. + readout_layer_sizes: Hidden layer size in the MLP following the + post-processing _and_ optional global pooling. As this is the + last layer in the model, it yields the output of the `DynEdge` + model. Defaults to [256,]. + global_pooling_schemes: The list global pooling schemes to use. + Options are: "min", "max", "mean", and "sum". + Default to "mean". + activation_layer: The activation function to use in the model. + Default to "relu". + add_batchnorm_layer: Whether to add a batch normalization layer + after each linear layer. Default to True. + dropout_readout: Dropout value to use in the readout layer(s). + Default to 0.1. + skip_readout: Whether to skip the readout layer(s). If `True`, the + output of the last DynEdgeConv block is returned directly. + """ + # Latent feature subset for computing nearest neighbours in model + if features_subset is None: + features_subset = slice(0, 3) + + # DynEdge layer sizes + if dynedge_layer_sizes is None: + dynedge_layer_sizes = [ + (64, 64, 64), + ( + 128, + 128, + 128, + ), + ( + 256, + 256, + 256, + ), + ] + + dynedge_layer_sizes_check = [] + for sizes in dynedge_layer_sizes: + if isinstance(sizes, list): + sizes = tuple(sizes) + dynedge_layer_sizes_check.append(sizes) + + assert isinstance(dynedge_layer_sizes_check, list) + assert len(dynedge_layer_sizes_check) + assert all( + isinstance(sizes, tuple) for sizes in dynedge_layer_sizes_check + ) + assert all(len(sizes) > 0 for sizes in dynedge_layer_sizes_check) + assert all( + all(size > 0 for size in sizes) + for sizes in dynedge_layer_sizes_check + ) + + self._dynedge_layer_sizes = dynedge_layer_sizes_check + + # Read-out layer sizes + if readout_layer_sizes is None: + readout_layer_sizes = [ + 256, + ] + + assert isinstance(readout_layer_sizes, list) + assert len(readout_layer_sizes) + assert all(size > 0 for size in readout_layer_sizes) + + self._readout_layer_sizes = readout_layer_sizes + + # Global pooling scheme(s) + if isinstance(global_pooling_schemes, str): + global_pooling_schemes = [global_pooling_schemes] + + if isinstance(global_pooling_schemes, list): + for pooling_scheme in global_pooling_schemes: + assert ( + pooling_scheme in GLOBAL_POOLINGS + ), f"Global pooling scheme {pooling_scheme} not supported." + else: + assert global_pooling_schemes is None + + self._global_pooling_schemes = global_pooling_schemes + + if activation_layer is None or activation_layer.lower() == "relu": + activation_layer = torch.nn.ReLU() + elif activation_layer.lower() == "gelu": + activation_layer = torch.nn.GELU() + else: + raise ValueError( + f"Activation layer {activation_layer} not supported." + ) + + # Base class constructor + super().__init__(nb_inputs, self._readout_layer_sizes[-1]) + + # Remaining member variables() + self._activation = activation_layer + self._nb_inputs = nb_inputs + self._nb_neighbours = nb_neighbours + self._features_subset = features_subset + self._dynamic = dynamic + self._add_batchnorm_layer = add_batchnorm_layer + self._dropout_readout = dropout_readout + self._skip_readout = skip_readout + + self._construct_layers() + + # Builds the network + def _construct_layers(self) -> None: + """Construct layers (torch.nn.Modules).""" + # Convolutional operations + nb_input_features = self._nb_inputs + + self._conv_layers = torch.nn.ModuleList() + nb_latent_features = nb_input_features + for sizes in self._dynedge_layer_sizes: + layers = [] + layer_sizes = [nb_latent_features] + list(sizes) + for ix, (nb_in, nb_out) in enumerate( + zip(layer_sizes[:-1], layer_sizes[1:]) + ): + if ix == 0: + nb_in *= 2 + layers.append(torch.nn.Linear(nb_in, nb_out)) + if self._add_batchnorm_layer: + layers.append(torch.nn.BatchNorm1d(nb_out)) + layers.append(self._activation) + + conv_layer = DynEdgeConv( + torch.nn.Sequential(*layers), + aggr="mean", + nb_neighbors=self._nb_neighbours, + features_subset=self._features_subset, + ) + self._conv_layers.append(conv_layer) + + nb_latent_features = nb_out + + # Read-out operations + nb_poolings = ( + len(self._global_pooling_schemes) + if self._global_pooling_schemes + else 1 + ) + nb_latent_features = nb_out * nb_poolings + + readout_layers = [] + layer_sizes = [nb_latent_features] + list(self._readout_layer_sizes) + for nb_in, nb_out in zip(layer_sizes[:-1], layer_sizes[1:]): + readout_layers.append(torch.nn.Linear(nb_in, nb_out)) + readout_layers.append(self._activation) + readout_layers.append(torch.nn.Dropout(self._dropout_readout)) + + self._readout = torch.nn.Sequential(*readout_layers) + + def _global_pooling(self, x: Tensor, batch: LongTensor) -> Tensor: + """Perform global pooling.""" + assert self._global_pooling_schemes + pooled = [] + for pooling_scheme in self._global_pooling_schemes: + pooling_fn = GLOBAL_POOLINGS[pooling_scheme] + pooled_x = pooling_fn(x, index=batch, dim=0) + if isinstance(pooled_x, tuple) and len(pooled_x) == 2: + # `scatter_{min,max}`, which return also an argument, vs. + # `scatter_{mean,sum}` + pooled_x, _ = pooled_x + pooled.append(pooled_x) + + return torch.cat(pooled, dim=1) + +
+[docs] + def forward(self, data: Data) -> Tensor: + """Apply learnable forward pass.""" + # Convenience variables + x, edge_index, batch = data.x, data.edge_index, data.batch + + # DynEdge-convolutions + for conv_layer in self._conv_layers: + if self._dynamic: + x, edge_index = conv_layer(x, edge_index, batch) + else: + x, _ = conv_layer(x, edge_index, batch) + + # Read-out + if not self._skip_readout: + # (Optional) Global pooling + if self._global_pooling_schemes: + x = self._global_pooling(x, batch=batch) + + # Read-out + x = self._readout(x) + + return x
+
+ +
+ +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/_modules/graphnet/models/graphs/graph_definition.html b/_modules/graphnet/models/graphs/graph_definition.html index 294520b47..654c88964 100644 --- a/_modules/graphnet/models/graphs/graph_definition.html +++ b/_modules/graphnet/models/graphs/graph_definition.html @@ -394,6 +394,7 @@

Source code sensor_mask: Optional[List[int]] = None, string_mask: Optional[List[int]] = None, sort_by: str = None, + repeat_labels: bool = False, ): """Construct ´GraphDefinition´. The ´detector´ holds. @@ -422,9 +423,14 @@

Source code add_inactive_sensors: If True, inactive sensors will be appended to the graph with padded pulse information. Defaults to False. sensor_mask: A list of sensor id's to be masked from the graph. Any - sensor listed here will be removed from the graph. Defaults to None. - string_mask: A list of string id's to be masked from the graph. Defaults to None. + sensor listed here will be removed from the graph. + Defaults to None. + string_mask: A list of string id's to be masked from the graph. + Defaults to None. sort_by: Name of node feature to sort by. Defaults to None. + repeat_labels: If True, labels will be repeated to match the + the number of rows in the output of the GraphDefinition. + Defaults to False. """ # Base class constructor super().__init__(name=__name__, class_name=self.__class__.__name__) @@ -440,6 +446,7 @@

Source code self._sensor_mask = sensor_mask self._string_mask = string_mask self._add_inactive_sensors = add_inactive_sensors + self._repeat_labels = repeat_labels self._resolve_masks() @@ -771,10 +778,14 @@

Source code """ # Write attributes, either target labels, truth info or original # features. + for truth_dict in truth_dicts: for key, value in truth_dict.items(): try: - graph[key] = torch.tensor(value) + label = torch.tensor(value) + if self._repeat_labels: + label = label.repeat(graph.x.shape[0], 1) + graph[key] = label except TypeError: # Cannot convert `value` to Tensor due to its data type, # e.g. `str`. @@ -811,7 +822,10 @@

Source code ) -> Data: # Add custom labels to the graph for key, fn in custom_label_functions.items(): - graph[key] = fn(graph) + label = fn(graph) + if self._repeat_labels: + label = label.repeat(graph.x.shape[0], 1) + graph[key] = label return graph diff --git a/_modules/graphnet/models/graphs/graphs.html b/_modules/graphnet/models/graphs/graphs.html index 9b7a9d688..00a3451d0 100644 --- a/_modules/graphnet/models/graphs/graphs.html +++ b/_modules/graphnet/models/graphs/graphs.html @@ -358,7 +358,7 @@

Source code for graphnet.models.graphs.graphs

 """A module containing different graph representations in GraphNeT."""
 
-from typing import List, Optional, Dict, Union
+from typing import List, Optional, Dict, Union, Any
 import torch
 from numpy.random import Generator
 
@@ -383,6 +383,7 @@ 

Source code for graphn seed: Optional[Union[int, Generator]] = None, nb_nearest_neighbours: int = 8, columns: List[int] = [0, 1, 2], + **kwargs: Any, ) -> None: """Construct k-nn graph representation. @@ -413,6 +414,7 @@

Source code for graphn input_feature_names=input_feature_names, perturbation_dict=perturbation_dict, seed=seed, + **kwargs, )

@@ -433,6 +435,7 @@

Source code for graphn dtype: Optional[torch.dtype] = torch.float, perturbation_dict: Optional[Dict[str, float]] = None, seed: Optional[Union[int, Generator]] = None, + **kwargs: Any, ) -> None: """Construct isolated nodes graph representation. @@ -457,6 +460,7 @@

Source code for graphn input_feature_names=input_feature_names, perturbation_dict=perturbation_dict, seed=seed, + **kwargs, ) diff --git a/_modules/graphnet/models/graphs/utils.html b/_modules/graphnet/models/graphs/utils.html index 95801a327..d908b00a5 100644 --- a/_modules/graphnet/models/graphs/utils.html +++ b/_modules/graphnet/models/graphs/utils.html @@ -414,7 +414,7 @@

Source code for graphne Args: x: Array for clustering feature_idx: Index of the feature in `x` to - be gathered for each cluster. + be gathered for each cluster. cluster_columns: Index in `x` from which to build clusters. Returns: @@ -429,10 +429,16 @@

Source code for graphne x[:, cluster_columns], return_counts=True, axis=0 ) # sort DOMs and pulse-counts - sort_this = np.concatenate([unique_sensors, counts.reshape(-1, 1)], axis=1) - sort_this = lex_sort(x=sort_this, cluster_columns=cluster_columns) - unique_sensors = sort_this[:, 0 : unique_sensors.shape[1]] - counts = sort_this[:, unique_sensors.shape[1] :].flatten().astype(int) + sensor_counts = counts.reshape(-1, 1) + contingency_table = np.concatenate([unique_sensors, sensor_counts], axis=1) + sensors_in_contingency_table = np.arange(0, unique_sensors.shape[1], 1) + contingency_table = lex_sort( + x=contingency_table, cluster_columns=sensors_in_contingency_table + ) + unique_sensors = contingency_table[:, 0 : unique_sensors.shape[1]] + count_part = contingency_table[:, unique_sensors.shape[1] :] + flattened_counts = count_part.flatten() + counts = flattened_counts.astype(int) # Pad unique sensor columns with NaN's up until the maximum number of # Same pmt-pulses. Each of padded columns represents a pulse. @@ -498,7 +504,8 @@

Source code for graphne then each row in the returned array will correspond to a DOM, and the time and charge for each DOM will be summarized by percentiles. Returned output array has dimensions - `[n_clusters, len(percentiles)*len(summarization_indices) + len(cluster_indices)]` + `[n_clusters, + len(percentiles)*len(summarization_indices) + len(cluster_indices)]` Args: x: Array to be clustered @@ -552,9 +559,9 @@

Source code for graphne Returns: f_scattering: Function that takes a normalized depth and returns the - corresponding normalized scattering length. + corresponding normalized scattering length. f_absorption: Function that takes a normalized depth and returns the - corresponding normalized absorption length. + corresponding normalized absorption length. """ # Data from page 31 of https://arxiv.org/pdf/1301.5361.pdf df = pd.read_parquet( diff --git a/_modules/graphnet/models/normalizing_flow.html b/_modules/graphnet/models/normalizing_flow.html new file mode 100644 index 000000000..a51f63196 --- /dev/null +++ b/_modules/graphnet/models/normalizing_flow.html @@ -0,0 +1,564 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + graphnet.models.normalizing_flow — graphnet documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content +
+ +
+ + +
+ + + + +
+
+ +
+
+
+ +
+
+
+
+
+
+ + +
+
+
+ +
+
+ +

Source code for graphnet.models.normalizing_flow

+"""Standard model class(es)."""
+
+from typing import Any, Dict, List, Optional, Union, Type
+import torch
+from torch import Tensor
+from torch_geometric.data import Data
+from torch.optim import Adam
+
+from graphnet.models.gnn.gnn import GNN
+from .easy_model import EasySyntax
+from graphnet.models.task import StandardFlowTask
+from graphnet.models.graphs import GraphDefinition
+from graphnet.models.utils import get_fields
+
+
+
+[docs] +class NormalizingFlow(EasySyntax): + """A model for building (conditional) normalizing flows in GraphNeT. + + This model relies on `jammy_flows` for building and evaluating + normalizing flows. + https://thoglu.github.io/jammy_flows/usage/introduction.html + for details. + """ + + def __init__( + self, + graph_definition: GraphDefinition, + target_labels: str, + backbone: GNN = None, + condition_on: Union[str, List[str], None] = None, + flow_layers: str = "gggt", + optimizer_class: Type[torch.optim.Optimizer] = Adam, + optimizer_kwargs: Optional[Dict] = None, + scheduler_class: Optional[type] = None, + scheduler_kwargs: Optional[Dict] = None, + scheduler_config: Optional[Dict] = None, + ) -> None: + """Build NormalizingFlow to learn (conditional) normalizing flows. + + NormalizingFlow is able to build, train and evaluate a wide suite of + normalizing flows. Instead of optimizing a loss function, flows + minimize a learned pdf of your data, providing you with a posterior + distribution for every example instead of point-like predictions. + + `NormalizingFlow` can be conditioned on existing fields in the + DataRepresentation or latent representations from `Models`. + + NormalizingFlow is built upon https://github.com/thoglu/jammy_flows, + and we refer to their documentation for details on the flows. + + Args: + graph_definition: The `GraphDefinition` to train the model on. + target_labels: Name of target(s) to learn the pdf of. + backbone: Architecture used to produce latent representations of + the input data on which the pdf will be conditioned. + Defaults to None. + condition_on: List of fields in Data objects to condition the + pdf on. Defaults to None. + flow_layers: A string defining the flow layers. + See https://thoglu.github.io/jammy_flows/usage/introduction.html + for details. Defaults to "gggt". + optimizer_class: Optimizer to use. Defaults to Adam. + optimizer_kwargs: Optimzier arguments. Defaults to None. + scheduler_class: Learning rate scheduler to use. Defaults to None. + scheduler_kwargs: Arguments to learning rate scheduler. + Defaults to None. + scheduler_config: Defaults to None. + + Raises: + ValueError: if both `backbone` and `condition_on` is specified. + """ + # Checks + if (backbone is not None) & (condition_on is not None): + # If user wants to condition on both + raise ValueError( + f"{self.__class__.__name__} got values for both " + "`backbone` and `condition_on`, but can only" + "condition on one of those. Please specify just " + "one of these arguments." + ) + + # Handle args + if backbone is not None: + assert isinstance(backbone, GNN) + hidden_size = backbone.nb_outputs + elif condition_on is not None: + if isinstance(condition_on, str): + condition_on = [condition_on] + hidden_size = len(condition_on) + else: + hidden_size = None + + # Build Flow Task + task = StandardFlowTask( + hidden_size=hidden_size, + flow_layers=flow_layers, + target_labels=target_labels, + ) + + # Base class constructor + super().__init__( + tasks=task, + optimizer_class=optimizer_class, + optimizer_kwargs=optimizer_kwargs, + scheduler_class=scheduler_class, + scheduler_kwargs=scheduler_kwargs, + scheduler_config=scheduler_config, + ) + + # Member variable(s) + self._graph_definition = graph_definition + self.backbone = backbone + self._condition_on = condition_on + self._norm = torch.nn.BatchNorm1d(hidden_size) + +
+[docs] + def forward(self, data: Union[Data, List[Data]]) -> Tensor: + """Forward pass, chaining model components.""" + if isinstance(data, Data): + data = [data] + x_list = [] + for d in data: + if self.backbone is not None: + x = self._backbone(d) + x = self._norm(x) + elif self._condition_on is not None: + assert isinstance(self._condition_on, list) + x = get_fields(data=d, fields=self._condition_on) + else: + # Unconditional flow + x = None + x = self._tasks[0](x, d) + x_list.append(x) + x = torch.cat(x_list, dim=0) + return [x]
+ + + def _backbone( + self, data: Union[Data, List[Data]] + ) -> List[Union[Tensor, Data]]: + assert self.backbone is not None + return self.backbone(data) + +
+[docs] + def shared_step(self, batch: List[Data], batch_idx: int) -> Tensor: + """Perform shared step. + + Applies the forward pass and the following loss calculation, shared + between the training and validation step. + """ + loss = self(batch) + if isinstance(loss, list): + assert len(loss) == 1 + loss = loss[0] + return torch.mean(loss, dim=0)
+ + +
+[docs] + def validate_tasks(self) -> None: + """Verify that self._tasks contain compatible elements.""" + accepted_tasks = StandardFlowTask + for task in self._tasks: + assert isinstance(task, accepted_tasks)
+
+ +
+ +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/_modules/graphnet/models/standard_model.html b/_modules/graphnet/models/standard_model.html index 40bbd943f..0e5b24d7b 100644 --- a/_modules/graphnet/models/standard_model.html +++ b/_modules/graphnet/models/standard_model.html @@ -365,6 +365,7 @@

Source code for graph from torch.optim import Adam from graphnet.models.gnn.gnn import GNN +from graphnet.models import Model from .easy_model import EasySyntax from graphnet.models.task import StandardLearnedTask from graphnet.models.graphs import GraphDefinition @@ -385,7 +386,7 @@

Source code for graph self, graph_definition: GraphDefinition, tasks: Union[StandardLearnedTask, List[StandardLearnedTask]], - backbone: GNN = None, + backbone: Model = None, gnn: Optional[GNN] = None, optimizer_class: Type[torch.optim.Optimizer] = Adam, optimizer_kwargs: Optional[Dict] = None, @@ -420,7 +421,7 @@

Source code for graph ) # Checks - assert isinstance(backbone, GNN) + assert isinstance(backbone, Model) assert isinstance(graph_definition, GraphDefinition) # Member variable(s) diff --git a/_modules/graphnet/models/task/task.html b/_modules/graphnet/models/task/task.html index 14ef23490..f4a74a64a 100644 --- a/_modules/graphnet/models/task/task.html +++ b/_modules/graphnet/models/task/task.html @@ -362,6 +362,7 @@

Source code for graphnet.m from typing import Any, TYPE_CHECKING, List, Tuple, Union from typing import Callable, Optional import numpy as np +from copy import deepcopy import torch from torch import Tensor @@ -374,6 +375,11 @@

Source code for graphnet.m from graphnet.models import Model from graphnet.utilities.decorators import final +from graphnet.models.utils import get_fields +from graphnet.utilities.imports import has_jammy_flows_package + +if has_jammy_flows_package(): + import jammy_flows
@@ -399,7 +405,6 @@

Source code for graphnet.m def __init__( self, *, - loss_function: "LossFunction", target_labels: Optional[Union[str, List[str]]] = None, prediction_labels: Optional[Union[str, List[str]]] = None, transform_prediction_and_target: Optional[Callable] = None, @@ -411,7 +416,6 @@

Source code for graphnet.m """Construct `Task`. Args: - loss_function: Loss function appropriate to the task. target_labels: Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the `Data` object in `.compute_loss(...)`. @@ -461,7 +465,6 @@

Source code for graphnet.m self._regularisation_loss: Optional[float] = None self._target_labels = target_labels self._prediction_labels = prediction_labels - self._loss_function = loss_function self._inference = False self._loss_weight = loss_weight @@ -598,6 +601,7 @@

Source code for graphnet.m def __init__( self, hidden_size: int, + loss_function: "LossFunction", **task_kwargs: Any, ): """Construct `LearnedTask`. @@ -606,11 +610,13 @@

Source code for graphnet.m hidden_size: The number of columns in the output of the last latent layer of `Model` using this Task. Available through `Model.nb_outputs` + loss_function: Loss function appropriate to the task. """ # Base class constructor super().__init__(**task_kwargs) # Mapping from last hidden layer to required size of input + self._loss_function = loss_function self._affine = Linear(hidden_size, self.nb_inputs) @abstractmethod @@ -767,77 +773,93 @@

Source code for graphnet.m
[docs] class StandardFlowTask(Task): - """A `Task` for `NormalizingFlow`s in GraphNeT.""" + """A `Task` for `NormalizingFlow`s in GraphNeT. + + This Task requires the support package`jammy_flows` for constructing and + evaluating normalizing flows. + """ def __init__( self, - target_labels: List[str], + hidden_size: Union[int, None], + flow_layers: str = "gggt", + target_norm: float = 1000.0, **task_kwargs: Any, ): - """Construct `StandardLearnedTask`. + """Construct `StandardFlowTask`. Args: target_labels: A list of names for the targets of this Task. - hidden_size: The number of columns in the output of - the last latent layer of `Model` using this Task. - Available through `Model.nb_outputs` + flow_layers: A string indicating the flow layer types. See + https://thoglu.github.io/jammy_flows/usage/introduction.html + for details. + target_norm: A normalization constant used to divide the target + values. Value is applied to all targets. Defaults to 1000. + hidden_size: The number of columns on which the normalizing flow + is conditioned on. May be `None`, indicating non-conditional flow. """ # Base class constructor - super().__init__(target_labels=target_labels, **task_kwargs) -
-[docs] - def nb_inputs(self) -> int: - """Return number of inputs assumed by task.""" - return len(self._target_labels)
+ # Member variables + self._default_prediction_labels = ["nllh"] + self._hidden_size = hidden_size + super().__init__(**task_kwargs) + self._flow = jammy_flows.pdf( + f"e{len(self._target_labels)}", + flow_layers, + conditional_input_dim=hidden_size, + ) + self._initialized = False + self._norm = target_norm + @property + def default_prediction_labels(self) -> List[str]: + """Return default prediction labels.""" + return self._default_prediction_labels - def _forward(self, x: Tensor, jacobian: Tensor) -> Tensor: # type: ignore - # Leave it as is. - return x +
+[docs] + def nb_inputs(self) -> Union[int, None]: # type: ignore + """Return number of conditional inputs assumed by task.""" + return self._hidden_size
+ + + def _forward(self, x: Optional[Tensor], y: Tensor) -> Tensor: # type: ignore + y = y / self._norm + if x is not None: + if x.shape[0] != y.shape[0]: + raise AssertionError( + f"Targets {self._target_labels} have " + f"{y.shape[0]} rows while conditional " + f"inputs have {x.shape[0]} rows. " + "The number of rows must match." + ) + log_pdf, _, _ = self._flow(y, conditional_input=x) + else: + log_pdf, _, _ = self._flow(y) + return -log_pdf.reshape(-1, 1)
[docs] @final def forward( - self, x: Union[Tensor, Data], jacobian: Optional[Tensor] + self, x: Union[Tensor, Data], data: List[Data] ) -> Union[Tensor, Data]: """Forward pass.""" - self._regularisation_loss = 0 # Reset - x = self._forward(x, jacobian) + # Manually cast pdf to correct dtype - is there a better way? + self._flow = self._flow.to(self.dtype) + # Get target values + labels = get_fields(data=data, fields=self._target_labels) + labels = labels.to(self.dtype) + # Set the initial parameters of flow close to truth + # This speeds up training and helps with NaN + if (self._initialized is False) & (self.training): + self._flow.init_params(data=deepcopy(labels).cpu()) + self._flow.to(self.device) + self._initialized = True # This is only done once + # Compute nllh + x = self._forward(x, labels) return self._transform_prediction(x)
- - -
-[docs] - @final - def compute_loss( - self, prediction: Tensor, jacobian: Tensor, data: Data - ) -> Tensor: - """Compute loss for normalizing flow tasks. - - Args: - prediction: transformed sample in latent distribution space. - jacobian: the jacobian associated with the transformation. - data: the graph object. - - Returns: - the loss associated with the transformation. - """ - if self._loss_weight is not None: - weights = data[self._loss_weight] - else: - weights = None - loss = ( - self._loss_function( - prediction=prediction, - jacobian=jacobian, - weights=weights, - target=None, - ) - + self._regularisation_loss - ) - return loss

diff --git a/_modules/graphnet/models/utils.html b/_modules/graphnet/models/utils.html index 8a34d4f73..6745fc846 100644 --- a/_modules/graphnet/models/utils.html +++ b/_modules/graphnet/models/utils.html @@ -358,13 +358,14 @@

Source code for graphnet.models.utils

 """Utility functions for `graphnet.models`."""
 
-from typing import List, Tuple, Any
+from typing import List, Tuple, Any, Union
 from torch_geometric.nn import knn_graph
 from torch_geometric.data import Batch
 import torch
 from torch import Tensor, LongTensor
 
 from torch_geometric.utils import homophily
+from torch_geometric.data import Data
 
 
 
@@ -473,6 +474,21 @@

Source code for graphnet.model x[~mask] = padding_value return x, mask, seq_length

+ + +
+[docs] +def get_fields(data: Union[Data, List[Data]], fields: List[str]) -> Tensor: + """Extract named fields in Data object.""" + labels = [] + if not isinstance(data, list): + data = [data] + for label in list(fields): + labels.append( + torch.cat([d[label].reshape(-1, 1) for d in data], dim=0) + ) + return torch.cat(labels, dim=1)
+
diff --git a/_modules/graphnet/utilities/imports.html b/_modules/graphnet/utilities/imports.html index 0fa8571d5..e740ee66c 100644 --- a/_modules/graphnet/utilities/imports.html +++ b/_modules/graphnet/utilities/imports.html @@ -397,6 +397,23 @@

Source code for graphnet. +
+[docs] +def has_jammy_flows_package() -> bool: + """Check if the `jammy_flows` package is available.""" + try: + import jammy_flows # pyright: reportMissingImports=false + + return True + except ImportError: + Logger(log_folder=None).warning_once( + "`jammy_flows` not available. Normalizing Flow functionality is " + "missing." + ) + return False
+ + +
[docs] def requires_icecube(test_function: Callable) -> Callable: diff --git a/_modules/index.html b/_modules/index.html index a86f000b9..09c4937d9 100644 --- a/_modules/index.html +++ b/_modules/index.html @@ -363,6 +363,7 @@

All modules for which code is available

  • graphnet.data.datamodule
  • graphnet.data.dataset.dataset
  • graphnet.data.dataset.parquet.parquet_dataset
  • +
  • graphnet.data.dataset.samplers
  • graphnet.data.dataset.sqlite.sqlite_dataset
  • graphnet.data.extractors.combine_extractors
  • graphnet.data.extractors.extractor
  • @@ -422,6 +423,7 @@

    All modules for which code is available

  • graphnet.models.gnn.dynedge_kaggle_tito
  • graphnet.models.gnn.gnn
  • graphnet.models.gnn.icemix
  • +
  • graphnet.models.gnn.particlenet
  • graphnet.models.graphs.edges.edges
  • graphnet.models.graphs.edges.minkowski
  • graphnet.models.graphs.graph_definition
  • @@ -429,6 +431,7 @@

    All modules for which code is available

  • graphnet.models.graphs.nodes.nodes
  • graphnet.models.graphs.utils
  • graphnet.models.model
  • +
  • graphnet.models.normalizing_flow
  • graphnet.models.rnn.node_rnn
  • graphnet.models.standard_averaged_model
  • graphnet.models.standard_model
  • diff --git a/_sources/api/graphnet.data.dataset.rst.txt b/_sources/api/graphnet.data.dataset.rst.txt index 2d32147fd..c78ba8b65 100644 --- a/_sources/api/graphnet.data.dataset.rst.txt +++ b/_sources/api/graphnet.data.dataset.rst.txt @@ -22,3 +22,4 @@ Submodules :maxdepth: 2 graphnet.data.dataset.dataset + graphnet.data.dataset.samplers diff --git a/_sources/api/graphnet.data.dataset.samplers.rst.txt b/_sources/api/graphnet.data.dataset.samplers.rst.txt new file mode 100644 index 000000000..71a2ab4a7 --- /dev/null +++ b/_sources/api/graphnet.data.dataset.samplers.rst.txt @@ -0,0 +1,7 @@ +graphnet.data.dataset.samplers module +===================================== + +.. automodule:: graphnet.data.dataset.samplers + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/api/graphnet.models.gnn.particlenet.rst.txt b/_sources/api/graphnet.models.gnn.particlenet.rst.txt new file mode 100644 index 000000000..a1d269942 --- /dev/null +++ b/_sources/api/graphnet.models.gnn.particlenet.rst.txt @@ -0,0 +1,7 @@ +graphnet.models.gnn.particlenet module +====================================== + +.. automodule:: graphnet.models.gnn.particlenet + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/api/graphnet.models.gnn.rst.txt b/_sources/api/graphnet.models.gnn.rst.txt index 097552025..fdadd4c8e 100644 --- a/_sources/api/graphnet.models.gnn.rst.txt +++ b/_sources/api/graphnet.models.gnn.rst.txt @@ -19,3 +19,4 @@ Submodules graphnet.models.gnn.dynedge_kaggle_tito graphnet.models.gnn.gnn graphnet.models.gnn.icemix + graphnet.models.gnn.particlenet diff --git a/_sources/api/graphnet.models.normalizing_flow.rst.txt b/_sources/api/graphnet.models.normalizing_flow.rst.txt new file mode 100644 index 000000000..1840ee7a2 --- /dev/null +++ b/_sources/api/graphnet.models.normalizing_flow.rst.txt @@ -0,0 +1,7 @@ +graphnet.models.normalizing\_flow module +======================================== + +.. automodule:: graphnet.models.normalizing_flow + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/api/graphnet.models.rst.txt b/_sources/api/graphnet.models.rst.txt index 8daba881f..f6fa06feb 100644 --- a/_sources/api/graphnet.models.rst.txt +++ b/_sources/api/graphnet.models.rst.txt @@ -29,6 +29,7 @@ Submodules graphnet.models.coarsening graphnet.models.easy_model graphnet.models.model + graphnet.models.normalizing_flow graphnet.models.standard_averaged_model graphnet.models.standard_model graphnet.models.utils diff --git a/_sources/datasets/datasets.rst.txt b/_sources/datasets/datasets.rst.txt index 8716d6113..ae8f78ee2 100644 --- a/_sources/datasets/datasets.rst.txt +++ b/_sources/datasets/datasets.rst.txt @@ -176,7 +176,7 @@ After that, you can construct your :code:`Dataset` from a SQLite database with j .. code-block:: python - from graphnet.data.sqlite import SQLiteDataset + from graphnet.data.dataset.sqlite.sqlite_dataset import SQLiteDataset from graphnet.models.detector.prometheus import Prometheus from graphnet.models.graphs import KNNGraph from graphnet.models.graphs.nodes import NodesAsPulses @@ -203,7 +203,7 @@ Or similarly for Parquet files: .. code-block:: python - from graphnet.data.parquet import ParquetDataset + from graphnet.data.dataset.parquet.parquet_dataset import ParquetDataset from graphnet.models.detector.prometheus import Prometheus from graphnet.models.graphs import KNNGraph from graphnet.models.graphs.nodes import NodesAsPulses diff --git a/api/graphnet.data.dataset.dataset.html b/api/graphnet.data.dataset.dataset.html index 38ea42346..cf634b7f3 100644 --- a/api/graphnet.data.dataset.dataset.html +++ b/api/graphnet.data.dataset.dataset.html @@ -128,7 +128,7 @@ - + @@ -477,6 +477,13 @@ + +
  • + + + graphnet.data.dataset.samplers module + +
  • @@ -874,12 +881,12 @@ - diff --git a/api/graphnet.data.dataset.parquet.parquet_dataset.html b/api/graphnet.data.dataset.parquet.parquet_dataset.html index d4e5c4322..275b417f9 100644 --- a/api/graphnet.data.dataset.parquet.parquet_dataset.html +++ b/api/graphnet.data.dataset.parquet.parquet_dataset.html @@ -376,6 +376,8 @@ diff --git a/api/graphnet.models.gnn.RNN_tito.html b/api/graphnet.models.gnn.RNN_tito.html index 826faa9d2..900a8e296 100644 --- a/api/graphnet.models.gnn.RNN_tito.html +++ b/api/graphnet.models.gnn.RNN_tito.html @@ -473,6 +473,13 @@ graphnet.models.gnn.icemix module + +
  • + + + graphnet.models.gnn.particlenet module + +
  • diff --git a/api/graphnet.models.gnn.convnet.html b/api/graphnet.models.gnn.convnet.html index 5e81d88f1..209700df5 100644 --- a/api/graphnet.models.gnn.convnet.html +++ b/api/graphnet.models.gnn.convnet.html @@ -473,6 +473,13 @@ graphnet.models.gnn.icemix module + +
  • + + + graphnet.models.gnn.particlenet module + +
  • diff --git a/api/graphnet.models.gnn.dynedge.html b/api/graphnet.models.gnn.dynedge.html index ce7c2ca22..aa6ba983a 100644 --- a/api/graphnet.models.gnn.dynedge.html +++ b/api/graphnet.models.gnn.dynedge.html @@ -473,6 +473,13 @@ graphnet.models.gnn.icemix module + +
  • + + + graphnet.models.gnn.particlenet module + +
  • diff --git a/api/graphnet.models.gnn.dynedge_jinst.html b/api/graphnet.models.gnn.dynedge_jinst.html index bd11fcf89..095ba9c1a 100644 --- a/api/graphnet.models.gnn.dynedge_jinst.html +++ b/api/graphnet.models.gnn.dynedge_jinst.html @@ -473,6 +473,13 @@ graphnet.models.gnn.icemix module + +
  • + + + graphnet.models.gnn.particlenet module + +
  • diff --git a/api/graphnet.models.gnn.dynedge_kaggle_tito.html b/api/graphnet.models.gnn.dynedge_kaggle_tito.html index 3b963e350..70d19a5a6 100644 --- a/api/graphnet.models.gnn.dynedge_kaggle_tito.html +++ b/api/graphnet.models.gnn.dynedge_kaggle_tito.html @@ -473,6 +473,13 @@ graphnet.models.gnn.icemix module + +
  • + + + graphnet.models.gnn.particlenet module + +
  • diff --git a/api/graphnet.models.gnn.gnn.html b/api/graphnet.models.gnn.gnn.html index bebc8d80d..7e63f59b0 100644 --- a/api/graphnet.models.gnn.gnn.html +++ b/api/graphnet.models.gnn.gnn.html @@ -491,6 +491,13 @@ graphnet.models.gnn.icemix module + +
  • + + + graphnet.models.gnn.particlenet module + +
  • diff --git a/api/graphnet.models.gnn.html b/api/graphnet.models.gnn.html index cf6a0e223..9f9c96d0a 100644 --- a/api/graphnet.models.gnn.html +++ b/api/graphnet.models.gnn.html @@ -454,6 +454,13 @@ graphnet.models.gnn.icemix module + +
  • + + + graphnet.models.gnn.particlenet module + +
  • @@ -585,6 +592,10 @@

    SubmodulesDeepIce +
  • graphnet.models.gnn.particlenet module +
  • diff --git a/api/graphnet.models.gnn.icemix.html b/api/graphnet.models.gnn.icemix.html index f306a221e..552d973e4 100644 --- a/api/graphnet.models.gnn.icemix.html +++ b/api/graphnet.models.gnn.icemix.html @@ -128,7 +128,7 @@ - + @@ -482,6 +482,13 @@ + +
  • + + + graphnet.models.gnn.particlenet module + +
  • @@ -675,12 +682,12 @@ -
    Skip to content +
    + +
    + + +
    + + + + +
    +
    + +
    +
    +
    + +
    +
    +
    +
    +
    +
    + + +
    +
    +
    + +
    +
    + +
    +

    graphnet.models.gnn.particlenet module

    +

    Implementation of the ParticleNet GNN model architecture.

    +
    +
    +class graphnet.models.gnn.particlenet.ParticleNeT(*args, **kwargs)[source]
    +

    Bases: GNN

    +

    ParticleNeT (dynamical edge convolutional) model.

    +

    Inspired by: https://arxiv.org/abs/1902.08570

    +

    Construct ParticleNeT.

    +
    +
    Parameters:
    +
      +
    • nb_inputs (int) – Number of input features on each node.

    • +
    • nb_neighbours (int, default: 16) – Number of neighbours to used in the k-nearest +neighbour clustering which is performed after each (dynamical) +edge convolution.

    • +
    • features_subset (Union[List[int], slice, None], default: None) – The subset of latent features on each node that +are used as metric dimensions when performing the k-nearest +neighbours clustering. Defaults to [0,1,2].

    • +
    • dynamic (bool, default: True) – wether or not update the edges after every DynEdgeConv +block.

    • +
    • dynedge_layer_sizes (Optional[List[Tuple[int, ...]]], default: [(64, 64, 64), (128, 128, 128), (256, 256, 256)]) – The layer sizes, or latent feature dimenions, +used in the DynEdgeConv layer. Each entry in +dynedge_layer_sizes corresponds to a single DynEdgeConv +layer; the integers in the corresponding tuple corresponds to +the layer sizes in the multi-layer perceptron (MLP) that is +applied within each DynEdgeConv layer. That is, a list of +size-three tuples means that all DynEdgeConv layers contain +a three-layer MLP. +Defaults to [(64, 64, 64), (128, 128, 128), (256, 256, 256)].

    • +
    • readout_layer_sizes (Optional[List[int]], default: [256]) – Hidden layer size in the MLP following the +post-processing _and_ optional global pooling. As this is the +last layer in the model, it yields the output of the DynEdge +model. Defaults to [256,].

    • +
    • global_pooling_schemes (Union[str, List[str], None], default: 'mean') – The list global pooling schemes to use. +Options are: “min”, “max”, “mean”, and “sum”. +Default to “mean”.

    • +
    • activation_layer (Optional[str], default: 'relu') – The activation function to use in the model. +Default to “relu”.

    • +
    • add_batchnorm_layer (bool, default: True) – Whether to add a batch normalization layer +after each linear layer. Default to True.

    • +
    • dropout_readout (float, default: 0.1) – Dropout value to use in the readout layer(s). +Default to 0.1.

    • +
    • skip_readout (bool, default: False) – Whether to skip the readout layer(s). If True, the +output of the last DynEdgeConv block is returned directly.

    • +
    • args (Any)

    • +
    • kwargs (Any)

    • +
    +
    +
    Return type:
    +

    object

    +
    +
    +
    +
    +forward(data)[source]
    +

    Apply learnable forward pass.

    +
    +
    Return type:
    +

    Tensor

    +
    +
    Parameters:
    +

    data (Data)

    +
    +
    +
    +
    +
    + + +
    +
    +
    +
    +
    + + + + + \ No newline at end of file diff --git a/api/graphnet.models.graphs.graph_definition.html b/api/graphnet.models.graphs.graph_definition.html index b73eb9e4c..1b6b2261c 100644 --- a/api/graphnet.models.graphs.graph_definition.html +++ b/api/graphnet.models.graphs.graph_definition.html @@ -587,10 +587,18 @@ Defaults to None.

  • add_inactive_sensors (bool, default: False) – If True, inactive sensors will be appended to the graph with padded pulse information. Defaults to False.

  • -
  • sensor_mask (Optional[List[int]], default: None) – A list of sensor id’s to be masked from the graph. Any -sensor listed here will be removed from the graph. Defaults to None.

  • -
  • string_mask (Optional[List[int]], default: None) – A list of string id’s to be masked from the graph. Defaults to None.

  • +
  • sensor_mask (Optional[List[int]], default: None) –

    A list of sensor id’s to be masked from the graph. Any +sensor listed here will be removed from the graph.

    +
    +

    Defaults to None.

    +
    +

  • +
  • string_mask (Optional[List[int]], default: None) – A list of string id’s to be masked from the graph. +Defaults to None.

  • sort_by (Optional[str], default: None) – Name of node feature to sort by. Defaults to None.

  • +
  • repeat_labels (bool, default: False) – If True, labels will be repeated to match the +the number of rows in the output of the GraphDefinition. +Defaults to False.

  • args (Any)

  • kwargs (Any)

  • diff --git a/api/graphnet.models.graphs.html b/api/graphnet.models.graphs.html index f9ff79bac..34d8ced48 100644 --- a/api/graphnet.models.graphs.html +++ b/api/graphnet.models.graphs.html @@ -129,7 +129,7 @@ - + @@ -604,7 +604,7 @@

    Submodules @@ -462,6 +471,13 @@ array_to_sequence() + +
  • + + + get_fields() + +
  • @@ -515,6 +531,8 @@
  • knn_graph_batch()
  • array_to_sequence() +
  • +
  • get_fields()
  • @@ -625,6 +643,22 @@ +
    +
    +graphnet.models.utils.get_fields(data, fields)[source]
    +

    Extract named fields in Data object.

    +
    +
    Return type:
    +

    Tensor

    +
    +
    Parameters:
    +
      +
    • data (Data | List[Data])

    • +
    • fields (List[str])

    • +
    +
    +
    +
    diff --git a/api/graphnet.utilities.config.base_config.html b/api/graphnet.utilities.config.base_config.html index e5681a37d..bdc45d0d6 100644 --- a/api/graphnet.utilities.config.base_config.html +++ b/api/graphnet.utilities.config.base_config.html @@ -643,7 +643,7 @@
    -model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}
    +model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}

    A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

    @@ -653,9 +653,9 @@
    -model_fields: ClassVar[dict[str, FieldInfo]] = {}
    +model_fields: ClassVar[Dict[str, FieldInfo]] = {}

    Metadata about the fields defined on the model, -mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

    +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

    This replaces Model.__fields__ from Pydantic V1.

    diff --git a/api/graphnet.utilities.config.dataset_config.html b/api/graphnet.utilities.config.dataset_config.html index 6e5b3e269..b06aee57d 100644 --- a/api/graphnet.utilities.config.dataset_config.html +++ b/api/graphnet.utilities.config.dataset_config.html @@ -947,7 +947,7 @@
    -model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}
    +model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}

    A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

    @@ -957,9 +957,9 @@
    -model_fields: ClassVar[dict[str, FieldInfo]] = {'features': FieldInfo(annotation=List[str], required=True), 'graph_definition': FieldInfo(annotation=Any, required=False, default=None), 'index_column': FieldInfo(annotation=str, required=False, default='event_no'), 'labels': FieldInfo(annotation=Union[Dict[str, Any], NoneType], required=False, default=None), 'loss_weight_column': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'loss_weight_default_value': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'loss_weight_table': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'node_truth': FieldInfo(annotation=Union[List[str], NoneType], required=False, default=None), 'node_truth_table': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'path': FieldInfo(annotation=Union[str, List[str]], required=True), 'pulsemaps': FieldInfo(annotation=Union[str, List[str]], required=True), 'seed': FieldInfo(annotation=Union[int, NoneType], required=False, default=None), 'selection': FieldInfo(annotation=Union[str, List[str], List[Union[int, List[int]]], Dict[str, Union[str, List[str]]], NoneType], required=False, default=None), 'string_selection': FieldInfo(annotation=Union[List[int], NoneType], required=False, default=None), 'truth': FieldInfo(annotation=List[str], required=True), 'truth_table': FieldInfo(annotation=str, required=False, default='truth')}
    +model_fields: ClassVar[Dict[str, FieldInfo]] = {'features': FieldInfo(annotation=List[str], required=True), 'graph_definition': FieldInfo(annotation=Any, required=False, default=None), 'index_column': FieldInfo(annotation=str, required=False, default='event_no'), 'labels': FieldInfo(annotation=Union[Dict[str, Any], NoneType], required=False, default=None), 'loss_weight_column': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'loss_weight_default_value': FieldInfo(annotation=Union[float, NoneType], required=False, default=None), 'loss_weight_table': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'node_truth': FieldInfo(annotation=Union[List[str], NoneType], required=False, default=None), 'node_truth_table': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'path': FieldInfo(annotation=Union[str, List[str]], required=True), 'pulsemaps': FieldInfo(annotation=Union[str, List[str]], required=True), 'seed': FieldInfo(annotation=Union[int, NoneType], required=False, default=None), 'selection': FieldInfo(annotation=Union[str, List[str], List[Union[int, List[int]]], Dict[str, Union[str, List[str]]], NoneType], required=False, default=None), 'string_selection': FieldInfo(annotation=Union[List[int], NoneType], required=False, default=None), 'truth': FieldInfo(annotation=List[str], required=True), 'truth_table': FieldInfo(annotation=str, required=False, default='truth')}

    Metadata about the fields defined on the model, -mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

    +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

    This replaces Model.__fields__ from Pydantic V1.

    diff --git a/api/graphnet.utilities.config.model_config.html b/api/graphnet.utilities.config.model_config.html index e0f98fade..b3c6c9f15 100644 --- a/api/graphnet.utilities.config.model_config.html +++ b/api/graphnet.utilities.config.model_config.html @@ -670,7 +670,7 @@
    -model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}
    +model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}

    A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

    @@ -680,9 +680,9 @@
    -model_fields: ClassVar[dict[str, FieldInfo]] = {'arguments': FieldInfo(annotation=Dict[str, Any], required=True), 'class_name': FieldInfo(annotation=str, required=True)}
    +model_fields: ClassVar[Dict[str, FieldInfo]] = {'arguments': FieldInfo(annotation=Dict[str, Any], required=True), 'class_name': FieldInfo(annotation=str, required=True)}

    Metadata about the fields defined on the model, -mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

    +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

    This replaces Model.__fields__ from Pydantic V1.

    diff --git a/api/graphnet.utilities.config.training_config.html b/api/graphnet.utilities.config.training_config.html index 2babb9f74..df6224655 100644 --- a/api/graphnet.utilities.config.training_config.html +++ b/api/graphnet.utilities.config.training_config.html @@ -630,7 +630,7 @@
    -model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}
    +model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}

    A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

    @@ -640,9 +640,9 @@
    -model_fields: ClassVar[dict[str, FieldInfo]] = {'dataloader': FieldInfo(annotation=Dict[str, Any], required=True), 'early_stopping_patience': FieldInfo(annotation=int, required=True), 'fit': FieldInfo(annotation=Dict[str, Any], required=True), 'target': FieldInfo(annotation=Union[str, List[str]], required=True)}
    +model_fields: ClassVar[Dict[str, FieldInfo]] = {'dataloader': FieldInfo(annotation=Dict[str, Any], required=True), 'early_stopping_patience': FieldInfo(annotation=int, required=True), 'fit': FieldInfo(annotation=Dict[str, Any], required=True), 'target': FieldInfo(annotation=Union[str, List[str]], required=True)}

    Metadata about the fields defined on the model, -mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

    +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

    This replaces Model.__fields__ from Pydantic V1.

    diff --git a/api/graphnet.utilities.html b/api/graphnet.utilities.html index 0fca30f4a..91447deb8 100644 --- a/api/graphnet.utilities.html +++ b/api/graphnet.utilities.html @@ -542,6 +542,7 @@

    Submodulesgraphnet.utilities.imports module diff --git a/api/graphnet.utilities.imports.html b/api/graphnet.utilities.imports.html index b2f195acc..500570e25 100644 --- a/api/graphnet.utilities.imports.html +++ b/api/graphnet.utilities.imports.html @@ -433,6 +433,8 @@
  • has_torch_package()
  • +
  • has_jammy_flows_package() +
  • requires_icecube()
  • @@ -453,6 +455,13 @@ has_torch_package() + +
  • + + + has_jammy_flows_package() + +
  • @@ -510,6 +519,8 @@
  • has_torch_package()
  • +
  • has_jammy_flows_package() +
  • requires_icecube()
  • @@ -547,6 +558,16 @@
    +
    +graphnet.utilities.imports.has_jammy_flows_package()[source]
    +

    Check if the jammy_flows package is available.

    +
    +
    Return type:
    +

    bool

    +
    +
    +
    +
    graphnet.utilities.imports.requires_icecube(test_function)[source]

    Decorate test_function for use only if icecube module is present.

    diff --git a/datasets/datasets.html b/datasets/datasets.html index f63648ce5..ce8df00d7 100644 --- a/datasets/datasets.html +++ b/datasets/datasets.html @@ -599,7 +599,7 @@

    graph_definition: A GraphDefinition`that prepares the raw data from the `Dataset into your choice in data representation.

    After that, you can construct your Dataset from a SQLite database with just a few lines of code:

    -
    from graphnet.data.sqlite import SQLiteDataset
    +
    from graphnet.data.dataset.sqlite.sqlite_dataset import SQLiteDataset
     from graphnet.models.detector.prometheus  import  Prometheus
     from graphnet.models.graphs  import  KNNGraph
     from graphnet.models.graphs.nodes  import  NodesAsPulses
    @@ -623,7 +623,7 @@ 

    from graphnet.data.parquet import ParquetDataset
    +
    from graphnet.data.dataset.parquet.parquet_dataset import ParquetDataset
     from graphnet.models.detector.prometheus  import  Prometheus
     from graphnet.models.graphs  import  KNNGraph
     from graphnet.models.graphs.nodes  import  NodesAsPulses
    diff --git a/genindex.html b/genindex.html
    index b0f353815..aa637f2ce 100644
    --- a/genindex.html
    +++ b/genindex.html
    @@ -466,6 +466,10 @@ 

    C

  • cast_object_to_pure_python() (in module graphnet.data.extractors.icecube.utilities.types)
  • cast_pulse_series_to_pure_python() (in module graphnet.data.extractors.icecube.utilities.types) +
  • +
  • chunk_sizes (graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset property) +
  • +
  • chunks (graphnet.data.dataset.samplers.RandomChunkSampler property)
  • citation (graphnet.data.curated_datamodule.CuratedDataset property)
  • @@ -491,20 +495,18 @@

    C

  • comments (graphnet.data.curated_datamodule.CuratedDataset property)
  • + + -
    • compute_minkowski_distance_mat() (in module graphnet.models.graphs.edges.minkowski)
    • concatenate() (graphnet.data.dataset.dataset.Dataset class method) @@ -539,6 +541,8 @@

      C

      D

      + -
      +
      • Deployer (class in graphnet.deployment.deployer)
      • DeploymentModule (class in graphnet.deployment.deployment_module) @@ -857,6 +863,8 @@

        F

      • (graphnet.models.gnn.gnn.GNN method)
      • (graphnet.models.gnn.icemix.DeepIce method) +
      • +
      • (graphnet.models.gnn.particlenet.ParticleNeT method)
      • (graphnet.models.gnn.RNN_tito.RNN_TITO method)
      • @@ -865,6 +873,8 @@

        F

      • (graphnet.models.graphs.graph_definition.GraphDefinition method)
      • (graphnet.models.graphs.nodes.nodes.NodeDefinition method) +
      • +
      • (graphnet.models.normalizing_flow.NormalizingFlow method)
      • (graphnet.models.rnn.node_rnn.Node_RNN method)
      • @@ -906,6 +916,8 @@

        G

        - +
        -
      • load_module() (in module graphnet.data.dataset.dataset) -
      • @@ -2660,6 +2709,8 @@

        P

      • parse_graph_definition() (in module graphnet.data.dataset.dataset)
      • parse_labels() (in module graphnet.data.dataset.dataset) +
      • +
      • ParticleNeT (class in graphnet.models.gnn.particlenet)
      • path (graphnet.data.dataset.dataset.Dataset property) @@ -2746,6 +2797,8 @@

        R

        + + + + + + + + +
            graphnet.data.dataset.parquet.parquet_dataset
            + graphnet.data.dataset.samplers +
            @@ -829,6 +834,11 @@

        Python Module Index

            graphnet.models.gnn.icemix
            + graphnet.models.gnn.particlenet +
            @@ -884,6 +894,11 @@

        Python Module Index

            graphnet.models.model
            + graphnet.models.normalizing_flow +
            diff --git a/searchindex.js b/searchindex.js index 3cf2e5088..618803b56 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"1) Adding Support for Your Data": [[147, "adding-support-for-your-data"]], "2) Implementing a Detector Class": [[147, "implementing-a-detector-class"]], "Acknowledgements": [[0, "acknowledgements"]], "Adding Your Own Model": [[149, "adding-your-own-model"]], "Adding custom Labels": [[143, "adding-custom-labels"]], "Adding custom truth labels": [[144, "adding-custom-truth-labels"]], "Advanced Functionality in SQLiteDataset": [[144, "advanced-functionality-in-sqlitedataset"]], "Appendix": [[144, "appendix"]], "Choosing a subset of events using selection": [[143, "choosing-a-subset-of-events-using-selection"]], "Code quality": [[141, "code-quality"]], "Combining Multiple Datasets": [[143, "combining-multiple-datasets"], [144, "combining-multiple-datasets"]], "Contents": [[144, "contents"]], "Contributing To GraphNeTgraphnet": [[141, null]], "Conventions": [[141, "conventions"]], "Creating reproducible Datasets using DatasetConfig": [[144, "creating-reproducible-datasets-using-datasetconfig"]], "Creating reproducible Models using ModelConfig": [[144, "creating-reproducible-models-using-modelconfig"]], "Data Conversion in GraphNeTgraphnet": [[142, null]], "DataConverter": [[142, "dataconverter"]], "Dataset": [[143, "dataset"]], "Datasets In GraphNeTgraphnet": [[143, null]], "Example DataConfig": [[144, "example-dataconfig"]], "Example ModelConfig": [[144, "example-modelconfig"]], "Example of geometry table before applying multi-index": [[147, "id1"]], "Example: Energy Reconstruction using ModelConfig": [[149, "example-energy-reconstruction-using-modelconfig"]], "Experiment Tracking": [[149, "experiment-tracking"]], "Extractors": [[142, "extractors"]], "GitHub issues": [[141, "github-issues"]], "GraphDefinition, backbone & Task": [[149, "graphdefinition-backbone-task"]], "GraphNeT tutorial": [[144, null]], "GraphNeTgraphnet": [[145, null], [148, null]], "Implementing a new Dataset": [[143, "implementing-a-new-dataset"]], "Installation": [[146, null]], "Installation in CVMFS (IceCube)": [[146, "installation-in-cvmfs-icecube"]], "Instantiating a StandardModel": [[149, "instantiating-a-standardmodel"]], "Integrating New Experiments into GraphNeTgraphnet": [[147, null]], "Introduction": [[144, "introduction"]], "Model.save": [[149, "model-save"]], "ModelConfig and state_dict": [[149, "modelconfig-and-state-dict"]], "Models In GraphNeTgraphnet": [[149, null]], "Overview of GraphNeT": [[144, "overview-of-graphnet"]], "Pull requests": [[141, "pull-requests"]], "Quick Start": [[146, "quick-start"]], "Readers": [[142, "readers"]], "SQLiteDataset & ParquetDataset": [[143, "sqlitedataset-parquetdataset"]], "SQLiteDataset vs. ParquetDataset": [[143, "sqlitedataset-vs-parquetdataset"]], "Saving, loading, and checkpointing Models": [[149, "saving-loading-and-checkpointing-models"]], "Submodules": [[1, "submodules"], [3, "submodules"], [10, "submodules"], [12, "submodules"], [14, "submodules"], [16, "submodules"], [19, "submodules"], [32, "submodules"], [37, "submodules"], [39, "submodules"], [41, "submodules"], [43, "submodules"], [45, "submodules"], [47, "submodules"], [53, "submodules"], [55, "submodules"], [60, "submodules"], [64, "submodules"], [67, "submodules"], [70, "submodules"], [72, "submodules"], [76, "submodules"], [78, "submodules"], [80, "submodules"], [84, "submodules"], [90, "submodules"], [98, "submodules"], [99, "submodules"], [104, "submodules"], [108, "submodules"], [112, "submodules"], [116, "submodules"], [119, "submodules"], [125, "submodules"], [127, "submodules"]], "Subpackages": [[1, null], [3, "subpackages"], [10, "subpackages"], [16, "subpackages"], [19, "subpackages"], [67, "subpackages"], [78, "subpackages"], [98, "subpackages"], [125, "subpackages"]], "The Model class": [[144, "the-model-class"], [149, "the-model-class"]], "The StandardModel class": [[144, "the-standardmodel-class"], [149, "the-standardmodel-class"]], "Training Syntax for StandardModel": [[149, "training-syntax-for-standardmodel"]], "Usage": [[0, null]], "Using checkpoints": [[149, "using-checkpoints"]], "Writers": [[142, "writers"]], "Writing your own Extractor and GraphNeTFileReader": [[147, "writing-your-own-extractor-and-graphnetfilereader"]], "graphnet.constants module": [[2, null]], "graphnet.data package": [[3, null]], "graphnet.data.constants module": [[4, null]], "graphnet.data.curated_datamodule module": [[5, null]], "graphnet.data.dataclasses module": [[6, null]], "graphnet.data.dataconverter module": [[7, null]], "graphnet.data.dataloader module": [[8, null]], "graphnet.data.datamodule module": [[9, null]], "graphnet.data.dataset package": [[10, null]], "graphnet.data.dataset.dataset module": [[11, null]], "graphnet.data.dataset.parquet package": [[12, null]], "graphnet.data.dataset.parquet.parquet_dataset module": [[13, null]], "graphnet.data.dataset.sqlite package": [[14, null]], "graphnet.data.dataset.sqlite.sqlite_dataset module": [[15, null]], "graphnet.data.extractors package": [[16, null]], "graphnet.data.extractors.combine_extractors module": [[17, null]], "graphnet.data.extractors.extractor module": [[18, null]], "graphnet.data.extractors.icecube package": [[19, null]], "graphnet.data.extractors.icecube.i3extractor module": [[20, null]], "graphnet.data.extractors.icecube.i3featureextractor module": [[21, null]], "graphnet.data.extractors.icecube.i3genericextractor module": [[22, null]], "graphnet.data.extractors.icecube.i3hybridrecoextractor module": [[23, null]], "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor module": [[24, null]], "graphnet.data.extractors.icecube.i3particleextractor module": [[25, null]], "graphnet.data.extractors.icecube.i3pisaextractor module": [[26, null]], "graphnet.data.extractors.icecube.i3quesoextractor module": [[27, null]], "graphnet.data.extractors.icecube.i3retroextractor module": [[28, null]], "graphnet.data.extractors.icecube.i3splinempeextractor module": [[29, null]], "graphnet.data.extractors.icecube.i3truthextractor module": [[30, null]], "graphnet.data.extractors.icecube.i3tumextractor module": [[31, null]], "graphnet.data.extractors.icecube.utilities package": [[32, null]], "graphnet.data.extractors.icecube.utilities.collections module": [[33, null]], "graphnet.data.extractors.icecube.utilities.frames module": [[34, null]], "graphnet.data.extractors.icecube.utilities.i3_filters module": [[35, null]], "graphnet.data.extractors.icecube.utilities.types module": [[36, null]], "graphnet.data.extractors.internal package": [[37, null]], "graphnet.data.extractors.internal.parquet_extractor module": [[38, null]], "graphnet.data.extractors.liquido package": [[39, null]], "graphnet.data.extractors.liquido.h5_extractor module": [[40, null]], "graphnet.data.extractors.prometheus package": [[41, null]], "graphnet.data.extractors.prometheus.prometheus_extractor module": [[42, null]], "graphnet.data.parquet package": [[43, null]], "graphnet.data.parquet.deprecated_methods module": [[44, null]], "graphnet.data.pre_configured package": [[45, null]], "graphnet.data.pre_configured.dataconverters module": [[46, null]], "graphnet.data.readers package": [[47, null]], "graphnet.data.readers.graphnet_file_reader module": [[48, null]], "graphnet.data.readers.i3reader module": [[49, null]], "graphnet.data.readers.internal_parquet_reader module": [[50, null]], "graphnet.data.readers.liquido_reader module": [[51, null]], "graphnet.data.readers.prometheus_reader module": [[52, null]], "graphnet.data.sqlite package": [[53, null]], "graphnet.data.sqlite.deprecated_methods module": [[54, null]], "graphnet.data.utilities package": [[55, null]], "graphnet.data.utilities.parquet_to_sqlite module": [[56, null]], "graphnet.data.utilities.random module": [[57, null]], "graphnet.data.utilities.sqlite_utilities module": [[58, null]], "graphnet.data.utilities.string_selection_resolver module": [[59, null]], "graphnet.data.writers package": [[60, null]], "graphnet.data.writers.graphnet_writer module": [[61, null]], "graphnet.data.writers.parquet_writer module": [[62, null]], "graphnet.data.writers.sqlite_writer module": [[63, null]], "graphnet.datasets package": [[64, null]], "graphnet.datasets.prometheus_datasets module": [[65, null]], "graphnet.datasets.test_dataset module": [[66, null]], "graphnet.deployment package": [[67, null]], "graphnet.deployment.deployer module": [[68, null]], "graphnet.deployment.deployment_module module": [[69, null]], "graphnet.deployment.i3modules package": [[70, null]], "graphnet.deployment.i3modules.deprecated_methods module": [[71, null]], "graphnet.deployment.icecube package": [[72, null]], "graphnet.deployment.icecube.cleaning_module module": [[73, null]], "graphnet.deployment.icecube.i3deployer module": [[74, null]], "graphnet.deployment.icecube.inference_module module": [[75, null]], "graphnet.exceptions package": [[76, null]], "graphnet.exceptions.exceptions module": [[77, null]], "graphnet.models package": [[78, null]], "graphnet.models.coarsening module": [[79, null]], "graphnet.models.components package": [[80, null]], "graphnet.models.components.embedding module": [[81, null]], "graphnet.models.components.layers module": [[82, null]], "graphnet.models.components.pool module": [[83, null]], "graphnet.models.detector package": [[84, null]], "graphnet.models.detector.detector module": [[85, null]], "graphnet.models.detector.icecube module": [[86, null]], "graphnet.models.detector.liquido module": [[87, null]], "graphnet.models.detector.prometheus module": [[88, null]], "graphnet.models.easy_model module": [[89, null]], "graphnet.models.gnn package": [[90, null]], "graphnet.models.gnn.RNN_tito module": [[91, null]], "graphnet.models.gnn.convnet module": [[92, null]], "graphnet.models.gnn.dynedge module": [[93, null]], "graphnet.models.gnn.dynedge_jinst module": [[94, null]], "graphnet.models.gnn.dynedge_kaggle_tito module": [[95, null]], "graphnet.models.gnn.gnn module": [[96, null]], "graphnet.models.gnn.icemix module": [[97, null]], "graphnet.models.graphs package": [[98, null]], "graphnet.models.graphs.edges package": [[99, null]], "graphnet.models.graphs.edges.edges module": [[100, null]], "graphnet.models.graphs.edges.minkowski module": [[101, null]], "graphnet.models.graphs.graph_definition module": [[102, null]], "graphnet.models.graphs.graphs module": [[103, null]], "graphnet.models.graphs.nodes package": [[104, null]], "graphnet.models.graphs.nodes.nodes module": [[105, null]], "graphnet.models.graphs.utils module": [[106, null]], "graphnet.models.model module": [[107, null]], "graphnet.models.rnn package": [[108, null]], "graphnet.models.rnn.node_rnn module": [[109, null]], "graphnet.models.standard_averaged_model module": [[110, null]], "graphnet.models.standard_model module": [[111, null]], "graphnet.models.task package": [[112, null]], "graphnet.models.task.classification module": [[113, null]], "graphnet.models.task.reconstruction module": [[114, null]], "graphnet.models.task.task module": [[115, null]], "graphnet.models.transformer package": [[116, null]], "graphnet.models.transformer.iseecube module": [[117, null]], "graphnet.models.utils module": [[118, null]], "graphnet.training package": [[119, null]], "graphnet.training.callbacks module": [[120, null]], "graphnet.training.labels module": [[121, null]], "graphnet.training.loss_functions module": [[122, null]], "graphnet.training.utils module": [[123, null]], "graphnet.training.weight_fitting module": [[124, null]], "graphnet.utilities package": [[125, null]], "graphnet.utilities.argparse module": [[126, null]], "graphnet.utilities.config package": [[127, null]], "graphnet.utilities.config.base_config module": [[128, null]], "graphnet.utilities.config.configurable module": [[129, null]], "graphnet.utilities.config.dataset_config module": [[130, null]], "graphnet.utilities.config.model_config module": [[131, null]], "graphnet.utilities.config.parsing module": [[132, null]], "graphnet.utilities.config.training_config module": [[133, null]], "graphnet.utilities.decorators module": [[134, null]], "graphnet.utilities.deprecation_tools module": [[135, null]], "graphnet.utilities.filesys module": [[136, null]], "graphnet.utilities.imports module": [[137, null]], "graphnet.utilities.logging module": [[138, null]], "graphnet.utilities.maths module": [[139, null]], "src": [[140, null]]}, "docnames": ["about/about", "api/graphnet", "api/graphnet.constants", "api/graphnet.data", "api/graphnet.data.constants", "api/graphnet.data.curated_datamodule", "api/graphnet.data.dataclasses", "api/graphnet.data.dataconverter", "api/graphnet.data.dataloader", "api/graphnet.data.datamodule", "api/graphnet.data.dataset", "api/graphnet.data.dataset.dataset", "api/graphnet.data.dataset.parquet", "api/graphnet.data.dataset.parquet.parquet_dataset", "api/graphnet.data.dataset.sqlite", "api/graphnet.data.dataset.sqlite.sqlite_dataset", "api/graphnet.data.extractors", "api/graphnet.data.extractors.combine_extractors", "api/graphnet.data.extractors.extractor", "api/graphnet.data.extractors.icecube", "api/graphnet.data.extractors.icecube.i3extractor", "api/graphnet.data.extractors.icecube.i3featureextractor", "api/graphnet.data.extractors.icecube.i3genericextractor", "api/graphnet.data.extractors.icecube.i3hybridrecoextractor", "api/graphnet.data.extractors.icecube.i3ntmuonlabelsextractor", "api/graphnet.data.extractors.icecube.i3particleextractor", "api/graphnet.data.extractors.icecube.i3pisaextractor", "api/graphnet.data.extractors.icecube.i3quesoextractor", "api/graphnet.data.extractors.icecube.i3retroextractor", "api/graphnet.data.extractors.icecube.i3splinempeextractor", "api/graphnet.data.extractors.icecube.i3truthextractor", "api/graphnet.data.extractors.icecube.i3tumextractor", "api/graphnet.data.extractors.icecube.utilities", "api/graphnet.data.extractors.icecube.utilities.collections", "api/graphnet.data.extractors.icecube.utilities.frames", "api/graphnet.data.extractors.icecube.utilities.i3_filters", "api/graphnet.data.extractors.icecube.utilities.types", "api/graphnet.data.extractors.internal", "api/graphnet.data.extractors.internal.parquet_extractor", "api/graphnet.data.extractors.liquido", "api/graphnet.data.extractors.liquido.h5_extractor", "api/graphnet.data.extractors.prometheus", "api/graphnet.data.extractors.prometheus.prometheus_extractor", "api/graphnet.data.parquet", "api/graphnet.data.parquet.deprecated_methods", "api/graphnet.data.pre_configured", "api/graphnet.data.pre_configured.dataconverters", "api/graphnet.data.readers", "api/graphnet.data.readers.graphnet_file_reader", "api/graphnet.data.readers.i3reader", "api/graphnet.data.readers.internal_parquet_reader", "api/graphnet.data.readers.liquido_reader", "api/graphnet.data.readers.prometheus_reader", "api/graphnet.data.sqlite", "api/graphnet.data.sqlite.deprecated_methods", "api/graphnet.data.utilities", "api/graphnet.data.utilities.parquet_to_sqlite", "api/graphnet.data.utilities.random", "api/graphnet.data.utilities.sqlite_utilities", "api/graphnet.data.utilities.string_selection_resolver", "api/graphnet.data.writers", "api/graphnet.data.writers.graphnet_writer", "api/graphnet.data.writers.parquet_writer", "api/graphnet.data.writers.sqlite_writer", "api/graphnet.datasets", "api/graphnet.datasets.prometheus_datasets", "api/graphnet.datasets.test_dataset", "api/graphnet.deployment", "api/graphnet.deployment.deployer", "api/graphnet.deployment.deployment_module", "api/graphnet.deployment.i3modules", "api/graphnet.deployment.i3modules.deprecated_methods", "api/graphnet.deployment.icecube", "api/graphnet.deployment.icecube.cleaning_module", "api/graphnet.deployment.icecube.i3deployer", "api/graphnet.deployment.icecube.inference_module", "api/graphnet.exceptions", "api/graphnet.exceptions.exceptions", "api/graphnet.models", "api/graphnet.models.coarsening", "api/graphnet.models.components", "api/graphnet.models.components.embedding", "api/graphnet.models.components.layers", "api/graphnet.models.components.pool", "api/graphnet.models.detector", "api/graphnet.models.detector.detector", "api/graphnet.models.detector.icecube", "api/graphnet.models.detector.liquido", "api/graphnet.models.detector.prometheus", "api/graphnet.models.easy_model", "api/graphnet.models.gnn", "api/graphnet.models.gnn.RNN_tito", "api/graphnet.models.gnn.convnet", "api/graphnet.models.gnn.dynedge", "api/graphnet.models.gnn.dynedge_jinst", "api/graphnet.models.gnn.dynedge_kaggle_tito", "api/graphnet.models.gnn.gnn", "api/graphnet.models.gnn.icemix", "api/graphnet.models.graphs", "api/graphnet.models.graphs.edges", "api/graphnet.models.graphs.edges.edges", "api/graphnet.models.graphs.edges.minkowski", "api/graphnet.models.graphs.graph_definition", "api/graphnet.models.graphs.graphs", "api/graphnet.models.graphs.nodes", "api/graphnet.models.graphs.nodes.nodes", "api/graphnet.models.graphs.utils", "api/graphnet.models.model", "api/graphnet.models.rnn", "api/graphnet.models.rnn.node_rnn", "api/graphnet.models.standard_averaged_model", "api/graphnet.models.standard_model", "api/graphnet.models.task", "api/graphnet.models.task.classification", "api/graphnet.models.task.reconstruction", "api/graphnet.models.task.task", "api/graphnet.models.transformer", "api/graphnet.models.transformer.iseecube", "api/graphnet.models.utils", "api/graphnet.training", "api/graphnet.training.callbacks", "api/graphnet.training.labels", "api/graphnet.training.loss_functions", "api/graphnet.training.utils", "api/graphnet.training.weight_fitting", "api/graphnet.utilities", "api/graphnet.utilities.argparse", "api/graphnet.utilities.config", "api/graphnet.utilities.config.base_config", "api/graphnet.utilities.config.configurable", "api/graphnet.utilities.config.dataset_config", "api/graphnet.utilities.config.model_config", "api/graphnet.utilities.config.parsing", "api/graphnet.utilities.config.training_config", "api/graphnet.utilities.decorators", "api/graphnet.utilities.deprecation_tools", "api/graphnet.utilities.filesys", "api/graphnet.utilities.imports", "api/graphnet.utilities.logging", "api/graphnet.utilities.maths", "api/modules", "contribute/contribute", "data_conversion/data_conversion", "datasets/datasets", "getting_started/getting_started", "index", "installation/install", "integration/integration", "intro/intro", "models/models", "substitutions"], "envversion": {"sphinx": 63, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["about/about.rst", "api/graphnet.rst", "api/graphnet.constants.rst", "api/graphnet.data.rst", "api/graphnet.data.constants.rst", "api/graphnet.data.curated_datamodule.rst", "api/graphnet.data.dataclasses.rst", "api/graphnet.data.dataconverter.rst", "api/graphnet.data.dataloader.rst", "api/graphnet.data.datamodule.rst", "api/graphnet.data.dataset.rst", "api/graphnet.data.dataset.dataset.rst", "api/graphnet.data.dataset.parquet.rst", "api/graphnet.data.dataset.parquet.parquet_dataset.rst", "api/graphnet.data.dataset.sqlite.rst", "api/graphnet.data.dataset.sqlite.sqlite_dataset.rst", "api/graphnet.data.extractors.rst", "api/graphnet.data.extractors.combine_extractors.rst", "api/graphnet.data.extractors.extractor.rst", "api/graphnet.data.extractors.icecube.rst", "api/graphnet.data.extractors.icecube.i3extractor.rst", "api/graphnet.data.extractors.icecube.i3featureextractor.rst", "api/graphnet.data.extractors.icecube.i3genericextractor.rst", "api/graphnet.data.extractors.icecube.i3hybridrecoextractor.rst", "api/graphnet.data.extractors.icecube.i3ntmuonlabelsextractor.rst", "api/graphnet.data.extractors.icecube.i3particleextractor.rst", "api/graphnet.data.extractors.icecube.i3pisaextractor.rst", "api/graphnet.data.extractors.icecube.i3quesoextractor.rst", "api/graphnet.data.extractors.icecube.i3retroextractor.rst", "api/graphnet.data.extractors.icecube.i3splinempeextractor.rst", "api/graphnet.data.extractors.icecube.i3truthextractor.rst", "api/graphnet.data.extractors.icecube.i3tumextractor.rst", "api/graphnet.data.extractors.icecube.utilities.rst", "api/graphnet.data.extractors.icecube.utilities.collections.rst", "api/graphnet.data.extractors.icecube.utilities.frames.rst", "api/graphnet.data.extractors.icecube.utilities.i3_filters.rst", "api/graphnet.data.extractors.icecube.utilities.types.rst", "api/graphnet.data.extractors.internal.rst", "api/graphnet.data.extractors.internal.parquet_extractor.rst", "api/graphnet.data.extractors.liquido.rst", "api/graphnet.data.extractors.liquido.h5_extractor.rst", "api/graphnet.data.extractors.prometheus.rst", "api/graphnet.data.extractors.prometheus.prometheus_extractor.rst", "api/graphnet.data.parquet.rst", "api/graphnet.data.parquet.deprecated_methods.rst", "api/graphnet.data.pre_configured.rst", "api/graphnet.data.pre_configured.dataconverters.rst", "api/graphnet.data.readers.rst", "api/graphnet.data.readers.graphnet_file_reader.rst", "api/graphnet.data.readers.i3reader.rst", "api/graphnet.data.readers.internal_parquet_reader.rst", "api/graphnet.data.readers.liquido_reader.rst", "api/graphnet.data.readers.prometheus_reader.rst", "api/graphnet.data.sqlite.rst", "api/graphnet.data.sqlite.deprecated_methods.rst", "api/graphnet.data.utilities.rst", "api/graphnet.data.utilities.parquet_to_sqlite.rst", "api/graphnet.data.utilities.random.rst", "api/graphnet.data.utilities.sqlite_utilities.rst", "api/graphnet.data.utilities.string_selection_resolver.rst", "api/graphnet.data.writers.rst", "api/graphnet.data.writers.graphnet_writer.rst", "api/graphnet.data.writers.parquet_writer.rst", "api/graphnet.data.writers.sqlite_writer.rst", "api/graphnet.datasets.rst", "api/graphnet.datasets.prometheus_datasets.rst", "api/graphnet.datasets.test_dataset.rst", "api/graphnet.deployment.rst", "api/graphnet.deployment.deployer.rst", "api/graphnet.deployment.deployment_module.rst", "api/graphnet.deployment.i3modules.rst", "api/graphnet.deployment.i3modules.deprecated_methods.rst", "api/graphnet.deployment.icecube.rst", "api/graphnet.deployment.icecube.cleaning_module.rst", "api/graphnet.deployment.icecube.i3deployer.rst", "api/graphnet.deployment.icecube.inference_module.rst", "api/graphnet.exceptions.rst", "api/graphnet.exceptions.exceptions.rst", "api/graphnet.models.rst", "api/graphnet.models.coarsening.rst", "api/graphnet.models.components.rst", "api/graphnet.models.components.embedding.rst", "api/graphnet.models.components.layers.rst", "api/graphnet.models.components.pool.rst", "api/graphnet.models.detector.rst", "api/graphnet.models.detector.detector.rst", "api/graphnet.models.detector.icecube.rst", "api/graphnet.models.detector.liquido.rst", "api/graphnet.models.detector.prometheus.rst", "api/graphnet.models.easy_model.rst", "api/graphnet.models.gnn.rst", "api/graphnet.models.gnn.RNN_tito.rst", "api/graphnet.models.gnn.convnet.rst", "api/graphnet.models.gnn.dynedge.rst", "api/graphnet.models.gnn.dynedge_jinst.rst", "api/graphnet.models.gnn.dynedge_kaggle_tito.rst", "api/graphnet.models.gnn.gnn.rst", "api/graphnet.models.gnn.icemix.rst", "api/graphnet.models.graphs.rst", "api/graphnet.models.graphs.edges.rst", "api/graphnet.models.graphs.edges.edges.rst", "api/graphnet.models.graphs.edges.minkowski.rst", "api/graphnet.models.graphs.graph_definition.rst", "api/graphnet.models.graphs.graphs.rst", "api/graphnet.models.graphs.nodes.rst", "api/graphnet.models.graphs.nodes.nodes.rst", "api/graphnet.models.graphs.utils.rst", "api/graphnet.models.model.rst", "api/graphnet.models.rnn.rst", "api/graphnet.models.rnn.node_rnn.rst", "api/graphnet.models.standard_averaged_model.rst", "api/graphnet.models.standard_model.rst", "api/graphnet.models.task.rst", "api/graphnet.models.task.classification.rst", "api/graphnet.models.task.reconstruction.rst", "api/graphnet.models.task.task.rst", "api/graphnet.models.transformer.rst", "api/graphnet.models.transformer.iseecube.rst", "api/graphnet.models.utils.rst", "api/graphnet.training.rst", "api/graphnet.training.callbacks.rst", "api/graphnet.training.labels.rst", "api/graphnet.training.loss_functions.rst", "api/graphnet.training.utils.rst", "api/graphnet.training.weight_fitting.rst", "api/graphnet.utilities.rst", "api/graphnet.utilities.argparse.rst", "api/graphnet.utilities.config.rst", "api/graphnet.utilities.config.base_config.rst", "api/graphnet.utilities.config.configurable.rst", "api/graphnet.utilities.config.dataset_config.rst", "api/graphnet.utilities.config.model_config.rst", "api/graphnet.utilities.config.parsing.rst", "api/graphnet.utilities.config.training_config.rst", "api/graphnet.utilities.decorators.rst", "api/graphnet.utilities.deprecation_tools.rst", "api/graphnet.utilities.filesys.rst", "api/graphnet.utilities.imports.rst", "api/graphnet.utilities.logging.rst", "api/graphnet.utilities.maths.rst", "api/modules.rst", "contribute/contribute.rst", "data_conversion/data_conversion.rst", "datasets/datasets.rst", "getting_started/getting_started.md", "index.rst", "installation/install.rst", "integration/integration.rst", "intro/intro.rst", "models/models.rst", "substitutions.rst"], "indexentries": {"accepted_extractors (graphnet.data.readers.graphnet_file_reader.graphnetfilereader property)": [[48, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.accepted_extractors", false]], "accepted_file_extensions (graphnet.data.readers.graphnet_file_reader.graphnetfilereader property)": [[48, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.accepted_file_extensions", false]], "add_label() (graphnet.data.dataset.dataset.dataset method)": [[11, "graphnet.data.dataset.dataset.Dataset.add_label", false]], "arca115 (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.ARCA115", false]], "argumentparser (class in graphnet.utilities.argparse)": [[126, "graphnet.utilities.argparse.ArgumentParser", false]], "arguments (graphnet.utilities.config.model_config.modelconfig attribute)": [[131, "graphnet.utilities.config.model_config.ModelConfig.arguments", false]], "array_to_sequence() (in module graphnet.models.utils)": [[118, "graphnet.models.utils.array_to_sequence", false]], "as_dict() (graphnet.utilities.config.base_config.baseconfig method)": [[128, "graphnet.utilities.config.base_config.BaseConfig.as_dict", false]], "as_dict() (graphnet.utilities.config.dataset_config.datasetconfig method)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.as_dict", false]], "as_dict() (graphnet.utilities.config.model_config.modelconfig method)": [[131, "graphnet.utilities.config.model_config.ModelConfig.as_dict", false]], "attach_index() (in module graphnet.data.utilities.sqlite_utilities)": [[58, "graphnet.data.utilities.sqlite_utilities.attach_index", false]], "attention_rel (class in graphnet.models.components.layers)": [[82, "graphnet.models.components.layers.Attention_rel", false]], "attributecoarsening (class in graphnet.models.coarsening)": [[79, "graphnet.models.coarsening.AttributeCoarsening", false]], "available_backends (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.available_backends", false]], "azimuthreconstruction (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.AzimuthReconstruction", false]], "azimuthreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa", false]], "backward() (graphnet.training.loss_functions.logcmk static method)": [[122, "graphnet.training.loss_functions.LogCMK.backward", false]], "baikalgvd8 (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.BaikalGVD8", false]], "baikalgvdsmall (class in graphnet.datasets.prometheus_datasets)": [[65, "graphnet.datasets.prometheus_datasets.BaikalGVDSmall", false]], "baseconfig (class in graphnet.utilities.config.base_config)": [[128, "graphnet.utilities.config.base_config.BaseConfig", false]], "binaryclassificationtask (class in graphnet.models.task.classification)": [[113, "graphnet.models.task.classification.BinaryClassificationTask", false]], "binaryclassificationtasklogits (class in graphnet.models.task.classification)": [[113, "graphnet.models.task.classification.BinaryClassificationTaskLogits", false]], "binarycrossentropyloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.BinaryCrossEntropyLoss", false]], "bjoernlow (class in graphnet.training.weight_fitting)": [[124, "graphnet.training.weight_fitting.BjoernLow", false]], "block (class in graphnet.models.components.layers)": [[82, "graphnet.models.components.layers.Block", false]], "block_rel (class in graphnet.models.components.layers)": [[82, "graphnet.models.components.layers.Block_rel", false]], "break_cyclic_recursion() (in module graphnet.data.extractors.icecube.utilities.types)": [[36, "graphnet.data.extractors.icecube.utilities.types.break_cyclic_recursion", false]], "calculate_distance_matrix() (in module graphnet.models.utils)": [[118, "graphnet.models.utils.calculate_distance_matrix", false]], "calculate_xyzt_homophily() (in module graphnet.models.utils)": [[118, "graphnet.models.utils.calculate_xyzt_homophily", false]], "cast_object_to_pure_python() (in module graphnet.data.extractors.icecube.utilities.types)": [[36, "graphnet.data.extractors.icecube.utilities.types.cast_object_to_pure_python", false]], "cast_pulse_series_to_pure_python() (in module graphnet.data.extractors.icecube.utilities.types)": [[36, "graphnet.data.extractors.icecube.utilities.types.cast_pulse_series_to_pure_python", false]], "citation (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.citation", false]], "class_name (graphnet.utilities.config.model_config.modelconfig attribute)": [[131, "graphnet.utilities.config.model_config.ModelConfig.class_name", false]], "clean_up_data_object() (graphnet.models.rnn.node_rnn.node_rnn method)": [[109, "graphnet.models.rnn.node_rnn.Node_RNN.clean_up_data_object", false]], "cluster_summarize_with_percentiles() (in module graphnet.models.graphs.utils)": [[106, "graphnet.models.graphs.utils.cluster_summarize_with_percentiles", false]], "coarsening (class in graphnet.models.coarsening)": [[79, "graphnet.models.coarsening.Coarsening", false]], "collate_fn() (in module graphnet.data.dataloader)": [[8, "graphnet.data.dataloader.collate_fn", false]], "collate_fn() (in module graphnet.training.utils)": [[123, "graphnet.training.utils.collate_fn", false]], "collator_sequence_buckleting (class in graphnet.training.utils)": [[123, "graphnet.training.utils.collator_sequence_buckleting", false]], "columnmissingexception": [[77, "graphnet.exceptions.exceptions.ColumnMissingException", false]], "combinedextractor (class in graphnet.data.extractors.combine_extractors)": [[17, "graphnet.data.extractors.combine_extractors.CombinedExtractor", false]], "comments (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.comments", false]], "compute_loss() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.compute_loss", false]], "compute_loss() (graphnet.models.standard_model.standardmodel method)": [[111, "graphnet.models.standard_model.StandardModel.compute_loss", false]], "compute_loss() (graphnet.models.task.task.learnedtask method)": [[115, "graphnet.models.task.task.LearnedTask.compute_loss", false]], "compute_loss() (graphnet.models.task.task.standardflowtask method)": [[115, "graphnet.models.task.task.StandardFlowTask.compute_loss", false]], "compute_loss() (graphnet.models.task.task.standardlearnedtask method)": [[115, "graphnet.models.task.task.StandardLearnedTask.compute_loss", false]], "compute_minkowski_distance_mat() (in module graphnet.models.graphs.edges.minkowski)": [[101, "graphnet.models.graphs.edges.minkowski.compute_minkowski_distance_mat", false]], "concatenate() (graphnet.data.dataset.dataset.dataset class method)": [[11, "graphnet.data.dataset.dataset.Dataset.concatenate", false]], "config (graphnet.utilities.config.configurable.configurable property)": [[129, "graphnet.utilities.config.configurable.Configurable.config", false]], "configurable (class in graphnet.utilities.config.configurable)": [[129, "graphnet.utilities.config.configurable.Configurable", false]], "configure_optimizers() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.configure_optimizers", false]], "contains() (graphnet.utilities.argparse.options method)": [[126, "graphnet.utilities.argparse.Options.contains", false]], "convnet (class in graphnet.models.gnn.convnet)": [[92, "graphnet.models.gnn.convnet.ConvNet", false]], "create_table() (in module graphnet.data.utilities.sqlite_utilities)": [[58, "graphnet.data.utilities.sqlite_utilities.create_table", false]], "create_table_and_save_to_sql() (in module graphnet.data.utilities.sqlite_utilities)": [[58, "graphnet.data.utilities.sqlite_utilities.create_table_and_save_to_sql", false]], "creator (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.creator", false]], "critical() (graphnet.utilities.logging.logger method)": [[138, "graphnet.utilities.logging.Logger.critical", false]], "crossentropyloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.CrossEntropyLoss", false]], "curateddataset (class in graphnet.data.curated_datamodule)": [[5, "graphnet.data.curated_datamodule.CuratedDataset", false]], "customdomcoarsening (class in graphnet.models.coarsening)": [[79, "graphnet.models.coarsening.CustomDOMCoarsening", false]], "database_exists() (in module graphnet.data.utilities.sqlite_utilities)": [[58, "graphnet.data.utilities.sqlite_utilities.database_exists", false]], "database_table_exists() (in module graphnet.data.utilities.sqlite_utilities)": [[58, "graphnet.data.utilities.sqlite_utilities.database_table_exists", false]], "dataconverter (class in graphnet.data.dataconverter)": [[7, "graphnet.data.dataconverter.DataConverter", false]], "dataloader (class in graphnet.data.dataloader)": [[8, "graphnet.data.dataloader.DataLoader", false]], "dataloader (graphnet.utilities.config.training_config.trainingconfig attribute)": [[133, "graphnet.utilities.config.training_config.TrainingConfig.dataloader", false]], "dataset (class in graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.Dataset", false]], "dataset_dir (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.dataset_dir", false]], "datasetconfig (class in graphnet.utilities.config.dataset_config)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig", false]], "datasetconfigsaverabcmeta (class in graphnet.utilities.config.dataset_config)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfigSaverABCMeta", false]], "datasetconfigsavermeta (class in graphnet.utilities.config.dataset_config)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfigSaverMeta", false]], "debug() (graphnet.utilities.logging.logger method)": [[138, "graphnet.utilities.logging.Logger.debug", false]], "deepcore (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.DEEPCORE", false]], "deepcore (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.DEEPCORE", false]], "deepice (class in graphnet.models.gnn.icemix)": [[97, "graphnet.models.gnn.icemix.DeepIce", false]], "default_prediction_labels (graphnet.models.task.classification.binaryclassificationtask attribute)": [[113, "graphnet.models.task.classification.BinaryClassificationTask.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[113, "graphnet.models.task.classification.BinaryClassificationTaskLogits.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.AzimuthReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[114, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[114, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.EnergyReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[114, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[114, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.energytcreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.EnergyTCReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.InelasticityReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.PositionReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.timereconstruction attribute)": [[114, "graphnet.models.task.reconstruction.TimeReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.VertexReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.ZenithReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[114, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.task.identitytask property)": [[115, "graphnet.models.task.task.IdentityTask.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.task.task property)": [[115, "graphnet.models.task.task.Task.default_prediction_labels", false]], "default_target_labels (graphnet.models.task.classification.binaryclassificationtask attribute)": [[113, "graphnet.models.task.classification.BinaryClassificationTask.default_target_labels", false]], "default_target_labels (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[113, "graphnet.models.task.classification.BinaryClassificationTaskLogits.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.AzimuthReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[114, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[114, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.EnergyReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[114, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[114, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.energytcreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.EnergyTCReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.InelasticityReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.PositionReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.timereconstruction attribute)": [[114, "graphnet.models.task.reconstruction.TimeReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.VertexReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.ZenithReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[114, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.default_target_labels", false]], "default_target_labels (graphnet.models.task.task.identitytask property)": [[115, "graphnet.models.task.task.IdentityTask.default_target_labels", false]], "default_target_labels (graphnet.models.task.task.task property)": [[115, "graphnet.models.task.task.Task.default_target_labels", false]], "deployer (class in graphnet.deployment.deployer)": [[68, "graphnet.deployment.deployer.Deployer", false]], "deploymentmodule (class in graphnet.deployment.deployment_module)": [[69, "graphnet.deployment.deployment_module.DeploymentModule", false]], "description() (graphnet.data.curated_datamodule.curateddataset method)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.description", false]], "detector (class in graphnet.models.detector.detector)": [[85, "graphnet.models.detector.detector.Detector", false]], "direction (class in graphnet.training.labels)": [[121, "graphnet.training.labels.Direction", false]], "directionreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa", false]], "do_shuffle() (in module graphnet.data.dataloader)": [[8, "graphnet.data.dataloader.do_shuffle", false]], "domandtimewindowcoarsening (class in graphnet.models.coarsening)": [[79, "graphnet.models.coarsening.DOMAndTimeWindowCoarsening", false]], "domcoarsening (class in graphnet.models.coarsening)": [[79, "graphnet.models.coarsening.DOMCoarsening", false]], "droppath (class in graphnet.models.components.layers)": [[82, "graphnet.models.components.layers.DropPath", false]], "dump() (graphnet.utilities.config.base_config.baseconfig method)": [[128, "graphnet.utilities.config.base_config.BaseConfig.dump", false]], "dynedge (class in graphnet.models.gnn.dynedge)": [[93, "graphnet.models.gnn.dynedge.DynEdge", false]], "dynedgeconv (class in graphnet.models.components.layers)": [[82, "graphnet.models.components.layers.DynEdgeConv", false]], "dynedgejinst (class in graphnet.models.gnn.dynedge_jinst)": [[94, "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST", false]], "dynedgetito (class in graphnet.models.gnn.dynedge_kaggle_tito)": [[95, "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO", false]], "dyntrans (class in graphnet.models.components.layers)": [[82, "graphnet.models.components.layers.DynTrans", false]], "early_stopping_patience (graphnet.utilities.config.training_config.trainingconfig attribute)": [[133, "graphnet.utilities.config.training_config.TrainingConfig.early_stopping_patience", false]], "easysyntax (class in graphnet.models.easy_model)": [[89, "graphnet.models.easy_model.EasySyntax", false]], "edgeconvtito (class in graphnet.models.components.layers)": [[82, "graphnet.models.components.layers.EdgeConvTito", false]], "edgedefinition (class in graphnet.models.graphs.edges.edges)": [[100, "graphnet.models.graphs.edges.edges.EdgeDefinition", false]], "edgelessgraph (class in graphnet.models.graphs.graphs)": [[103, "graphnet.models.graphs.graphs.EdgelessGraph", false]], "energyreconstruction (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.EnergyReconstruction", false]], "energyreconstructionwithpower (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower", false]], "energyreconstructionwithuncertainty (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty", false]], "energytcreconstruction (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.EnergyTCReconstruction", false]], "ensembledataset (class in graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.EnsembleDataset", false]], "ensembleloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.EnsembleLoss", false]], "eps_like() (in module graphnet.utilities.maths)": [[139, "graphnet.utilities.maths.eps_like", false]], "erdahosteddataset (class in graphnet.data.curated_datamodule)": [[5, "graphnet.data.curated_datamodule.ERDAHostedDataset", false]], "error() (graphnet.utilities.logging.logger method)": [[138, "graphnet.utilities.logging.Logger.error", false]], "euclideandistanceloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.EuclideanDistanceLoss", false]], "euclideanedges (class in graphnet.models.graphs.edges.edges)": [[100, "graphnet.models.graphs.edges.edges.EuclideanEdges", false]], "event_truth (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.event_truth", false]], "events (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.events", false]], "expects_merged_dataframes (graphnet.data.writers.graphnet_writer.graphnetwriter property)": [[61, "graphnet.data.writers.graphnet_writer.GraphNeTWriter.expects_merged_dataframes", false]], "experiment (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.experiment", false]], "extra_repr() (graphnet.models.components.layers.droppath method)": [[82, "graphnet.models.components.layers.DropPath.extra_repr", false]], "extra_repr() (graphnet.models.model.model method)": [[107, "graphnet.models.model.Model.extra_repr", false]], "extra_repr_recursive() (graphnet.models.model.model method)": [[107, "graphnet.models.model.Model.extra_repr_recursive", false]], "extracor_names (graphnet.data.readers.graphnet_file_reader.graphnetfilereader property)": [[48, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.extracor_names", false]], "extractor (class in graphnet.data.extractors.extractor)": [[18, "graphnet.data.extractors.extractor.Extractor", false]], "feature_map() (graphnet.models.detector.detector.detector method)": [[85, "graphnet.models.detector.detector.Detector.feature_map", false]], "feature_map() (graphnet.models.detector.icecube.icecube86 method)": [[86, "graphnet.models.detector.icecube.IceCube86.feature_map", false]], "feature_map() (graphnet.models.detector.icecube.icecubedeepcore method)": [[86, "graphnet.models.detector.icecube.IceCubeDeepCore.feature_map", false]], "feature_map() (graphnet.models.detector.icecube.icecubekaggle method)": [[86, "graphnet.models.detector.icecube.IceCubeKaggle.feature_map", false]], "feature_map() (graphnet.models.detector.icecube.icecubeupgrade method)": [[86, "graphnet.models.detector.icecube.IceCubeUpgrade.feature_map", false]], "feature_map() (graphnet.models.detector.liquido.liquido_v1 method)": [[87, "graphnet.models.detector.liquido.LiquidO_v1.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.arca115 method)": [[88, "graphnet.models.detector.prometheus.ARCA115.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.baikalgvd8 method)": [[88, "graphnet.models.detector.prometheus.BaikalGVD8.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icecube86prometheus method)": [[88, "graphnet.models.detector.prometheus.IceCube86Prometheus.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icecubedeepcore8 method)": [[88, "graphnet.models.detector.prometheus.IceCubeDeepCore8.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icecubegen2 method)": [[88, "graphnet.models.detector.prometheus.IceCubeGen2.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icecubeupgrade7 method)": [[88, "graphnet.models.detector.prometheus.IceCubeUpgrade7.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icedemo81 method)": [[88, "graphnet.models.detector.prometheus.IceDemo81.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.orca150 method)": [[88, "graphnet.models.detector.prometheus.ORCA150.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.orca150superdense method)": [[88, "graphnet.models.detector.prometheus.ORCA150SuperDense.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.ponetriangle method)": [[88, "graphnet.models.detector.prometheus.PONETriangle.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.trident1211 method)": [[88, "graphnet.models.detector.prometheus.TRIDENT1211.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.waterdemo81 method)": [[88, "graphnet.models.detector.prometheus.WaterDemo81.feature_map", false]], "features (class in graphnet.data.constants)": [[4, "graphnet.data.constants.FEATURES", false]], "features (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.features", false]], "features (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.features", false]], "file_extension (graphnet.data.writers.graphnet_writer.graphnetwriter property)": [[61, "graphnet.data.writers.graphnet_writer.GraphNeTWriter.file_extension", false]], "file_handlers (graphnet.utilities.logging.logger property)": [[138, "graphnet.utilities.logging.Logger.file_handlers", false]], "filter() (graphnet.utilities.logging.repeatfilter method)": [[138, "graphnet.utilities.logging.RepeatFilter.filter", false]], "find_files() (graphnet.data.readers.graphnet_file_reader.graphnetfilereader method)": [[48, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.find_files", false]], "find_files() (graphnet.data.readers.i3reader.i3reader method)": [[49, "graphnet.data.readers.i3reader.I3Reader.find_files", false]], "find_files() (graphnet.data.readers.internal_parquet_reader.parquetreader method)": [[50, "graphnet.data.readers.internal_parquet_reader.ParquetReader.find_files", false]], "find_files() (graphnet.data.readers.liquido_reader.liquidoreader method)": [[51, "graphnet.data.readers.liquido_reader.LiquidOReader.find_files", false]], "find_files() (graphnet.data.readers.prometheus_reader.prometheusreader method)": [[52, "graphnet.data.readers.prometheus_reader.PrometheusReader.find_files", false]], "find_i3_files() (in module graphnet.utilities.filesys)": [[136, "graphnet.utilities.filesys.find_i3_files", false]], "fit (graphnet.utilities.config.training_config.trainingconfig attribute)": [[133, "graphnet.utilities.config.training_config.TrainingConfig.fit", false]], "fit() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.fit", false]], "fit() (graphnet.training.weight_fitting.weightfitter method)": [[124, "graphnet.training.weight_fitting.WeightFitter.fit", false]], "flatten_nested_dictionary() (in module graphnet.data.extractors.icecube.utilities.collections)": [[33, "graphnet.data.extractors.icecube.utilities.collections.flatten_nested_dictionary", false]], "forward() (graphnet.models.coarsening.coarsening method)": [[79, "graphnet.models.coarsening.Coarsening.forward", false]], "forward() (graphnet.models.components.embedding.fourierencoder method)": [[81, "graphnet.models.components.embedding.FourierEncoder.forward", false]], "forward() (graphnet.models.components.embedding.sinusoidalposemb method)": [[81, "graphnet.models.components.embedding.SinusoidalPosEmb.forward", false]], "forward() (graphnet.models.components.embedding.spacetimeencoder method)": [[81, "graphnet.models.components.embedding.SpacetimeEncoder.forward", false]], "forward() (graphnet.models.components.layers.attention_rel method)": [[82, "graphnet.models.components.layers.Attention_rel.forward", false]], "forward() (graphnet.models.components.layers.block method)": [[82, "graphnet.models.components.layers.Block.forward", false]], "forward() (graphnet.models.components.layers.block_rel method)": [[82, "graphnet.models.components.layers.Block_rel.forward", false]], "forward() (graphnet.models.components.layers.droppath method)": [[82, "graphnet.models.components.layers.DropPath.forward", false]], "forward() (graphnet.models.components.layers.dynedgeconv method)": [[82, "graphnet.models.components.layers.DynEdgeConv.forward", false]], "forward() (graphnet.models.components.layers.dyntrans method)": [[82, "graphnet.models.components.layers.DynTrans.forward", false]], "forward() (graphnet.models.components.layers.edgeconvtito method)": [[82, "graphnet.models.components.layers.EdgeConvTito.forward", false]], "forward() (graphnet.models.components.layers.mlp method)": [[82, "graphnet.models.components.layers.Mlp.forward", false]], "forward() (graphnet.models.detector.detector.detector method)": [[85, "graphnet.models.detector.detector.Detector.forward", false]], "forward() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.forward", false]], "forward() (graphnet.models.gnn.convnet.convnet method)": [[92, "graphnet.models.gnn.convnet.ConvNet.forward", false]], "forward() (graphnet.models.gnn.dynedge.dynedge method)": [[93, "graphnet.models.gnn.dynedge.DynEdge.forward", false]], "forward() (graphnet.models.gnn.dynedge_jinst.dynedgejinst method)": [[94, "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST.forward", false]], "forward() (graphnet.models.gnn.dynedge_kaggle_tito.dynedgetito method)": [[95, "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO.forward", false]], "forward() (graphnet.models.gnn.gnn.gnn method)": [[96, "graphnet.models.gnn.gnn.GNN.forward", false]], "forward() (graphnet.models.gnn.icemix.deepice method)": [[97, "graphnet.models.gnn.icemix.DeepIce.forward", false]], "forward() (graphnet.models.gnn.rnn_tito.rnn_tito method)": [[91, "graphnet.models.gnn.RNN_tito.RNN_TITO.forward", false]], "forward() (graphnet.models.graphs.edges.edges.edgedefinition method)": [[100, "graphnet.models.graphs.edges.edges.EdgeDefinition.forward", false]], "forward() (graphnet.models.graphs.graph_definition.graphdefinition method)": [[102, "graphnet.models.graphs.graph_definition.GraphDefinition.forward", false]], "forward() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[105, "graphnet.models.graphs.nodes.nodes.NodeDefinition.forward", false]], "forward() (graphnet.models.rnn.node_rnn.node_rnn method)": [[109, "graphnet.models.rnn.node_rnn.Node_RNN.forward", false]], "forward() (graphnet.models.standard_model.standardmodel method)": [[111, "graphnet.models.standard_model.StandardModel.forward", false]], "forward() (graphnet.models.task.task.learnedtask method)": [[115, "graphnet.models.task.task.LearnedTask.forward", false]], "forward() (graphnet.models.task.task.standardflowtask method)": [[115, "graphnet.models.task.task.StandardFlowTask.forward", false]], "forward() (graphnet.models.transformer.iseecube.iseecube method)": [[117, "graphnet.models.transformer.iseecube.ISeeCube.forward", false]], "forward() (graphnet.training.loss_functions.logcmk static method)": [[122, "graphnet.training.loss_functions.LogCMK.forward", false]], "forward() (graphnet.training.loss_functions.lossfunction method)": [[122, "graphnet.training.loss_functions.LossFunction.forward", false]], "fourierencoder (class in graphnet.models.components.embedding)": [[81, "graphnet.models.components.embedding.FourierEncoder", false]], "frame_is_montecarlo() (in module graphnet.data.extractors.icecube.utilities.frames)": [[34, "graphnet.data.extractors.icecube.utilities.frames.frame_is_montecarlo", false]], "frame_is_noise() (in module graphnet.data.extractors.icecube.utilities.frames)": [[34, "graphnet.data.extractors.icecube.utilities.frames.frame_is_noise", false]], "from_config() (graphnet.data.dataset.dataset.dataset class method)": [[11, "graphnet.data.dataset.dataset.Dataset.from_config", false]], "from_config() (graphnet.models.model.model class method)": [[107, "graphnet.models.model.Model.from_config", false]], "from_config() (graphnet.utilities.config.configurable.configurable class method)": [[129, "graphnet.utilities.config.configurable.Configurable.from_config", false]], "from_dataset_config() (graphnet.data.dataloader.dataloader class method)": [[8, "graphnet.data.dataloader.DataLoader.from_dataset_config", false]], "gather_cluster_sequence() (in module graphnet.models.graphs.utils)": [[106, "graphnet.models.graphs.utils.gather_cluster_sequence", false]], "gcd_file (graphnet.data.dataclasses.i3fileset attribute)": [[6, "graphnet.data.dataclasses.I3FileSet.gcd_file", false]], "gcd_file (graphnet.data.dataclasses.settings attribute)": [[6, "graphnet.data.dataclasses.Settings.gcd_file", false]], "geometry_table (graphnet.models.detector.detector.detector property)": [[85, "graphnet.models.detector.detector.Detector.geometry_table", false]], "geometry_table_path (graphnet.models.detector.icecube.icecube86 attribute)": [[86, "graphnet.models.detector.icecube.IceCube86.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.icecube.icecubekaggle attribute)": [[86, "graphnet.models.detector.icecube.IceCubeKaggle.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.icecube.icecubeupgrade attribute)": [[86, "graphnet.models.detector.icecube.IceCubeUpgrade.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.liquido.liquido_v1 attribute)": [[87, "graphnet.models.detector.liquido.LiquidO_v1.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.arca115 attribute)": [[88, "graphnet.models.detector.prometheus.ARCA115.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.baikalgvd8 attribute)": [[88, "graphnet.models.detector.prometheus.BaikalGVD8.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icecube86prometheus attribute)": [[88, "graphnet.models.detector.prometheus.IceCube86Prometheus.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icecubedeepcore8 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeDeepCore8.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icecubegen2 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeGen2.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icecubeupgrade7 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeUpgrade7.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icedemo81 attribute)": [[88, "graphnet.models.detector.prometheus.IceDemo81.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.orca150 attribute)": [[88, "graphnet.models.detector.prometheus.ORCA150.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.orca150superdense attribute)": [[88, "graphnet.models.detector.prometheus.ORCA150SuperDense.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.ponetriangle attribute)": [[88, "graphnet.models.detector.prometheus.PONETriangle.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.trident1211 attribute)": [[88, "graphnet.models.detector.prometheus.TRIDENT1211.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.waterdemo81 attribute)": [[88, "graphnet.models.detector.prometheus.WaterDemo81.geometry_table_path", false]], "get_all_argument_values() (in module graphnet.utilities.config.base_config)": [[128, "graphnet.utilities.config.base_config.get_all_argument_values", false]], "get_all_grapnet_classes() (in module graphnet.utilities.config.parsing)": [[132, "graphnet.utilities.config.parsing.get_all_grapnet_classes", false]], "get_graphnet_classes() (in module graphnet.utilities.config.parsing)": [[132, "graphnet.utilities.config.parsing.get_graphnet_classes", false]], "get_lr() (graphnet.training.callbacks.piecewiselinearlr method)": [[120, "graphnet.training.callbacks.PiecewiseLinearLR.get_lr", false]], "get_map_function() (graphnet.data.dataconverter.dataconverter method)": [[7, "graphnet.data.dataconverter.DataConverter.get_map_function", false]], "get_member_variables() (in module graphnet.data.extractors.icecube.utilities.types)": [[36, "graphnet.data.extractors.icecube.utilities.types.get_member_variables", false]], "get_metrics() (graphnet.training.callbacks.progressbar method)": [[120, "graphnet.training.callbacks.ProgressBar.get_metrics", false]], "get_om_keys_and_pulseseries() (in module graphnet.data.extractors.icecube.utilities.frames)": [[34, "graphnet.data.extractors.icecube.utilities.frames.get_om_keys_and_pulseseries", false]], "get_predictions() (in module graphnet.training.utils)": [[123, "graphnet.training.utils.get_predictions", false]], "get_primary_keys() (in module graphnet.data.utilities.sqlite_utilities)": [[58, "graphnet.data.utilities.sqlite_utilities.get_primary_keys", false]], "gnn (class in graphnet.models.gnn.gnn)": [[96, "graphnet.models.gnn.gnn.GNN", false]], "graph_definition (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.graph_definition", false]], "graphdefinition (class in graphnet.models.graphs.graph_definition)": [[102, "graphnet.models.graphs.graph_definition.GraphDefinition", false]], "graphnet": [[1, "module-graphnet", false]], "graphnet.constants": [[2, "module-graphnet.constants", false]], "graphnet.data": [[3, "module-graphnet.data", false]], "graphnet.data.constants": [[4, "module-graphnet.data.constants", false]], "graphnet.data.curated_datamodule": [[5, "module-graphnet.data.curated_datamodule", false]], "graphnet.data.dataclasses": [[6, "module-graphnet.data.dataclasses", false]], "graphnet.data.dataconverter": [[7, "module-graphnet.data.dataconverter", false]], "graphnet.data.dataloader": [[8, "module-graphnet.data.dataloader", false]], "graphnet.data.datamodule": [[9, "module-graphnet.data.datamodule", false]], "graphnet.data.dataset": [[10, "module-graphnet.data.dataset", false]], "graphnet.data.dataset.dataset": [[11, "module-graphnet.data.dataset.dataset", false]], "graphnet.data.dataset.parquet": [[12, "module-graphnet.data.dataset.parquet", false]], "graphnet.data.dataset.parquet.parquet_dataset": [[13, "module-graphnet.data.dataset.parquet.parquet_dataset", false]], "graphnet.data.dataset.sqlite": [[14, "module-graphnet.data.dataset.sqlite", false]], "graphnet.data.dataset.sqlite.sqlite_dataset": [[15, "module-graphnet.data.dataset.sqlite.sqlite_dataset", false]], "graphnet.data.extractors": [[16, "module-graphnet.data.extractors", false]], "graphnet.data.extractors.combine_extractors": [[17, "module-graphnet.data.extractors.combine_extractors", false]], "graphnet.data.extractors.extractor": [[18, "module-graphnet.data.extractors.extractor", false]], "graphnet.data.extractors.icecube": [[19, "module-graphnet.data.extractors.icecube", false]], "graphnet.data.extractors.icecube.i3extractor": [[20, "module-graphnet.data.extractors.icecube.i3extractor", false]], "graphnet.data.extractors.icecube.i3featureextractor": [[21, "module-graphnet.data.extractors.icecube.i3featureextractor", false]], "graphnet.data.extractors.icecube.i3genericextractor": [[22, "module-graphnet.data.extractors.icecube.i3genericextractor", false]], "graphnet.data.extractors.icecube.i3hybridrecoextractor": [[23, "module-graphnet.data.extractors.icecube.i3hybridrecoextractor", false]], "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor": [[24, "module-graphnet.data.extractors.icecube.i3ntmuonlabelsextractor", false]], "graphnet.data.extractors.icecube.i3particleextractor": [[25, "module-graphnet.data.extractors.icecube.i3particleextractor", false]], "graphnet.data.extractors.icecube.i3pisaextractor": [[26, "module-graphnet.data.extractors.icecube.i3pisaextractor", false]], "graphnet.data.extractors.icecube.i3quesoextractor": [[27, "module-graphnet.data.extractors.icecube.i3quesoextractor", false]], "graphnet.data.extractors.icecube.i3retroextractor": [[28, "module-graphnet.data.extractors.icecube.i3retroextractor", false]], "graphnet.data.extractors.icecube.i3splinempeextractor": [[29, "module-graphnet.data.extractors.icecube.i3splinempeextractor", false]], "graphnet.data.extractors.icecube.i3truthextractor": [[30, "module-graphnet.data.extractors.icecube.i3truthextractor", false]], "graphnet.data.extractors.icecube.i3tumextractor": [[31, "module-graphnet.data.extractors.icecube.i3tumextractor", false]], "graphnet.data.extractors.icecube.utilities": [[32, "module-graphnet.data.extractors.icecube.utilities", false]], "graphnet.data.extractors.icecube.utilities.collections": [[33, "module-graphnet.data.extractors.icecube.utilities.collections", false]], "graphnet.data.extractors.icecube.utilities.frames": [[34, "module-graphnet.data.extractors.icecube.utilities.frames", false]], "graphnet.data.extractors.icecube.utilities.i3_filters": [[35, "module-graphnet.data.extractors.icecube.utilities.i3_filters", false]], "graphnet.data.extractors.icecube.utilities.types": [[36, "module-graphnet.data.extractors.icecube.utilities.types", false]], "graphnet.data.extractors.internal": [[37, "module-graphnet.data.extractors.internal", false]], "graphnet.data.extractors.internal.parquet_extractor": [[38, "module-graphnet.data.extractors.internal.parquet_extractor", false]], "graphnet.data.extractors.liquido": [[39, "module-graphnet.data.extractors.liquido", false]], "graphnet.data.extractors.liquido.h5_extractor": [[40, "module-graphnet.data.extractors.liquido.h5_extractor", false]], "graphnet.data.extractors.prometheus": [[41, "module-graphnet.data.extractors.prometheus", false]], "graphnet.data.extractors.prometheus.prometheus_extractor": [[42, "module-graphnet.data.extractors.prometheus.prometheus_extractor", false]], "graphnet.data.parquet": [[43, "module-graphnet.data.parquet", false]], "graphnet.data.parquet.deprecated_methods": [[44, "module-graphnet.data.parquet.deprecated_methods", false]], "graphnet.data.pre_configured": [[45, "module-graphnet.data.pre_configured", false]], "graphnet.data.pre_configured.dataconverters": [[46, "module-graphnet.data.pre_configured.dataconverters", false]], "graphnet.data.readers": [[47, "module-graphnet.data.readers", false]], "graphnet.data.readers.graphnet_file_reader": [[48, "module-graphnet.data.readers.graphnet_file_reader", false]], "graphnet.data.readers.i3reader": [[49, "module-graphnet.data.readers.i3reader", false]], "graphnet.data.readers.internal_parquet_reader": [[50, "module-graphnet.data.readers.internal_parquet_reader", false]], "graphnet.data.readers.liquido_reader": [[51, "module-graphnet.data.readers.liquido_reader", false]], "graphnet.data.readers.prometheus_reader": [[52, "module-graphnet.data.readers.prometheus_reader", false]], "graphnet.data.sqlite": [[53, "module-graphnet.data.sqlite", false]], "graphnet.data.sqlite.deprecated_methods": [[54, "module-graphnet.data.sqlite.deprecated_methods", false]], "graphnet.data.utilities": [[55, "module-graphnet.data.utilities", false]], "graphnet.data.utilities.parquet_to_sqlite": [[56, "module-graphnet.data.utilities.parquet_to_sqlite", false]], "graphnet.data.utilities.random": [[57, "module-graphnet.data.utilities.random", false]], "graphnet.data.utilities.sqlite_utilities": [[58, "module-graphnet.data.utilities.sqlite_utilities", false]], "graphnet.data.utilities.string_selection_resolver": [[59, "module-graphnet.data.utilities.string_selection_resolver", false]], "graphnet.data.writers": [[60, "module-graphnet.data.writers", false]], "graphnet.data.writers.graphnet_writer": [[61, "module-graphnet.data.writers.graphnet_writer", false]], "graphnet.data.writers.parquet_writer": [[62, "module-graphnet.data.writers.parquet_writer", false]], "graphnet.data.writers.sqlite_writer": [[63, "module-graphnet.data.writers.sqlite_writer", false]], "graphnet.datasets": [[64, "module-graphnet.datasets", false]], "graphnet.datasets.prometheus_datasets": [[65, "module-graphnet.datasets.prometheus_datasets", false]], "graphnet.datasets.test_dataset": [[66, "module-graphnet.datasets.test_dataset", false]], "graphnet.deployment": [[67, "module-graphnet.deployment", false]], "graphnet.deployment.deployer": [[68, "module-graphnet.deployment.deployer", false]], "graphnet.deployment.deployment_module": [[69, "module-graphnet.deployment.deployment_module", false]], "graphnet.deployment.icecube.cleaning_module": [[73, "module-graphnet.deployment.icecube.cleaning_module", false]], "graphnet.deployment.icecube.inference_module": [[75, "module-graphnet.deployment.icecube.inference_module", false]], "graphnet.exceptions": [[76, "module-graphnet.exceptions", false]], "graphnet.exceptions.exceptions": [[77, "module-graphnet.exceptions.exceptions", false]], "graphnet.models": [[78, "module-graphnet.models", false]], "graphnet.models.coarsening": [[79, "module-graphnet.models.coarsening", false]], "graphnet.models.components": [[80, "module-graphnet.models.components", false]], "graphnet.models.components.embedding": [[81, "module-graphnet.models.components.embedding", false]], "graphnet.models.components.layers": [[82, "module-graphnet.models.components.layers", false]], "graphnet.models.components.pool": [[83, "module-graphnet.models.components.pool", false]], "graphnet.models.detector": [[84, "module-graphnet.models.detector", false]], "graphnet.models.detector.detector": [[85, "module-graphnet.models.detector.detector", false]], "graphnet.models.detector.icecube": [[86, "module-graphnet.models.detector.icecube", false]], "graphnet.models.detector.liquido": [[87, "module-graphnet.models.detector.liquido", false]], "graphnet.models.detector.prometheus": [[88, "module-graphnet.models.detector.prometheus", false]], "graphnet.models.easy_model": [[89, "module-graphnet.models.easy_model", false]], "graphnet.models.gnn": [[90, "module-graphnet.models.gnn", false]], "graphnet.models.gnn.convnet": [[92, "module-graphnet.models.gnn.convnet", false]], "graphnet.models.gnn.dynedge": [[93, "module-graphnet.models.gnn.dynedge", false]], "graphnet.models.gnn.dynedge_jinst": [[94, "module-graphnet.models.gnn.dynedge_jinst", false]], "graphnet.models.gnn.dynedge_kaggle_tito": [[95, "module-graphnet.models.gnn.dynedge_kaggle_tito", false]], "graphnet.models.gnn.gnn": [[96, "module-graphnet.models.gnn.gnn", false]], "graphnet.models.gnn.icemix": [[97, "module-graphnet.models.gnn.icemix", false]], "graphnet.models.gnn.rnn_tito": [[91, "module-graphnet.models.gnn.RNN_tito", false]], "graphnet.models.graphs": [[98, "module-graphnet.models.graphs", false]], "graphnet.models.graphs.edges": [[99, "module-graphnet.models.graphs.edges", false]], "graphnet.models.graphs.edges.edges": [[100, "module-graphnet.models.graphs.edges.edges", false]], "graphnet.models.graphs.edges.minkowski": [[101, "module-graphnet.models.graphs.edges.minkowski", false]], "graphnet.models.graphs.graph_definition": [[102, "module-graphnet.models.graphs.graph_definition", false]], "graphnet.models.graphs.graphs": [[103, "module-graphnet.models.graphs.graphs", false]], "graphnet.models.graphs.nodes": [[104, "module-graphnet.models.graphs.nodes", false]], "graphnet.models.graphs.nodes.nodes": [[105, "module-graphnet.models.graphs.nodes.nodes", false]], "graphnet.models.graphs.utils": [[106, "module-graphnet.models.graphs.utils", false]], "graphnet.models.model": [[107, "module-graphnet.models.model", false]], "graphnet.models.rnn": [[108, "module-graphnet.models.rnn", false]], "graphnet.models.rnn.node_rnn": [[109, "module-graphnet.models.rnn.node_rnn", false]], "graphnet.models.standard_averaged_model": [[110, "module-graphnet.models.standard_averaged_model", false]], "graphnet.models.standard_model": [[111, "module-graphnet.models.standard_model", false]], "graphnet.models.task": [[112, "module-graphnet.models.task", false]], "graphnet.models.task.classification": [[113, "module-graphnet.models.task.classification", false]], "graphnet.models.task.reconstruction": [[114, "module-graphnet.models.task.reconstruction", false]], "graphnet.models.task.task": [[115, "module-graphnet.models.task.task", false]], "graphnet.models.transformer": [[116, "module-graphnet.models.transformer", false]], "graphnet.models.transformer.iseecube": [[117, "module-graphnet.models.transformer.iseecube", false]], "graphnet.models.utils": [[118, "module-graphnet.models.utils", false]], "graphnet.training": [[119, "module-graphnet.training", false]], "graphnet.training.callbacks": [[120, "module-graphnet.training.callbacks", false]], "graphnet.training.labels": [[121, "module-graphnet.training.labels", false]], "graphnet.training.loss_functions": [[122, "module-graphnet.training.loss_functions", false]], "graphnet.training.utils": [[123, "module-graphnet.training.utils", false]], "graphnet.training.weight_fitting": [[124, "module-graphnet.training.weight_fitting", false]], "graphnet.utilities": [[125, "module-graphnet.utilities", false]], "graphnet.utilities.argparse": [[126, "module-graphnet.utilities.argparse", false]], "graphnet.utilities.config": [[127, "module-graphnet.utilities.config", false]], "graphnet.utilities.config.base_config": [[128, "module-graphnet.utilities.config.base_config", false]], "graphnet.utilities.config.configurable": [[129, "module-graphnet.utilities.config.configurable", false]], "graphnet.utilities.config.dataset_config": [[130, "module-graphnet.utilities.config.dataset_config", false]], "graphnet.utilities.config.model_config": [[131, "module-graphnet.utilities.config.model_config", false]], "graphnet.utilities.config.parsing": [[132, "module-graphnet.utilities.config.parsing", false]], "graphnet.utilities.config.training_config": [[133, "module-graphnet.utilities.config.training_config", false]], "graphnet.utilities.decorators": [[134, "module-graphnet.utilities.decorators", false]], "graphnet.utilities.deprecation_tools": [[135, "module-graphnet.utilities.deprecation_tools", false]], "graphnet.utilities.filesys": [[136, "module-graphnet.utilities.filesys", false]], "graphnet.utilities.imports": [[137, "module-graphnet.utilities.imports", false]], "graphnet.utilities.logging": [[138, "module-graphnet.utilities.logging", false]], "graphnet.utilities.maths": [[139, "module-graphnet.utilities.maths", false]], "graphnetdatamodule (class in graphnet.data.datamodule)": [[9, "graphnet.data.datamodule.GraphNeTDataModule", false]], "graphnetearlystopping (class in graphnet.training.callbacks)": [[120, "graphnet.training.callbacks.GraphnetEarlyStopping", false]], "graphnetfilereader (class in graphnet.data.readers.graphnet_file_reader)": [[48, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader", false]], "graphnetwriter (class in graphnet.data.writers.graphnet_writer)": [[61, "graphnet.data.writers.graphnet_writer.GraphNeTWriter", false]], "group_by() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.group_by", false]], "group_pulses_to_dom() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.group_pulses_to_dom", false]], "group_pulses_to_pmt() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.group_pulses_to_pmt", false]], "h5extractor (class in graphnet.data.extractors.liquido.h5_extractor)": [[40, "graphnet.data.extractors.liquido.h5_extractor.H5Extractor", false]], "h5hitextractor (class in graphnet.data.extractors.liquido.h5_extractor)": [[40, "graphnet.data.extractors.liquido.h5_extractor.H5HitExtractor", false]], "h5truthextractor (class in graphnet.data.extractors.liquido.h5_extractor)": [[40, "graphnet.data.extractors.liquido.h5_extractor.H5TruthExtractor", false]], "handlers (graphnet.utilities.logging.logger property)": [[138, "graphnet.utilities.logging.Logger.handlers", false]], "has_extension() (in module graphnet.utilities.filesys)": [[136, "graphnet.utilities.filesys.has_extension", false]], "has_icecube_package() (in module graphnet.utilities.imports)": [[137, "graphnet.utilities.imports.has_icecube_package", false]], "has_torch_package() (in module graphnet.utilities.imports)": [[137, "graphnet.utilities.imports.has_torch_package", false]], "i3_file (graphnet.data.dataclasses.i3fileset attribute)": [[6, "graphnet.data.dataclasses.I3FileSet.i3_file", false]], "i3_files (graphnet.data.dataclasses.settings attribute)": [[6, "graphnet.data.dataclasses.Settings.i3_files", false]], "i3extractor (class in graphnet.data.extractors.icecube.i3extractor)": [[20, "graphnet.data.extractors.icecube.i3extractor.I3Extractor", false]], "i3featureextractor (class in graphnet.data.extractors.icecube.i3featureextractor)": [[21, "graphnet.data.extractors.icecube.i3featureextractor.I3FeatureExtractor", false]], "i3featureextractoricecube86 (class in graphnet.data.extractors.icecube.i3featureextractor)": [[21, "graphnet.data.extractors.icecube.i3featureextractor.I3FeatureExtractorIceCube86", false]], "i3featureextractoricecubedeepcore (class in graphnet.data.extractors.icecube.i3featureextractor)": [[21, "graphnet.data.extractors.icecube.i3featureextractor.I3FeatureExtractorIceCubeDeepCore", false]], "i3featureextractoricecubeupgrade (class in graphnet.data.extractors.icecube.i3featureextractor)": [[21, "graphnet.data.extractors.icecube.i3featureextractor.I3FeatureExtractorIceCubeUpgrade", false]], "i3fileset (class in graphnet.data.dataclasses)": [[6, "graphnet.data.dataclasses.I3FileSet", false]], "i3filter (class in graphnet.data.extractors.icecube.utilities.i3_filters)": [[35, "graphnet.data.extractors.icecube.utilities.i3_filters.I3Filter", false]], "i3filtermask (class in graphnet.data.extractors.icecube.utilities.i3_filters)": [[35, "graphnet.data.extractors.icecube.utilities.i3_filters.I3FilterMask", false]], "i3galacticplanehybridrecoextractor (class in graphnet.data.extractors.icecube.i3hybridrecoextractor)": [[23, "graphnet.data.extractors.icecube.i3hybridrecoextractor.I3GalacticPlaneHybridRecoExtractor", false]], "i3genericextractor (class in graphnet.data.extractors.icecube.i3genericextractor)": [[22, "graphnet.data.extractors.icecube.i3genericextractor.I3GenericExtractor", false]], "i3inferencemodule (class in graphnet.deployment.icecube.inference_module)": [[75, "graphnet.deployment.icecube.inference_module.I3InferenceModule", false]], "i3ntmuonlabelextractor (class in graphnet.data.extractors.icecube.i3ntmuonlabelsextractor)": [[24, "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor.I3NTMuonLabelExtractor", false]], "i3particleextractor (class in graphnet.data.extractors.icecube.i3particleextractor)": [[25, "graphnet.data.extractors.icecube.i3particleextractor.I3ParticleExtractor", false]], "i3pisaextractor (class in graphnet.data.extractors.icecube.i3pisaextractor)": [[26, "graphnet.data.extractors.icecube.i3pisaextractor.I3PISAExtractor", false]], "i3pulsecleanermodule (class in graphnet.deployment.icecube.cleaning_module)": [[73, "graphnet.deployment.icecube.cleaning_module.I3PulseCleanerModule", false]], "i3pulsenoisetruthflagicecubeupgrade (class in graphnet.data.extractors.icecube.i3featureextractor)": [[21, "graphnet.data.extractors.icecube.i3featureextractor.I3PulseNoiseTruthFlagIceCubeUpgrade", false]], "i3quesoextractor (class in graphnet.data.extractors.icecube.i3quesoextractor)": [[27, "graphnet.data.extractors.icecube.i3quesoextractor.I3QUESOExtractor", false]], "i3reader (class in graphnet.data.readers.i3reader)": [[49, "graphnet.data.readers.i3reader.I3Reader", false]], "i3retroextractor (class in graphnet.data.extractors.icecube.i3retroextractor)": [[28, "graphnet.data.extractors.icecube.i3retroextractor.I3RetroExtractor", false]], "i3splinempeicextractor (class in graphnet.data.extractors.icecube.i3splinempeextractor)": [[29, "graphnet.data.extractors.icecube.i3splinempeextractor.I3SplineMPEICExtractor", false]], "i3toparquetconverter (class in graphnet.data.pre_configured.dataconverters)": [[46, "graphnet.data.pre_configured.dataconverters.I3ToParquetConverter", false]], "i3tosqliteconverter (class in graphnet.data.pre_configured.dataconverters)": [[46, "graphnet.data.pre_configured.dataconverters.I3ToSQLiteConverter", false]], "i3truthextractor (class in graphnet.data.extractors.icecube.i3truthextractor)": [[30, "graphnet.data.extractors.icecube.i3truthextractor.I3TruthExtractor", false]], "i3tumextractor (class in graphnet.data.extractors.icecube.i3tumextractor)": [[31, "graphnet.data.extractors.icecube.i3tumextractor.I3TUMExtractor", false]], "ice_transparency() (in module graphnet.models.graphs.utils)": [[106, "graphnet.models.graphs.utils.ice_transparency", false]], "icecube86 (class in graphnet.models.detector.icecube)": [[86, "graphnet.models.detector.icecube.IceCube86", false]], "icecube86 (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.ICECUBE86", false]], "icecube86 (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.ICECUBE86", false]], "icecube86prometheus (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.IceCube86Prometheus", false]], "icecubedeepcore (class in graphnet.models.detector.icecube)": [[86, "graphnet.models.detector.icecube.IceCubeDeepCore", false]], "icecubedeepcore8 (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.IceCubeDeepCore8", false]], "icecubegen2 (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.IceCubeGen2", false]], "icecubekaggle (class in graphnet.models.detector.icecube)": [[86, "graphnet.models.detector.icecube.IceCubeKaggle", false]], "icecubeupgrade (class in graphnet.models.detector.icecube)": [[86, "graphnet.models.detector.icecube.IceCubeUpgrade", false]], "icecubeupgrade7 (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.IceCubeUpgrade7", false]], "icedemo81 (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.IceDemo81", false]], "icemixnodes (class in graphnet.models.graphs.nodes.nodes)": [[105, "graphnet.models.graphs.nodes.nodes.IceMixNodes", false]], "identify_indices() (in module graphnet.models.graphs.utils)": [[106, "graphnet.models.graphs.utils.identify_indices", false]], "identitytask (class in graphnet.models.task.task)": [[115, "graphnet.models.task.task.IdentityTask", false]], "index_column (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.index_column", false]], "inelasticityreconstruction (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.InelasticityReconstruction", false]], "inference() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.inference", false]], "inference() (graphnet.models.task.task.task method)": [[115, "graphnet.models.task.task.Task.inference", false]], "info() (graphnet.utilities.logging.logger method)": [[138, "graphnet.utilities.logging.Logger.info", false]], "init_global_index() (in module graphnet.data.dataconverter)": [[7, "graphnet.data.dataconverter.init_global_index", false]], "init_predict_tqdm() (graphnet.training.callbacks.progressbar method)": [[120, "graphnet.training.callbacks.ProgressBar.init_predict_tqdm", false]], "init_test_tqdm() (graphnet.training.callbacks.progressbar method)": [[120, "graphnet.training.callbacks.ProgressBar.init_test_tqdm", false]], "init_train_tqdm() (graphnet.training.callbacks.progressbar method)": [[120, "graphnet.training.callbacks.ProgressBar.init_train_tqdm", false]], "init_validation_tqdm() (graphnet.training.callbacks.progressbar method)": [[120, "graphnet.training.callbacks.ProgressBar.init_validation_tqdm", false]], "is_boost_class() (in module graphnet.data.extractors.icecube.utilities.types)": [[36, "graphnet.data.extractors.icecube.utilities.types.is_boost_class", false]], "is_boost_enum() (in module graphnet.data.extractors.icecube.utilities.types)": [[36, "graphnet.data.extractors.icecube.utilities.types.is_boost_enum", false]], "is_gcd_file() (in module graphnet.utilities.filesys)": [[136, "graphnet.utilities.filesys.is_gcd_file", false]], "is_graphnet_class() (in module graphnet.utilities.config.parsing)": [[132, "graphnet.utilities.config.parsing.is_graphnet_class", false]], "is_graphnet_module() (in module graphnet.utilities.config.parsing)": [[132, "graphnet.utilities.config.parsing.is_graphnet_module", false]], "is_i3_file() (in module graphnet.utilities.filesys)": [[136, "graphnet.utilities.filesys.is_i3_file", false]], "is_icecube_class() (in module graphnet.data.extractors.icecube.utilities.types)": [[36, "graphnet.data.extractors.icecube.utilities.types.is_icecube_class", false]], "is_method() (in module graphnet.data.extractors.icecube.utilities.types)": [[36, "graphnet.data.extractors.icecube.utilities.types.is_method", false]], "is_type() (in module graphnet.data.extractors.icecube.utilities.types)": [[36, "graphnet.data.extractors.icecube.utilities.types.is_type", false]], "iseecube (class in graphnet.models.transformer.iseecube)": [[117, "graphnet.models.transformer.iseecube.ISeeCube", false]], "kaggle (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.KAGGLE", false]], "kaggle (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.KAGGLE", false]], "key (graphnet.training.labels.label property)": [[121, "graphnet.training.labels.Label.key", false]], "knn_graph_batch() (in module graphnet.models.utils)": [[118, "graphnet.models.utils.knn_graph_batch", false]], "knnedges (class in graphnet.models.graphs.edges.edges)": [[100, "graphnet.models.graphs.edges.edges.KNNEdges", false]], "knngraph (class in graphnet.models.graphs.graphs)": [[103, "graphnet.models.graphs.graphs.KNNGraph", false]], "label (class in graphnet.training.labels)": [[121, "graphnet.training.labels.Label", false]], "labels (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.labels", false]], "learnedtask (class in graphnet.models.task.task)": [[115, "graphnet.models.task.task.LearnedTask", false]], "lex_sort() (in module graphnet.models.graphs.utils)": [[106, "graphnet.models.graphs.utils.lex_sort", false]], "liquido (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.LIQUIDO", false]], "liquido (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.LIQUIDO", false]], "liquido_v1 (class in graphnet.models.detector.liquido)": [[87, "graphnet.models.detector.liquido.LiquidO_v1", false]], "liquidoreader (class in graphnet.data.readers.liquido_reader)": [[51, "graphnet.data.readers.liquido_reader.LiquidOReader", false]], "list_all_submodules() (in module graphnet.utilities.config.parsing)": [[132, "graphnet.utilities.config.parsing.list_all_submodules", false]], "load() (graphnet.models.model.model class method)": [[107, "graphnet.models.model.Model.load", false]], "load() (graphnet.utilities.config.base_config.baseconfig class method)": [[128, "graphnet.utilities.config.base_config.BaseConfig.load", false]], "load_module() (in module graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.load_module", false]], "load_state_dict() (graphnet.models.model.model method)": [[107, "graphnet.models.model.Model.load_state_dict", false]], "load_state_dict() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[110, "graphnet.models.standard_averaged_model.StandardAveragedModel.load_state_dict", false]], "log_cmk() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[122, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk", false]], "log_cmk_approx() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[122, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk_approx", false]], "log_cmk_exact() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[122, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk_exact", false]], "logcmk (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.LogCMK", false]], "logcoshloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.LogCoshLoss", false]], "logger (class in graphnet.utilities.logging)": [[138, "graphnet.utilities.logging.Logger", false]], "loss_weight_column (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_column", false]], "loss_weight_default_value (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_default_value", false]], "loss_weight_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_table", false]], "lossfunction (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.LossFunction", false]], "make_dataloader() (in module graphnet.training.utils)": [[123, "graphnet.training.utils.make_dataloader", false]], "make_train_validation_dataloader() (in module graphnet.training.utils)": [[123, "graphnet.training.utils.make_train_validation_dataloader", false]], "merge_files() (graphnet.data.dataconverter.dataconverter method)": [[7, "graphnet.data.dataconverter.DataConverter.merge_files", false]], "merge_files() (graphnet.data.writers.graphnet_writer.graphnetwriter method)": [[61, "graphnet.data.writers.graphnet_writer.GraphNeTWriter.merge_files", false]], "merge_files() (graphnet.data.writers.parquet_writer.parquetwriter method)": [[62, "graphnet.data.writers.parquet_writer.ParquetWriter.merge_files", false]], "merge_files() (graphnet.data.writers.sqlite_writer.sqlitewriter method)": [[63, "graphnet.data.writers.sqlite_writer.SQLiteWriter.merge_files", false]], "message() (graphnet.models.components.layers.edgeconvtito method)": [[82, "graphnet.models.components.layers.EdgeConvTito.message", false]], "min_pool() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.min_pool", false]], "min_pool_x() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.min_pool_x", false]], "minkowskiknnedges (class in graphnet.models.graphs.edges.minkowski)": [[101, "graphnet.models.graphs.edges.minkowski.MinkowskiKNNEdges", false]], "mlp (class in graphnet.models.components.layers)": [[82, "graphnet.models.components.layers.Mlp", false]], "model (class in graphnet.models.model)": [[107, "graphnet.models.model.Model", false]], "model_computed_fields (graphnet.utilities.config.base_config.baseconfig attribute)": [[128, "graphnet.utilities.config.base_config.BaseConfig.model_computed_fields", false]], "model_computed_fields (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.model_computed_fields", false]], "model_computed_fields (graphnet.utilities.config.model_config.modelconfig attribute)": [[131, "graphnet.utilities.config.model_config.ModelConfig.model_computed_fields", false]], "model_computed_fields (graphnet.utilities.config.training_config.trainingconfig attribute)": [[133, "graphnet.utilities.config.training_config.TrainingConfig.model_computed_fields", false]], "model_config (graphnet.utilities.config.base_config.baseconfig attribute)": [[128, "graphnet.utilities.config.base_config.BaseConfig.model_config", false]], "model_config (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.model_config", false]], "model_config (graphnet.utilities.config.model_config.modelconfig attribute)": [[131, "graphnet.utilities.config.model_config.ModelConfig.model_config", false]], "model_config (graphnet.utilities.config.training_config.trainingconfig attribute)": [[133, "graphnet.utilities.config.training_config.TrainingConfig.model_config", false]], "model_fields (graphnet.utilities.config.base_config.baseconfig attribute)": [[128, "graphnet.utilities.config.base_config.BaseConfig.model_fields", false]], "model_fields (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.model_fields", false]], "model_fields (graphnet.utilities.config.model_config.modelconfig attribute)": [[131, "graphnet.utilities.config.model_config.ModelConfig.model_fields", false]], "model_fields (graphnet.utilities.config.training_config.trainingconfig attribute)": [[133, "graphnet.utilities.config.training_config.TrainingConfig.model_fields", false]], "modelconfig (class in graphnet.utilities.config.model_config)": [[131, "graphnet.utilities.config.model_config.ModelConfig", false]], "modelconfigsaverabc (class in graphnet.utilities.config.model_config)": [[131, "graphnet.utilities.config.model_config.ModelConfigSaverABC", false]], "modelconfigsavermeta (class in graphnet.utilities.config.model_config)": [[131, "graphnet.utilities.config.model_config.ModelConfigSaverMeta", false]], "module": [[1, "module-graphnet", false], [2, "module-graphnet.constants", false], [3, "module-graphnet.data", false], [4, "module-graphnet.data.constants", false], [5, "module-graphnet.data.curated_datamodule", false], [6, "module-graphnet.data.dataclasses", false], [7, "module-graphnet.data.dataconverter", false], [8, "module-graphnet.data.dataloader", false], [9, "module-graphnet.data.datamodule", false], [10, "module-graphnet.data.dataset", false], [11, "module-graphnet.data.dataset.dataset", false], [12, "module-graphnet.data.dataset.parquet", false], [13, "module-graphnet.data.dataset.parquet.parquet_dataset", false], [14, "module-graphnet.data.dataset.sqlite", false], [15, "module-graphnet.data.dataset.sqlite.sqlite_dataset", false], [16, "module-graphnet.data.extractors", false], [17, "module-graphnet.data.extractors.combine_extractors", false], [18, "module-graphnet.data.extractors.extractor", false], [19, "module-graphnet.data.extractors.icecube", false], [20, "module-graphnet.data.extractors.icecube.i3extractor", false], [21, "module-graphnet.data.extractors.icecube.i3featureextractor", false], [22, "module-graphnet.data.extractors.icecube.i3genericextractor", false], [23, "module-graphnet.data.extractors.icecube.i3hybridrecoextractor", false], [24, "module-graphnet.data.extractors.icecube.i3ntmuonlabelsextractor", false], [25, "module-graphnet.data.extractors.icecube.i3particleextractor", false], [26, "module-graphnet.data.extractors.icecube.i3pisaextractor", false], [27, "module-graphnet.data.extractors.icecube.i3quesoextractor", false], [28, "module-graphnet.data.extractors.icecube.i3retroextractor", false], [29, "module-graphnet.data.extractors.icecube.i3splinempeextractor", false], [30, "module-graphnet.data.extractors.icecube.i3truthextractor", false], [31, "module-graphnet.data.extractors.icecube.i3tumextractor", false], [32, "module-graphnet.data.extractors.icecube.utilities", false], [33, "module-graphnet.data.extractors.icecube.utilities.collections", false], [34, "module-graphnet.data.extractors.icecube.utilities.frames", false], [35, "module-graphnet.data.extractors.icecube.utilities.i3_filters", false], [36, "module-graphnet.data.extractors.icecube.utilities.types", false], [37, "module-graphnet.data.extractors.internal", false], [38, "module-graphnet.data.extractors.internal.parquet_extractor", false], [39, "module-graphnet.data.extractors.liquido", false], [40, "module-graphnet.data.extractors.liquido.h5_extractor", false], [41, "module-graphnet.data.extractors.prometheus", false], [42, "module-graphnet.data.extractors.prometheus.prometheus_extractor", false], [43, "module-graphnet.data.parquet", false], [44, "module-graphnet.data.parquet.deprecated_methods", false], [45, "module-graphnet.data.pre_configured", false], [46, "module-graphnet.data.pre_configured.dataconverters", false], [47, "module-graphnet.data.readers", false], [48, "module-graphnet.data.readers.graphnet_file_reader", false], [49, "module-graphnet.data.readers.i3reader", false], [50, "module-graphnet.data.readers.internal_parquet_reader", false], [51, "module-graphnet.data.readers.liquido_reader", false], [52, "module-graphnet.data.readers.prometheus_reader", false], [53, "module-graphnet.data.sqlite", false], [54, "module-graphnet.data.sqlite.deprecated_methods", false], [55, "module-graphnet.data.utilities", false], [56, "module-graphnet.data.utilities.parquet_to_sqlite", false], [57, "module-graphnet.data.utilities.random", false], [58, "module-graphnet.data.utilities.sqlite_utilities", false], [59, "module-graphnet.data.utilities.string_selection_resolver", false], [60, "module-graphnet.data.writers", false], [61, "module-graphnet.data.writers.graphnet_writer", false], [62, "module-graphnet.data.writers.parquet_writer", false], [63, "module-graphnet.data.writers.sqlite_writer", false], [64, "module-graphnet.datasets", false], [65, "module-graphnet.datasets.prometheus_datasets", false], [66, "module-graphnet.datasets.test_dataset", false], [67, "module-graphnet.deployment", false], [68, "module-graphnet.deployment.deployer", false], [69, "module-graphnet.deployment.deployment_module", false], [73, "module-graphnet.deployment.icecube.cleaning_module", false], [75, "module-graphnet.deployment.icecube.inference_module", false], [76, "module-graphnet.exceptions", false], [77, "module-graphnet.exceptions.exceptions", false], [78, "module-graphnet.models", false], [79, "module-graphnet.models.coarsening", false], [80, "module-graphnet.models.components", false], [81, "module-graphnet.models.components.embedding", false], [82, "module-graphnet.models.components.layers", false], [83, "module-graphnet.models.components.pool", false], [84, "module-graphnet.models.detector", false], [85, "module-graphnet.models.detector.detector", false], [86, "module-graphnet.models.detector.icecube", false], [87, "module-graphnet.models.detector.liquido", false], [88, "module-graphnet.models.detector.prometheus", false], [89, "module-graphnet.models.easy_model", false], [90, "module-graphnet.models.gnn", false], [91, "module-graphnet.models.gnn.RNN_tito", false], [92, "module-graphnet.models.gnn.convnet", false], [93, "module-graphnet.models.gnn.dynedge", false], [94, "module-graphnet.models.gnn.dynedge_jinst", false], [95, "module-graphnet.models.gnn.dynedge_kaggle_tito", false], [96, "module-graphnet.models.gnn.gnn", false], [97, "module-graphnet.models.gnn.icemix", false], [98, "module-graphnet.models.graphs", false], [99, "module-graphnet.models.graphs.edges", false], [100, "module-graphnet.models.graphs.edges.edges", false], [101, "module-graphnet.models.graphs.edges.minkowski", false], [102, "module-graphnet.models.graphs.graph_definition", false], [103, "module-graphnet.models.graphs.graphs", false], [104, "module-graphnet.models.graphs.nodes", false], [105, "module-graphnet.models.graphs.nodes.nodes", false], [106, "module-graphnet.models.graphs.utils", false], [107, "module-graphnet.models.model", false], [108, "module-graphnet.models.rnn", false], [109, "module-graphnet.models.rnn.node_rnn", false], [110, "module-graphnet.models.standard_averaged_model", false], [111, "module-graphnet.models.standard_model", false], [112, "module-graphnet.models.task", false], [113, "module-graphnet.models.task.classification", false], [114, "module-graphnet.models.task.reconstruction", false], [115, "module-graphnet.models.task.task", false], [116, "module-graphnet.models.transformer", false], [117, "module-graphnet.models.transformer.iseecube", false], [118, "module-graphnet.models.utils", false], [119, "module-graphnet.training", false], [120, "module-graphnet.training.callbacks", false], [121, "module-graphnet.training.labels", false], [122, "module-graphnet.training.loss_functions", false], [123, "module-graphnet.training.utils", false], [124, "module-graphnet.training.weight_fitting", false], [125, "module-graphnet.utilities", false], [126, "module-graphnet.utilities.argparse", false], [127, "module-graphnet.utilities.config", false], [128, "module-graphnet.utilities.config.base_config", false], [129, "module-graphnet.utilities.config.configurable", false], [130, "module-graphnet.utilities.config.dataset_config", false], [131, "module-graphnet.utilities.config.model_config", false], [132, "module-graphnet.utilities.config.parsing", false], [133, "module-graphnet.utilities.config.training_config", false], [134, "module-graphnet.utilities.decorators", false], [135, "module-graphnet.utilities.deprecation_tools", false], [136, "module-graphnet.utilities.filesys", false], [137, "module-graphnet.utilities.imports", false], [138, "module-graphnet.utilities.logging", false], [139, "module-graphnet.utilities.maths", false]], "modules (graphnet.data.dataclasses.settings attribute)": [[6, "graphnet.data.dataclasses.Settings.modules", false]], "mseloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.MSELoss", false]], "multiclassclassificationtask (class in graphnet.models.task.classification)": [[113, "graphnet.models.task.classification.MulticlassClassificationTask", false]], "name (graphnet.data.extractors.extractor.extractor property)": [[18, "graphnet.data.extractors.extractor.Extractor.name", false]], "nb_inputs (graphnet.models.gnn.gnn.gnn property)": [[96, "graphnet.models.gnn.gnn.GNN.nb_inputs", false]], "nb_inputs (graphnet.models.task.classification.binaryclassificationtask attribute)": [[113, "graphnet.models.task.classification.BinaryClassificationTask.nb_inputs", false]], "nb_inputs (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[113, "graphnet.models.task.classification.BinaryClassificationTaskLogits.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.AzimuthReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[114, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[114, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.EnergyReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[114, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[114, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.energytcreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.EnergyTCReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.InelasticityReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.PositionReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.timereconstruction attribute)": [[114, "graphnet.models.task.reconstruction.TimeReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.VertexReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[114, "graphnet.models.task.reconstruction.ZenithReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[114, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.nb_inputs", false]], "nb_inputs (graphnet.models.task.task.identitytask property)": [[115, "graphnet.models.task.task.IdentityTask.nb_inputs", false]], "nb_inputs (graphnet.models.task.task.learnedtask property)": [[115, "graphnet.models.task.task.LearnedTask.nb_inputs", false]], "nb_inputs (graphnet.models.task.task.standardlearnedtask property)": [[115, "graphnet.models.task.task.StandardLearnedTask.nb_inputs", false]], "nb_inputs (graphnet.models.task.task.task property)": [[115, "graphnet.models.task.task.Task.nb_inputs", false]], "nb_inputs() (graphnet.models.task.task.standardflowtask method)": [[115, "graphnet.models.task.task.StandardFlowTask.nb_inputs", false]], "nb_outputs (graphnet.models.gnn.gnn.gnn property)": [[96, "graphnet.models.gnn.gnn.GNN.nb_outputs", false]], "nb_outputs (graphnet.models.graphs.nodes.nodes.nodedefinition property)": [[105, "graphnet.models.graphs.nodes.nodes.NodeDefinition.nb_outputs", false]], "nb_repeats_allowed (graphnet.utilities.logging.repeatfilter attribute)": [[138, "graphnet.utilities.logging.RepeatFilter.nb_repeats_allowed", false]], "no_weight_decay() (graphnet.models.gnn.icemix.deepice method)": [[97, "graphnet.models.gnn.icemix.DeepIce.no_weight_decay", false]], "node_rnn (class in graphnet.models.rnn.node_rnn)": [[109, "graphnet.models.rnn.node_rnn.Node_RNN", false]], "node_truth (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.node_truth", false]], "node_truth_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.node_truth_table", false]], "nodeasdomtimeseries (class in graphnet.models.graphs.nodes.nodes)": [[105, "graphnet.models.graphs.nodes.nodes.NodeAsDOMTimeSeries", false]], "nodedefinition (class in graphnet.models.graphs.nodes.nodes)": [[105, "graphnet.models.graphs.nodes.nodes.NodeDefinition", false]], "nodesaspulses (class in graphnet.models.graphs.nodes.nodes)": [[105, "graphnet.models.graphs.nodes.nodes.NodesAsPulses", false]], "nullspliti3filter (class in graphnet.data.extractors.icecube.utilities.i3_filters)": [[35, "graphnet.data.extractors.icecube.utilities.i3_filters.NullSplitI3Filter", false]], "on_fit_end() (graphnet.training.callbacks.graphnetearlystopping method)": [[120, "graphnet.training.callbacks.GraphnetEarlyStopping.on_fit_end", false]], "on_train_end() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[110, "graphnet.models.standard_averaged_model.StandardAveragedModel.on_train_end", false]], "on_train_epoch_end() (graphnet.training.callbacks.graphnetearlystopping method)": [[120, "graphnet.training.callbacks.GraphnetEarlyStopping.on_train_epoch_end", false]], "on_train_epoch_end() (graphnet.training.callbacks.progressbar method)": [[120, "graphnet.training.callbacks.ProgressBar.on_train_epoch_end", false]], "on_train_epoch_start() (graphnet.training.callbacks.progressbar method)": [[120, "graphnet.training.callbacks.ProgressBar.on_train_epoch_start", false]], "on_validation_end() (graphnet.training.callbacks.graphnetearlystopping method)": [[120, "graphnet.training.callbacks.GraphnetEarlyStopping.on_validation_end", false]], "optimizer_step() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[110, "graphnet.models.standard_averaged_model.StandardAveragedModel.optimizer_step", false]], "options (class in graphnet.utilities.argparse)": [[126, "graphnet.utilities.argparse.Options", false]], "orca150 (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.ORCA150", false]], "orca150superdense (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.ORCA150SuperDense", false]], "output_folder (graphnet.data.dataclasses.settings attribute)": [[6, "graphnet.data.dataclasses.Settings.output_folder", false]], "pairwise_shuffle() (in module graphnet.data.utilities.random)": [[57, "graphnet.data.utilities.random.pairwise_shuffle", false]], "parquetdataconverter (class in graphnet.data.parquet.deprecated_methods)": [[44, "graphnet.data.parquet.deprecated_methods.ParquetDataConverter", false]], "parquetdataset (class in graphnet.data.dataset.parquet.parquet_dataset)": [[13, "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset", false]], "parquetextractor (class in graphnet.data.extractors.internal.parquet_extractor)": [[38, "graphnet.data.extractors.internal.parquet_extractor.ParquetExtractor", false]], "parquetreader (class in graphnet.data.readers.internal_parquet_reader)": [[50, "graphnet.data.readers.internal_parquet_reader.ParquetReader", false]], "parquettosqliteconverter (class in graphnet.data.pre_configured.dataconverters)": [[46, "graphnet.data.pre_configured.dataconverters.ParquetToSQLiteConverter", false]], "parquetwriter (class in graphnet.data.writers.parquet_writer)": [[62, "graphnet.data.writers.parquet_writer.ParquetWriter", false]], "parse_graph_definition() (in module graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.parse_graph_definition", false]], "parse_labels() (in module graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.parse_labels", false]], "path (graphnet.data.dataset.dataset.dataset property)": [[11, "graphnet.data.dataset.dataset.Dataset.path", false]], "path (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.path", false]], "percentileclusters (class in graphnet.models.graphs.nodes.nodes)": [[105, "graphnet.models.graphs.nodes.nodes.PercentileClusters", false]], "piecewiselinearlr (class in graphnet.training.callbacks)": [[120, "graphnet.training.callbacks.PiecewiseLinearLR", false]], "ponesmall (class in graphnet.datasets.prometheus_datasets)": [[65, "graphnet.datasets.prometheus_datasets.PONESmall", false]], "ponetriangle (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.PONETriangle", false]], "pop_default() (graphnet.utilities.argparse.options method)": [[126, "graphnet.utilities.argparse.Options.pop_default", false]], "positionreconstruction (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.PositionReconstruction", false]], "predict() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.predict", false]], "predict_as_dataframe() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.predict_as_dataframe", false]], "prediction_labels (graphnet.models.easy_model.easysyntax property)": [[89, "graphnet.models.easy_model.EasySyntax.prediction_labels", false]], "prepare_data() (graphnet.data.curated_datamodule.curateddataset method)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.prepare_data", false]], "prepare_data() (graphnet.data.curated_datamodule.erdahosteddataset method)": [[5, "graphnet.data.curated_datamodule.ERDAHostedDataset.prepare_data", false]], "prepare_data() (graphnet.data.datamodule.graphnetdatamodule method)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.prepare_data", false]], "progressbar (class in graphnet.training.callbacks)": [[120, "graphnet.training.callbacks.ProgressBar", false]], "prometheus (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.Prometheus", false]], "prometheus (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.PROMETHEUS", false]], "prometheus (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.PROMETHEUS", false]], "prometheusextractor (class in graphnet.data.extractors.prometheus.prometheus_extractor)": [[42, "graphnet.data.extractors.prometheus.prometheus_extractor.PrometheusExtractor", false]], "prometheusfeatureextractor (class in graphnet.data.extractors.prometheus.prometheus_extractor)": [[42, "graphnet.data.extractors.prometheus.prometheus_extractor.PrometheusFeatureExtractor", false]], "prometheusreader (class in graphnet.data.readers.prometheus_reader)": [[52, "graphnet.data.readers.prometheus_reader.PrometheusReader", false]], "prometheustruthextractor (class in graphnet.data.extractors.prometheus.prometheus_extractor)": [[42, "graphnet.data.extractors.prometheus.prometheus_extractor.PrometheusTruthExtractor", false]], "publicprometheusdataset (class in graphnet.datasets.prometheus_datasets)": [[65, "graphnet.datasets.prometheus_datasets.PublicPrometheusDataset", false]], "pulse_truth (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.pulse_truth", false]], "pulsemaps (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.pulsemaps", false]], "pulsemaps (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.pulsemaps", false]], "query_database() (in module graphnet.data.utilities.sqlite_utilities)": [[58, "graphnet.data.utilities.sqlite_utilities.query_database", false]], "query_table() (graphnet.data.dataset.dataset.dataset method)": [[11, "graphnet.data.dataset.dataset.Dataset.query_table", false]], "query_table() (graphnet.data.dataset.parquet.parquet_dataset.parquetdataset method)": [[13, "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset.query_table", false]], "query_table() (graphnet.data.dataset.sqlite.sqlite_dataset.sqlitedataset method)": [[15, "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset.query_table", false]], "radialedges (class in graphnet.models.graphs.edges.edges)": [[100, "graphnet.models.graphs.edges.edges.RadialEdges", false]], "reduce_options (graphnet.models.coarsening.coarsening attribute)": [[79, "graphnet.models.coarsening.Coarsening.reduce_options", false]], "rename_state_dict_entries() (in module graphnet.utilities.deprecation_tools)": [[135, "graphnet.utilities.deprecation_tools.rename_state_dict_entries", false]], "repeatfilter (class in graphnet.utilities.logging)": [[138, "graphnet.utilities.logging.RepeatFilter", false]], "requires_icecube() (in module graphnet.utilities.imports)": [[137, "graphnet.utilities.imports.requires_icecube", false]], "reset_parameters() (graphnet.models.components.layers.edgeconvtito method)": [[82, "graphnet.models.components.layers.EdgeConvTito.reset_parameters", false]], "resolve() (graphnet.data.utilities.string_selection_resolver.stringselectionresolver method)": [[59, "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver.resolve", false]], "rmseloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.RMSELoss", false]], "rmsevonmisesfisher3dloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.RMSEVonMisesFisher3DLoss", false]], "rnn_tito (class in graphnet.models.gnn.rnn_tito)": [[91, "graphnet.models.gnn.RNN_tito.RNN_TITO", false]], "run() (graphnet.deployment.deployer.deployer method)": [[68, "graphnet.deployment.deployer.Deployer.run", false]], "run_sql_code() (in module graphnet.data.utilities.sqlite_utilities)": [[58, "graphnet.data.utilities.sqlite_utilities.run_sql_code", false]], "save() (graphnet.models.model.model method)": [[107, "graphnet.models.model.Model.save", false]], "save_config() (graphnet.utilities.config.configurable.configurable method)": [[129, "graphnet.utilities.config.configurable.Configurable.save_config", false]], "save_dataset_config() (in module graphnet.utilities.config.dataset_config)": [[130, "graphnet.utilities.config.dataset_config.save_dataset_config", false]], "save_model_config() (in module graphnet.utilities.config.model_config)": [[131, "graphnet.utilities.config.model_config.save_model_config", false]], "save_results() (in module graphnet.training.utils)": [[123, "graphnet.training.utils.save_results", false]], "save_selection() (in module graphnet.training.utils)": [[123, "graphnet.training.utils.save_selection", false]], "save_state_dict() (graphnet.models.model.model method)": [[107, "graphnet.models.model.Model.save_state_dict", false]], "save_to_sql() (in module graphnet.data.utilities.sqlite_utilities)": [[58, "graphnet.data.utilities.sqlite_utilities.save_to_sql", false]], "seed (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.seed", false]], "selection (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.selection", false]], "sensor_id_column (graphnet.models.detector.icecube.icecube86 attribute)": [[86, "graphnet.models.detector.icecube.IceCube86.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.icecube.icecubekaggle attribute)": [[86, "graphnet.models.detector.icecube.IceCubeKaggle.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.icecube.icecubeupgrade attribute)": [[86, "graphnet.models.detector.icecube.IceCubeUpgrade.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.liquido.liquido_v1 attribute)": [[87, "graphnet.models.detector.liquido.LiquidO_v1.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.arca115 attribute)": [[88, "graphnet.models.detector.prometheus.ARCA115.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.baikalgvd8 attribute)": [[88, "graphnet.models.detector.prometheus.BaikalGVD8.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icecube86prometheus attribute)": [[88, "graphnet.models.detector.prometheus.IceCube86Prometheus.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icecubedeepcore8 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeDeepCore8.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icecubegen2 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeGen2.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icecubeupgrade7 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeUpgrade7.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icedemo81 attribute)": [[88, "graphnet.models.detector.prometheus.IceDemo81.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.orca150 attribute)": [[88, "graphnet.models.detector.prometheus.ORCA150.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.orca150superdense attribute)": [[88, "graphnet.models.detector.prometheus.ORCA150SuperDense.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.ponetriangle attribute)": [[88, "graphnet.models.detector.prometheus.PONETriangle.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.trident1211 attribute)": [[88, "graphnet.models.detector.prometheus.TRIDENT1211.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.waterdemo81 attribute)": [[88, "graphnet.models.detector.prometheus.WaterDemo81.sensor_id_column", false]], "sensor_index_name (graphnet.models.detector.detector.detector property)": [[85, "graphnet.models.detector.detector.Detector.sensor_index_name", false]], "sensor_position_names (graphnet.models.detector.detector.detector property)": [[85, "graphnet.models.detector.detector.Detector.sensor_position_names", false]], "serialise() (in module graphnet.data.extractors.icecube.utilities.collections)": [[33, "graphnet.data.extractors.icecube.utilities.collections.serialise", false]], "set_extractors() (graphnet.data.readers.graphnet_file_reader.graphnetfilereader method)": [[48, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.set_extractors", false]], "set_gcd() (graphnet.data.extractors.icecube.i3extractor.i3extractor method)": [[20, "graphnet.data.extractors.icecube.i3extractor.I3Extractor.set_gcd", false]], "set_number_of_inputs() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[105, "graphnet.models.graphs.nodes.nodes.NodeDefinition.set_number_of_inputs", false]], "set_output_feature_names() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[105, "graphnet.models.graphs.nodes.nodes.NodeDefinition.set_output_feature_names", false]], "set_verbose_print_recursively() (graphnet.models.model.model method)": [[107, "graphnet.models.model.Model.set_verbose_print_recursively", false]], "setlevel() (graphnet.utilities.logging.logger method)": [[138, "graphnet.utilities.logging.Logger.setLevel", false]], "settings (class in graphnet.data.dataclasses)": [[6, "graphnet.data.dataclasses.Settings", false]], "setup() (graphnet.data.datamodule.graphnetdatamodule method)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.setup", false]], "setup() (graphnet.training.callbacks.graphnetearlystopping method)": [[120, "graphnet.training.callbacks.GraphnetEarlyStopping.setup", false]], "shared_step() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.shared_step", false]], "shared_step() (graphnet.models.standard_model.standardmodel method)": [[111, "graphnet.models.standard_model.StandardModel.shared_step", false]], "sinusoidalposemb (class in graphnet.models.components.embedding)": [[81, "graphnet.models.components.embedding.SinusoidalPosEmb", false]], "spacetimeencoder (class in graphnet.models.components.embedding)": [[81, "graphnet.models.components.embedding.SpacetimeEncoder", false]], "sqlitedataconverter (class in graphnet.data.sqlite.deprecated_methods)": [[54, "graphnet.data.sqlite.deprecated_methods.SQLiteDataConverter", false]], "sqlitedataset (class in graphnet.data.dataset.sqlite.sqlite_dataset)": [[15, "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset", false]], "sqlitewriter (class in graphnet.data.writers.sqlite_writer)": [[63, "graphnet.data.writers.sqlite_writer.SQLiteWriter", false]], "standard_arguments (graphnet.utilities.argparse.argumentparser attribute)": [[126, "graphnet.utilities.argparse.ArgumentParser.standard_arguments", false]], "standardaveragedmodel (class in graphnet.models.standard_averaged_model)": [[110, "graphnet.models.standard_averaged_model.StandardAveragedModel", false]], "standardflowtask (class in graphnet.models.task.task)": [[115, "graphnet.models.task.task.StandardFlowTask", false]], "standardlearnedtask (class in graphnet.models.task.task)": [[115, "graphnet.models.task.task.StandardLearnedTask", false]], "standardmodel (class in graphnet.models.standard_model)": [[111, "graphnet.models.standard_model.StandardModel", false]], "std_pool() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.std_pool", false]], "std_pool_x() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.std_pool_x", false]], "stream_handlers (graphnet.utilities.logging.logger property)": [[138, "graphnet.utilities.logging.Logger.stream_handlers", false]], "string_id_column (graphnet.models.detector.icecube.icecube86 attribute)": [[86, "graphnet.models.detector.icecube.IceCube86.string_id_column", false]], "string_id_column (graphnet.models.detector.icecube.icecubekaggle attribute)": [[86, "graphnet.models.detector.icecube.IceCubeKaggle.string_id_column", false]], "string_id_column (graphnet.models.detector.icecube.icecubeupgrade attribute)": [[86, "graphnet.models.detector.icecube.IceCubeUpgrade.string_id_column", false]], "string_id_column (graphnet.models.detector.liquido.liquido_v1 attribute)": [[87, "graphnet.models.detector.liquido.LiquidO_v1.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.arca115 attribute)": [[88, "graphnet.models.detector.prometheus.ARCA115.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.baikalgvd8 attribute)": [[88, "graphnet.models.detector.prometheus.BaikalGVD8.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icecube86prometheus attribute)": [[88, "graphnet.models.detector.prometheus.IceCube86Prometheus.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icecubedeepcore8 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeDeepCore8.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icecubegen2 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeGen2.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icecubeupgrade7 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeUpgrade7.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icedemo81 attribute)": [[88, "graphnet.models.detector.prometheus.IceDemo81.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.orca150 attribute)": [[88, "graphnet.models.detector.prometheus.ORCA150.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.orca150superdense attribute)": [[88, "graphnet.models.detector.prometheus.ORCA150SuperDense.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.ponetriangle attribute)": [[88, "graphnet.models.detector.prometheus.PONETriangle.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.trident1211 attribute)": [[88, "graphnet.models.detector.prometheus.TRIDENT1211.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.waterdemo81 attribute)": [[88, "graphnet.models.detector.prometheus.WaterDemo81.string_id_column", false]], "string_index_name (graphnet.models.detector.detector.detector property)": [[85, "graphnet.models.detector.detector.Detector.string_index_name", false]], "string_selection (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.string_selection", false]], "stringselectionresolver (class in graphnet.data.utilities.string_selection_resolver)": [[59, "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver", false]], "sum_pool() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.sum_pool", false]], "sum_pool_and_distribute() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.sum_pool_and_distribute", false]], "sum_pool_x() (in module graphnet.models.components.pool)": [[83, "graphnet.models.components.pool.sum_pool_x", false]], "target (graphnet.utilities.config.training_config.trainingconfig attribute)": [[133, "graphnet.utilities.config.training_config.TrainingConfig.target", false]], "target_labels (graphnet.models.easy_model.easysyntax property)": [[89, "graphnet.models.easy_model.EasySyntax.target_labels", false]], "task (class in graphnet.models.task.task)": [[115, "graphnet.models.task.task.Task", false]], "teardown() (graphnet.data.datamodule.graphnetdatamodule method)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.teardown", false]], "test_dataloader (graphnet.data.datamodule.graphnetdatamodule property)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.test_dataloader", false]], "testdataset (class in graphnet.datasets.test_dataset)": [[66, "graphnet.datasets.test_dataset.TestDataset", false]], "timereconstruction (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.TimeReconstruction", false]], "track (class in graphnet.training.labels)": [[121, "graphnet.training.labels.Track", false]], "train() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.train", false]], "train_dataloader (graphnet.data.datamodule.graphnetdatamodule property)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.train_dataloader", false]], "train_eval() (graphnet.models.task.task.task method)": [[115, "graphnet.models.task.task.Task.train_eval", false]], "training_step() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.training_step", false]], "training_step() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[110, "graphnet.models.standard_averaged_model.StandardAveragedModel.training_step", false]], "trainingconfig (class in graphnet.utilities.config.training_config)": [[133, "graphnet.utilities.config.training_config.TrainingConfig", false]], "transpose_list_of_dicts() (in module graphnet.data.extractors.icecube.utilities.collections)": [[33, "graphnet.data.extractors.icecube.utilities.collections.transpose_list_of_dicts", false]], "traverse_and_apply() (in module graphnet.utilities.config.parsing)": [[132, "graphnet.utilities.config.parsing.traverse_and_apply", false]], "trident1211 (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.TRIDENT1211", false]], "tridentsmall (class in graphnet.datasets.prometheus_datasets)": [[65, "graphnet.datasets.prometheus_datasets.TRIDENTSmall", false]], "truth (class in graphnet.data.constants)": [[4, "graphnet.data.constants.TRUTH", false]], "truth (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.truth", false]], "truth_table (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.truth_table", false]], "truth_table (graphnet.data.dataset.dataset.dataset property)": [[11, "graphnet.data.dataset.dataset.Dataset.truth_table", false]], "truth_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[130, "graphnet.utilities.config.dataset_config.DatasetConfig.truth_table", false]], "unbatch_edge_index() (in module graphnet.models.coarsening)": [[79, "graphnet.models.coarsening.unbatch_edge_index", false]], "uniform (class in graphnet.training.weight_fitting)": [[124, "graphnet.training.weight_fitting.Uniform", false]], "upgrade (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.UPGRADE", false]], "upgrade (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.UPGRADE", false]], "val_dataloader (graphnet.data.datamodule.graphnetdatamodule property)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.val_dataloader", false]], "validate_files() (graphnet.data.readers.graphnet_file_reader.graphnetfilereader method)": [[48, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.validate_files", false]], "validate_tasks() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.validate_tasks", false]], "validate_tasks() (graphnet.models.standard_model.standardmodel method)": [[111, "graphnet.models.standard_model.StandardModel.validate_tasks", false]], "validation_step() (graphnet.models.easy_model.easysyntax method)": [[89, "graphnet.models.easy_model.EasySyntax.validation_step", false]], "validation_step() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[110, "graphnet.models.standard_averaged_model.StandardAveragedModel.validation_step", false]], "verbose_print (graphnet.models.model.model attribute)": [[107, "graphnet.models.model.Model.verbose_print", false]], "vertexreconstruction (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.VertexReconstruction", false]], "vonmisesfisher2dloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.VonMisesFisher2DLoss", false]], "vonmisesfisher3dloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.VonMisesFisher3DLoss", false]], "vonmisesfisherloss (class in graphnet.training.loss_functions)": [[122, "graphnet.training.loss_functions.VonMisesFisherLoss", false]], "warning() (graphnet.utilities.logging.logger method)": [[138, "graphnet.utilities.logging.Logger.warning", false]], "warning_once() (graphnet.utilities.logging.logger method)": [[138, "graphnet.utilities.logging.Logger.warning_once", false]], "waterdemo81 (class in graphnet.models.detector.prometheus)": [[88, "graphnet.models.detector.prometheus.WaterDemo81", false]], "weightfitter (class in graphnet.training.weight_fitting)": [[124, "graphnet.training.weight_fitting.WeightFitter", false]], "with_standard_arguments() (graphnet.utilities.argparse.argumentparser method)": [[126, "graphnet.utilities.argparse.ArgumentParser.with_standard_arguments", false]], "xyz (graphnet.models.detector.icecube.icecube86 attribute)": [[86, "graphnet.models.detector.icecube.IceCube86.xyz", false]], "xyz (graphnet.models.detector.icecube.icecubekaggle attribute)": [[86, "graphnet.models.detector.icecube.IceCubeKaggle.xyz", false]], "xyz (graphnet.models.detector.icecube.icecubeupgrade attribute)": [[86, "graphnet.models.detector.icecube.IceCubeUpgrade.xyz", false]], "xyz (graphnet.models.detector.liquido.liquido_v1 attribute)": [[87, "graphnet.models.detector.liquido.LiquidO_v1.xyz", false]], "xyz (graphnet.models.detector.prometheus.arca115 attribute)": [[88, "graphnet.models.detector.prometheus.ARCA115.xyz", false]], "xyz (graphnet.models.detector.prometheus.baikalgvd8 attribute)": [[88, "graphnet.models.detector.prometheus.BaikalGVD8.xyz", false]], "xyz (graphnet.models.detector.prometheus.icecube86prometheus attribute)": [[88, "graphnet.models.detector.prometheus.IceCube86Prometheus.xyz", false]], "xyz (graphnet.models.detector.prometheus.icecubedeepcore8 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeDeepCore8.xyz", false]], "xyz (graphnet.models.detector.prometheus.icecubegen2 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeGen2.xyz", false]], "xyz (graphnet.models.detector.prometheus.icecubeupgrade7 attribute)": [[88, "graphnet.models.detector.prometheus.IceCubeUpgrade7.xyz", false]], "xyz (graphnet.models.detector.prometheus.icedemo81 attribute)": [[88, "graphnet.models.detector.prometheus.IceDemo81.xyz", false]], "xyz (graphnet.models.detector.prometheus.orca150 attribute)": [[88, "graphnet.models.detector.prometheus.ORCA150.xyz", false]], "xyz (graphnet.models.detector.prometheus.orca150superdense attribute)": [[88, "graphnet.models.detector.prometheus.ORCA150SuperDense.xyz", false]], "xyz (graphnet.models.detector.prometheus.ponetriangle attribute)": [[88, "graphnet.models.detector.prometheus.PONETriangle.xyz", false]], "xyz (graphnet.models.detector.prometheus.trident1211 attribute)": [[88, "graphnet.models.detector.prometheus.TRIDENT1211.xyz", false]], "xyz (graphnet.models.detector.prometheus.waterdemo81 attribute)": [[88, "graphnet.models.detector.prometheus.WaterDemo81.xyz", false]], "zenithreconstruction (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.ZenithReconstruction", false]], "zenithreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[114, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa", false]]}, "objects": {"": [[1, 0, 0, "-", "graphnet"]], "graphnet": [[2, 0, 0, "-", "constants"], [3, 0, 0, "-", "data"], [64, 0, 0, "-", "datasets"], [67, 0, 0, "-", "deployment"], [76, 0, 0, "-", "exceptions"], [78, 0, 0, "-", "models"], [119, 0, 0, "-", "training"], [125, 0, 0, "-", "utilities"]], "graphnet.data": [[4, 0, 0, "-", "constants"], [5, 0, 0, "-", "curated_datamodule"], [6, 0, 0, "-", "dataclasses"], [7, 0, 0, "-", "dataconverter"], [8, 0, 0, "-", "dataloader"], [9, 0, 0, "-", "datamodule"], [10, 0, 0, "-", "dataset"], [16, 0, 0, "-", "extractors"], [43, 0, 0, "-", "parquet"], [45, 0, 0, "-", "pre_configured"], [47, 0, 0, "-", "readers"], [53, 0, 0, "-", "sqlite"], [55, 0, 0, "-", "utilities"], [60, 0, 0, "-", "writers"]], "graphnet.data.constants": [[4, 1, 1, "", "FEATURES"], [4, 1, 1, "", "TRUTH"]], "graphnet.data.constants.FEATURES": [[4, 2, 1, "", "DEEPCORE"], [4, 2, 1, "", "ICECUBE86"], [4, 2, 1, "", "KAGGLE"], [4, 2, 1, "", "LIQUIDO"], [4, 2, 1, "", "PROMETHEUS"], [4, 2, 1, "", "UPGRADE"]], "graphnet.data.constants.TRUTH": [[4, 2, 1, "", "DEEPCORE"], [4, 2, 1, "", "ICECUBE86"], [4, 2, 1, "", "KAGGLE"], [4, 2, 1, "", "LIQUIDO"], [4, 2, 1, "", "PROMETHEUS"], [4, 2, 1, "", "UPGRADE"]], "graphnet.data.curated_datamodule": [[5, 1, 1, "", "CuratedDataset"], [5, 1, 1, "", "ERDAHostedDataset"]], "graphnet.data.curated_datamodule.CuratedDataset": [[5, 3, 1, "", "available_backends"], [5, 3, 1, "", "citation"], [5, 3, 1, "", "comments"], [5, 3, 1, "", "creator"], [5, 3, 1, "", "dataset_dir"], [5, 4, 1, "", "description"], [5, 3, 1, "", "event_truth"], [5, 3, 1, "", "events"], [5, 3, 1, "", "experiment"], [5, 3, 1, "", "features"], [5, 4, 1, "", "prepare_data"], [5, 3, 1, "", "pulse_truth"], [5, 3, 1, "", "pulsemaps"], [5, 3, 1, "", "truth_table"]], "graphnet.data.curated_datamodule.ERDAHostedDataset": [[5, 4, 1, "", "prepare_data"]], "graphnet.data.dataclasses": [[6, 1, 1, "", "I3FileSet"], [6, 1, 1, "", "Settings"]], "graphnet.data.dataclasses.I3FileSet": [[6, 2, 1, "", "gcd_file"], [6, 2, 1, "", "i3_file"]], "graphnet.data.dataclasses.Settings": [[6, 2, 1, "", "gcd_file"], [6, 2, 1, "", "i3_files"], [6, 2, 1, "", "modules"], [6, 2, 1, "", "output_folder"]], "graphnet.data.dataconverter": [[7, 1, 1, "", "DataConverter"], [7, 5, 1, "", "init_global_index"]], "graphnet.data.dataconverter.DataConverter": [[7, 4, 1, "", "get_map_function"], [7, 4, 1, "", "merge_files"]], "graphnet.data.dataloader": [[8, 1, 1, "", "DataLoader"], [8, 5, 1, "", "collate_fn"], [8, 5, 1, "", "do_shuffle"]], "graphnet.data.dataloader.DataLoader": [[8, 4, 1, "", "from_dataset_config"]], "graphnet.data.datamodule": [[9, 1, 1, "", "GraphNeTDataModule"]], "graphnet.data.datamodule.GraphNeTDataModule": [[9, 4, 1, "", "prepare_data"], [9, 4, 1, "", "setup"], [9, 4, 1, "", "teardown"], [9, 3, 1, "", "test_dataloader"], [9, 3, 1, "", "train_dataloader"], [9, 3, 1, "", "val_dataloader"]], "graphnet.data.dataset": [[11, 0, 0, "-", "dataset"], [12, 0, 0, "-", "parquet"], [14, 0, 0, "-", "sqlite"]], "graphnet.data.dataset.dataset": [[11, 1, 1, "", "Dataset"], [11, 1, 1, "", "EnsembleDataset"], [11, 5, 1, "", "load_module"], [11, 5, 1, "", "parse_graph_definition"], [11, 5, 1, "", "parse_labels"]], "graphnet.data.dataset.dataset.Dataset": [[11, 4, 1, "", "add_label"], [11, 4, 1, "", "concatenate"], [11, 4, 1, "", "from_config"], [11, 3, 1, "", "path"], [11, 4, 1, "", "query_table"], [11, 3, 1, "", "truth_table"]], "graphnet.data.dataset.parquet": [[13, 0, 0, "-", "parquet_dataset"]], "graphnet.data.dataset.parquet.parquet_dataset": [[13, 1, 1, "", "ParquetDataset"]], "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset": [[13, 4, 1, "", "query_table"]], "graphnet.data.dataset.sqlite": [[15, 0, 0, "-", "sqlite_dataset"]], "graphnet.data.dataset.sqlite.sqlite_dataset": [[15, 1, 1, "", "SQLiteDataset"]], "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset": [[15, 4, 1, "", "query_table"]], "graphnet.data.extractors": [[17, 0, 0, "-", "combine_extractors"], [18, 0, 0, "-", "extractor"], [19, 0, 0, "-", "icecube"], [37, 0, 0, "-", "internal"], [39, 0, 0, "-", "liquido"], [41, 0, 0, "-", "prometheus"]], "graphnet.data.extractors.combine_extractors": [[17, 1, 1, "", "CombinedExtractor"]], "graphnet.data.extractors.extractor": [[18, 1, 1, "", "Extractor"]], "graphnet.data.extractors.extractor.Extractor": [[18, 3, 1, "", "name"]], "graphnet.data.extractors.icecube": [[20, 0, 0, "-", "i3extractor"], [21, 0, 0, "-", "i3featureextractor"], [22, 0, 0, "-", "i3genericextractor"], [23, 0, 0, "-", "i3hybridrecoextractor"], [24, 0, 0, "-", "i3ntmuonlabelsextractor"], [25, 0, 0, "-", "i3particleextractor"], [26, 0, 0, "-", "i3pisaextractor"], [27, 0, 0, "-", "i3quesoextractor"], [28, 0, 0, "-", "i3retroextractor"], [29, 0, 0, "-", "i3splinempeextractor"], [30, 0, 0, "-", "i3truthextractor"], [31, 0, 0, "-", "i3tumextractor"], [32, 0, 0, "-", "utilities"]], "graphnet.data.extractors.icecube.i3extractor": [[20, 1, 1, "", "I3Extractor"]], "graphnet.data.extractors.icecube.i3extractor.I3Extractor": [[20, 4, 1, "", "set_gcd"]], "graphnet.data.extractors.icecube.i3featureextractor": [[21, 1, 1, "", "I3FeatureExtractor"], [21, 1, 1, "", "I3FeatureExtractorIceCube86"], [21, 1, 1, "", "I3FeatureExtractorIceCubeDeepCore"], [21, 1, 1, "", "I3FeatureExtractorIceCubeUpgrade"], [21, 1, 1, "", "I3PulseNoiseTruthFlagIceCubeUpgrade"]], "graphnet.data.extractors.icecube.i3genericextractor": [[22, 1, 1, "", "I3GenericExtractor"]], "graphnet.data.extractors.icecube.i3hybridrecoextractor": [[23, 1, 1, "", "I3GalacticPlaneHybridRecoExtractor"]], "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor": [[24, 1, 1, "", "I3NTMuonLabelExtractor"]], "graphnet.data.extractors.icecube.i3particleextractor": [[25, 1, 1, "", "I3ParticleExtractor"]], "graphnet.data.extractors.icecube.i3pisaextractor": [[26, 1, 1, "", "I3PISAExtractor"]], "graphnet.data.extractors.icecube.i3quesoextractor": [[27, 1, 1, "", "I3QUESOExtractor"]], "graphnet.data.extractors.icecube.i3retroextractor": [[28, 1, 1, "", "I3RetroExtractor"]], "graphnet.data.extractors.icecube.i3splinempeextractor": [[29, 1, 1, "", "I3SplineMPEICExtractor"]], "graphnet.data.extractors.icecube.i3truthextractor": [[30, 1, 1, "", "I3TruthExtractor"]], "graphnet.data.extractors.icecube.i3tumextractor": [[31, 1, 1, "", "I3TUMExtractor"]], "graphnet.data.extractors.icecube.utilities": [[33, 0, 0, "-", "collections"], [34, 0, 0, "-", "frames"], [35, 0, 0, "-", "i3_filters"], [36, 0, 0, "-", "types"]], "graphnet.data.extractors.icecube.utilities.collections": [[33, 5, 1, "", "flatten_nested_dictionary"], [33, 5, 1, "", "serialise"], [33, 5, 1, "", "transpose_list_of_dicts"]], "graphnet.data.extractors.icecube.utilities.frames": [[34, 5, 1, "", "frame_is_montecarlo"], [34, 5, 1, "", "frame_is_noise"], [34, 5, 1, "", "get_om_keys_and_pulseseries"]], "graphnet.data.extractors.icecube.utilities.i3_filters": [[35, 1, 1, "", "I3Filter"], [35, 1, 1, "", "I3FilterMask"], [35, 1, 1, "", "NullSplitI3Filter"]], "graphnet.data.extractors.icecube.utilities.types": [[36, 5, 1, "", "break_cyclic_recursion"], [36, 5, 1, "", "cast_object_to_pure_python"], [36, 5, 1, "", "cast_pulse_series_to_pure_python"], [36, 5, 1, "", "get_member_variables"], [36, 5, 1, "", "is_boost_class"], [36, 5, 1, "", "is_boost_enum"], [36, 5, 1, "", "is_icecube_class"], [36, 5, 1, "", "is_method"], [36, 5, 1, "", "is_type"]], "graphnet.data.extractors.internal": [[38, 0, 0, "-", "parquet_extractor"]], "graphnet.data.extractors.internal.parquet_extractor": [[38, 1, 1, "", "ParquetExtractor"]], "graphnet.data.extractors.liquido": [[40, 0, 0, "-", "h5_extractor"]], "graphnet.data.extractors.liquido.h5_extractor": [[40, 1, 1, "", "H5Extractor"], [40, 1, 1, "", "H5HitExtractor"], [40, 1, 1, "", "H5TruthExtractor"]], "graphnet.data.extractors.prometheus": [[42, 0, 0, "-", "prometheus_extractor"]], "graphnet.data.extractors.prometheus.prometheus_extractor": [[42, 1, 1, "", "PrometheusExtractor"], [42, 1, 1, "", "PrometheusFeatureExtractor"], [42, 1, 1, "", "PrometheusTruthExtractor"]], "graphnet.data.parquet": [[44, 0, 0, "-", "deprecated_methods"]], "graphnet.data.parquet.deprecated_methods": [[44, 1, 1, "", "ParquetDataConverter"]], "graphnet.data.pre_configured": [[46, 0, 0, "-", "dataconverters"]], "graphnet.data.pre_configured.dataconverters": [[46, 1, 1, "", "I3ToParquetConverter"], [46, 1, 1, "", "I3ToSQLiteConverter"], [46, 1, 1, "", "ParquetToSQLiteConverter"]], "graphnet.data.readers": [[48, 0, 0, "-", "graphnet_file_reader"], [49, 0, 0, "-", "i3reader"], [50, 0, 0, "-", "internal_parquet_reader"], [51, 0, 0, "-", "liquido_reader"], [52, 0, 0, "-", "prometheus_reader"]], "graphnet.data.readers.graphnet_file_reader": [[48, 1, 1, "", "GraphNeTFileReader"]], "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader": [[48, 3, 1, "", "accepted_extractors"], [48, 3, 1, "", "accepted_file_extensions"], [48, 3, 1, "", "extracor_names"], [48, 4, 1, "", "find_files"], [48, 4, 1, "", "set_extractors"], [48, 4, 1, "", "validate_files"]], "graphnet.data.readers.i3reader": [[49, 1, 1, "", "I3Reader"]], "graphnet.data.readers.i3reader.I3Reader": [[49, 4, 1, "", "find_files"]], "graphnet.data.readers.internal_parquet_reader": [[50, 1, 1, "", "ParquetReader"]], "graphnet.data.readers.internal_parquet_reader.ParquetReader": [[50, 4, 1, "", "find_files"]], "graphnet.data.readers.liquido_reader": [[51, 1, 1, "", "LiquidOReader"]], "graphnet.data.readers.liquido_reader.LiquidOReader": [[51, 4, 1, "", "find_files"]], "graphnet.data.readers.prometheus_reader": [[52, 1, 1, "", "PrometheusReader"]], "graphnet.data.readers.prometheus_reader.PrometheusReader": [[52, 4, 1, "", "find_files"]], "graphnet.data.sqlite": [[54, 0, 0, "-", "deprecated_methods"]], "graphnet.data.sqlite.deprecated_methods": [[54, 1, 1, "", "SQLiteDataConverter"]], "graphnet.data.utilities": [[56, 0, 0, "-", "parquet_to_sqlite"], [57, 0, 0, "-", "random"], [58, 0, 0, "-", "sqlite_utilities"], [59, 0, 0, "-", "string_selection_resolver"]], "graphnet.data.utilities.random": [[57, 5, 1, "", "pairwise_shuffle"]], "graphnet.data.utilities.sqlite_utilities": [[58, 5, 1, "", "attach_index"], [58, 5, 1, "", "create_table"], [58, 5, 1, "", "create_table_and_save_to_sql"], [58, 5, 1, "", "database_exists"], [58, 5, 1, "", "database_table_exists"], [58, 5, 1, "", "get_primary_keys"], [58, 5, 1, "", "query_database"], [58, 5, 1, "", "run_sql_code"], [58, 5, 1, "", "save_to_sql"]], "graphnet.data.utilities.string_selection_resolver": [[59, 1, 1, "", "StringSelectionResolver"]], "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver": [[59, 4, 1, "", "resolve"]], "graphnet.data.writers": [[61, 0, 0, "-", "graphnet_writer"], [62, 0, 0, "-", "parquet_writer"], [63, 0, 0, "-", "sqlite_writer"]], "graphnet.data.writers.graphnet_writer": [[61, 1, 1, "", "GraphNeTWriter"]], "graphnet.data.writers.graphnet_writer.GraphNeTWriter": [[61, 3, 1, "", "expects_merged_dataframes"], [61, 3, 1, "", "file_extension"], [61, 4, 1, "", "merge_files"]], "graphnet.data.writers.parquet_writer": [[62, 1, 1, "", "ParquetWriter"]], "graphnet.data.writers.parquet_writer.ParquetWriter": [[62, 4, 1, "", "merge_files"]], "graphnet.data.writers.sqlite_writer": [[63, 1, 1, "", "SQLiteWriter"]], "graphnet.data.writers.sqlite_writer.SQLiteWriter": [[63, 4, 1, "", "merge_files"]], "graphnet.datasets": [[65, 0, 0, "-", "prometheus_datasets"], [66, 0, 0, "-", "test_dataset"]], "graphnet.datasets.prometheus_datasets": [[65, 1, 1, "", "BaikalGVDSmall"], [65, 1, 1, "", "PONESmall"], [65, 1, 1, "", "PublicPrometheusDataset"], [65, 1, 1, "", "TRIDENTSmall"]], "graphnet.datasets.test_dataset": [[66, 1, 1, "", "TestDataset"]], "graphnet.deployment": [[68, 0, 0, "-", "deployer"], [69, 0, 0, "-", "deployment_module"]], "graphnet.deployment.deployer": [[68, 1, 1, "", "Deployer"]], "graphnet.deployment.deployer.Deployer": [[68, 4, 1, "", "run"]], "graphnet.deployment.deployment_module": [[69, 1, 1, "", "DeploymentModule"]], "graphnet.deployment.icecube": [[73, 0, 0, "-", "cleaning_module"], [75, 0, 0, "-", "inference_module"]], "graphnet.deployment.icecube.cleaning_module": [[73, 1, 1, "", "I3PulseCleanerModule"]], "graphnet.deployment.icecube.inference_module": [[75, 1, 1, "", "I3InferenceModule"]], "graphnet.exceptions": [[77, 0, 0, "-", "exceptions"]], "graphnet.exceptions.exceptions": [[77, 6, 1, "", "ColumnMissingException"]], "graphnet.models": [[79, 0, 0, "-", "coarsening"], [80, 0, 0, "-", "components"], [84, 0, 0, "-", "detector"], [89, 0, 0, "-", "easy_model"], [90, 0, 0, "-", "gnn"], [98, 0, 0, "-", "graphs"], [107, 0, 0, "-", "model"], [108, 0, 0, "-", "rnn"], [110, 0, 0, "-", "standard_averaged_model"], [111, 0, 0, "-", "standard_model"], [112, 0, 0, "-", "task"], [116, 0, 0, "-", "transformer"], [118, 0, 0, "-", "utils"]], "graphnet.models.coarsening": [[79, 1, 1, "", "AttributeCoarsening"], [79, 1, 1, "", "Coarsening"], [79, 1, 1, "", "CustomDOMCoarsening"], [79, 1, 1, "", "DOMAndTimeWindowCoarsening"], [79, 1, 1, "", "DOMCoarsening"], [79, 5, 1, "", "unbatch_edge_index"]], "graphnet.models.coarsening.Coarsening": [[79, 4, 1, "", "forward"], [79, 2, 1, "", "reduce_options"]], "graphnet.models.components": [[81, 0, 0, "-", "embedding"], [82, 0, 0, "-", "layers"], [83, 0, 0, "-", "pool"]], "graphnet.models.components.embedding": [[81, 1, 1, "", "FourierEncoder"], [81, 1, 1, "", "SinusoidalPosEmb"], [81, 1, 1, "", "SpacetimeEncoder"]], "graphnet.models.components.embedding.FourierEncoder": [[81, 4, 1, "", "forward"]], "graphnet.models.components.embedding.SinusoidalPosEmb": [[81, 4, 1, "", "forward"]], "graphnet.models.components.embedding.SpacetimeEncoder": [[81, 4, 1, "", "forward"]], "graphnet.models.components.layers": [[82, 1, 1, "", "Attention_rel"], [82, 1, 1, "", "Block"], [82, 1, 1, "", "Block_rel"], [82, 1, 1, "", "DropPath"], [82, 1, 1, "", "DynEdgeConv"], [82, 1, 1, "", "DynTrans"], [82, 1, 1, "", "EdgeConvTito"], [82, 1, 1, "", "Mlp"]], "graphnet.models.components.layers.Attention_rel": [[82, 4, 1, "", "forward"]], "graphnet.models.components.layers.Block": [[82, 4, 1, "", "forward"]], "graphnet.models.components.layers.Block_rel": [[82, 4, 1, "", "forward"]], "graphnet.models.components.layers.DropPath": [[82, 4, 1, "", "extra_repr"], [82, 4, 1, "", "forward"]], "graphnet.models.components.layers.DynEdgeConv": [[82, 4, 1, "", "forward"]], "graphnet.models.components.layers.DynTrans": [[82, 4, 1, "", "forward"]], "graphnet.models.components.layers.EdgeConvTito": [[82, 4, 1, "", "forward"], [82, 4, 1, "", "message"], [82, 4, 1, "", "reset_parameters"]], "graphnet.models.components.layers.Mlp": [[82, 4, 1, "", "forward"]], "graphnet.models.components.pool": [[83, 5, 1, "", "group_by"], [83, 5, 1, "", "group_pulses_to_dom"], [83, 5, 1, "", "group_pulses_to_pmt"], [83, 5, 1, "", "min_pool"], [83, 5, 1, "", "min_pool_x"], [83, 5, 1, "", "std_pool"], [83, 5, 1, "", "std_pool_x"], [83, 5, 1, "", "sum_pool"], [83, 5, 1, "", "sum_pool_and_distribute"], [83, 5, 1, "", "sum_pool_x"]], "graphnet.models.detector": [[85, 0, 0, "-", "detector"], [86, 0, 0, "-", "icecube"], [87, 0, 0, "-", "liquido"], [88, 0, 0, "-", "prometheus"]], "graphnet.models.detector.detector": [[85, 1, 1, "", "Detector"]], "graphnet.models.detector.detector.Detector": [[85, 4, 1, "", "feature_map"], [85, 4, 1, "", "forward"], [85, 3, 1, "", "geometry_table"], [85, 3, 1, "", "sensor_index_name"], [85, 3, 1, "", "sensor_position_names"], [85, 3, 1, "", "string_index_name"]], "graphnet.models.detector.icecube": [[86, 1, 1, "", "IceCube86"], [86, 1, 1, "", "IceCubeDeepCore"], [86, 1, 1, "", "IceCubeKaggle"], [86, 1, 1, "", "IceCubeUpgrade"]], "graphnet.models.detector.icecube.IceCube86": [[86, 4, 1, "", "feature_map"], [86, 2, 1, "", "geometry_table_path"], [86, 2, 1, "", "sensor_id_column"], [86, 2, 1, "", "string_id_column"], [86, 2, 1, "", "xyz"]], "graphnet.models.detector.icecube.IceCubeDeepCore": [[86, 4, 1, "", "feature_map"]], "graphnet.models.detector.icecube.IceCubeKaggle": [[86, 4, 1, "", "feature_map"], [86, 2, 1, "", "geometry_table_path"], [86, 2, 1, "", "sensor_id_column"], [86, 2, 1, "", "string_id_column"], [86, 2, 1, "", "xyz"]], "graphnet.models.detector.icecube.IceCubeUpgrade": [[86, 4, 1, "", "feature_map"], [86, 2, 1, "", "geometry_table_path"], [86, 2, 1, "", "sensor_id_column"], [86, 2, 1, "", "string_id_column"], [86, 2, 1, "", "xyz"]], "graphnet.models.detector.liquido": [[87, 1, 1, "", "LiquidO_v1"]], "graphnet.models.detector.liquido.LiquidO_v1": [[87, 4, 1, "", "feature_map"], [87, 2, 1, "", "geometry_table_path"], [87, 2, 1, "", "sensor_id_column"], [87, 2, 1, "", "string_id_column"], [87, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus": [[88, 1, 1, "", "ARCA115"], [88, 1, 1, "", "BaikalGVD8"], [88, 1, 1, "", "IceCube86Prometheus"], [88, 1, 1, "", "IceCubeDeepCore8"], [88, 1, 1, "", "IceCubeGen2"], [88, 1, 1, "", "IceCubeUpgrade7"], [88, 1, 1, "", "IceDemo81"], [88, 1, 1, "", "ORCA150"], [88, 1, 1, "", "ORCA150SuperDense"], [88, 1, 1, "", "PONETriangle"], [88, 1, 1, "", "Prometheus"], [88, 1, 1, "", "TRIDENT1211"], [88, 1, 1, "", "WaterDemo81"]], "graphnet.models.detector.prometheus.ARCA115": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.BaikalGVD8": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceCube86Prometheus": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceCubeDeepCore8": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceCubeGen2": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceCubeUpgrade7": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceDemo81": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.ORCA150": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.ORCA150SuperDense": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.PONETriangle": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.TRIDENT1211": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.WaterDemo81": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.easy_model": [[89, 1, 1, "", "EasySyntax"]], "graphnet.models.easy_model.EasySyntax": [[89, 4, 1, "", "compute_loss"], [89, 4, 1, "", "configure_optimizers"], [89, 4, 1, "", "fit"], [89, 4, 1, "", "forward"], [89, 4, 1, "", "inference"], [89, 4, 1, "", "predict"], [89, 4, 1, "", "predict_as_dataframe"], [89, 3, 1, "", "prediction_labels"], [89, 4, 1, "", "shared_step"], [89, 3, 1, "", "target_labels"], [89, 4, 1, "", "train"], [89, 4, 1, "", "training_step"], [89, 4, 1, "", "validate_tasks"], [89, 4, 1, "", "validation_step"]], "graphnet.models.gnn": [[91, 0, 0, "-", "RNN_tito"], [92, 0, 0, "-", "convnet"], [93, 0, 0, "-", "dynedge"], [94, 0, 0, "-", "dynedge_jinst"], [95, 0, 0, "-", "dynedge_kaggle_tito"], [96, 0, 0, "-", "gnn"], [97, 0, 0, "-", "icemix"]], "graphnet.models.gnn.RNN_tito": [[91, 1, 1, "", "RNN_TITO"]], "graphnet.models.gnn.RNN_tito.RNN_TITO": [[91, 4, 1, "", "forward"]], "graphnet.models.gnn.convnet": [[92, 1, 1, "", "ConvNet"]], "graphnet.models.gnn.convnet.ConvNet": [[92, 4, 1, "", "forward"]], "graphnet.models.gnn.dynedge": [[93, 1, 1, "", "DynEdge"]], "graphnet.models.gnn.dynedge.DynEdge": [[93, 4, 1, "", "forward"]], "graphnet.models.gnn.dynedge_jinst": [[94, 1, 1, "", "DynEdgeJINST"]], "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST": [[94, 4, 1, "", "forward"]], "graphnet.models.gnn.dynedge_kaggle_tito": [[95, 1, 1, "", "DynEdgeTITO"]], "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO": [[95, 4, 1, "", "forward"]], "graphnet.models.gnn.gnn": [[96, 1, 1, "", "GNN"]], "graphnet.models.gnn.gnn.GNN": [[96, 4, 1, "", "forward"], [96, 3, 1, "", "nb_inputs"], [96, 3, 1, "", "nb_outputs"]], "graphnet.models.gnn.icemix": [[97, 1, 1, "", "DeepIce"]], "graphnet.models.gnn.icemix.DeepIce": [[97, 4, 1, "", "forward"], [97, 4, 1, "", "no_weight_decay"]], "graphnet.models.graphs": [[99, 0, 0, "-", "edges"], [102, 0, 0, "-", "graph_definition"], [103, 0, 0, "-", "graphs"], [104, 0, 0, "-", "nodes"], [106, 0, 0, "-", "utils"]], "graphnet.models.graphs.edges": [[100, 0, 0, "-", "edges"], [101, 0, 0, "-", "minkowski"]], "graphnet.models.graphs.edges.edges": [[100, 1, 1, "", "EdgeDefinition"], [100, 1, 1, "", "EuclideanEdges"], [100, 1, 1, "", "KNNEdges"], [100, 1, 1, "", "RadialEdges"]], "graphnet.models.graphs.edges.edges.EdgeDefinition": [[100, 4, 1, "", "forward"]], "graphnet.models.graphs.edges.minkowski": [[101, 1, 1, "", "MinkowskiKNNEdges"], [101, 5, 1, "", "compute_minkowski_distance_mat"]], "graphnet.models.graphs.graph_definition": [[102, 1, 1, "", "GraphDefinition"]], "graphnet.models.graphs.graph_definition.GraphDefinition": [[102, 4, 1, "", "forward"]], "graphnet.models.graphs.graphs": [[103, 1, 1, "", "EdgelessGraph"], [103, 1, 1, "", "KNNGraph"]], "graphnet.models.graphs.nodes": [[105, 0, 0, "-", "nodes"]], "graphnet.models.graphs.nodes.nodes": [[105, 1, 1, "", "IceMixNodes"], [105, 1, 1, "", "NodeAsDOMTimeSeries"], [105, 1, 1, "", "NodeDefinition"], [105, 1, 1, "", "NodesAsPulses"], [105, 1, 1, "", "PercentileClusters"]], "graphnet.models.graphs.nodes.nodes.NodeDefinition": [[105, 4, 1, "", "forward"], [105, 3, 1, "", "nb_outputs"], [105, 4, 1, "", "set_number_of_inputs"], [105, 4, 1, "", "set_output_feature_names"]], "graphnet.models.graphs.utils": [[106, 5, 1, "", "cluster_summarize_with_percentiles"], [106, 5, 1, "", "gather_cluster_sequence"], [106, 5, 1, "", "ice_transparency"], [106, 5, 1, "", "identify_indices"], [106, 5, 1, "", "lex_sort"]], "graphnet.models.model": [[107, 1, 1, "", "Model"]], "graphnet.models.model.Model": [[107, 4, 1, "", "extra_repr"], [107, 4, 1, "", "extra_repr_recursive"], [107, 4, 1, "", "from_config"], [107, 4, 1, "", "load"], [107, 4, 1, "", "load_state_dict"], [107, 4, 1, "", "save"], [107, 4, 1, "", "save_state_dict"], [107, 4, 1, "", "set_verbose_print_recursively"], [107, 2, 1, "", "verbose_print"]], "graphnet.models.rnn": [[109, 0, 0, "-", "node_rnn"]], "graphnet.models.rnn.node_rnn": [[109, 1, 1, "", "Node_RNN"]], "graphnet.models.rnn.node_rnn.Node_RNN": [[109, 4, 1, "", "clean_up_data_object"], [109, 4, 1, "", "forward"]], "graphnet.models.standard_averaged_model": [[110, 1, 1, "", "StandardAveragedModel"]], "graphnet.models.standard_averaged_model.StandardAveragedModel": [[110, 4, 1, "", "load_state_dict"], [110, 4, 1, "", "on_train_end"], [110, 4, 1, "", "optimizer_step"], [110, 4, 1, "", "training_step"], [110, 4, 1, "", "validation_step"]], "graphnet.models.standard_model": [[111, 1, 1, "", "StandardModel"]], "graphnet.models.standard_model.StandardModel": [[111, 4, 1, "", "compute_loss"], [111, 4, 1, "", "forward"], [111, 4, 1, "", "shared_step"], [111, 4, 1, "", "validate_tasks"]], "graphnet.models.task": [[113, 0, 0, "-", "classification"], [114, 0, 0, "-", "reconstruction"], [115, 0, 0, "-", "task"]], "graphnet.models.task.classification": [[113, 1, 1, "", "BinaryClassificationTask"], [113, 1, 1, "", "BinaryClassificationTaskLogits"], [113, 1, 1, "", "MulticlassClassificationTask"]], "graphnet.models.task.classification.BinaryClassificationTask": [[113, 2, 1, "", "default_prediction_labels"], [113, 2, 1, "", "default_target_labels"], [113, 2, 1, "", "nb_inputs"]], "graphnet.models.task.classification.BinaryClassificationTaskLogits": [[113, 2, 1, "", "default_prediction_labels"], [113, 2, 1, "", "default_target_labels"], [113, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction": [[114, 1, 1, "", "AzimuthReconstruction"], [114, 1, 1, "", "AzimuthReconstructionWithKappa"], [114, 1, 1, "", "DirectionReconstructionWithKappa"], [114, 1, 1, "", "EnergyReconstruction"], [114, 1, 1, "", "EnergyReconstructionWithPower"], [114, 1, 1, "", "EnergyReconstructionWithUncertainty"], [114, 1, 1, "", "EnergyTCReconstruction"], [114, 1, 1, "", "InelasticityReconstruction"], [114, 1, 1, "", "PositionReconstruction"], [114, 1, 1, "", "TimeReconstruction"], [114, 1, 1, "", "VertexReconstruction"], [114, 1, 1, "", "ZenithReconstruction"], [114, 1, 1, "", "ZenithReconstructionWithKappa"]], "graphnet.models.task.reconstruction.AzimuthReconstruction": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstruction": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstructionWithPower": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyTCReconstruction": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.InelasticityReconstruction": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.PositionReconstruction": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.TimeReconstruction": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.VertexReconstruction": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.ZenithReconstruction": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa": [[114, 2, 1, "", "default_prediction_labels"], [114, 2, 1, "", "default_target_labels"], [114, 2, 1, "", "nb_inputs"]], "graphnet.models.task.task": [[115, 1, 1, "", "IdentityTask"], [115, 1, 1, "", "LearnedTask"], [115, 1, 1, "", "StandardFlowTask"], [115, 1, 1, "", "StandardLearnedTask"], [115, 1, 1, "", "Task"]], "graphnet.models.task.task.IdentityTask": [[115, 3, 1, "", "default_prediction_labels"], [115, 3, 1, "", "default_target_labels"], [115, 3, 1, "", "nb_inputs"]], "graphnet.models.task.task.LearnedTask": [[115, 4, 1, "", "compute_loss"], [115, 4, 1, "", "forward"], [115, 3, 1, "", "nb_inputs"]], "graphnet.models.task.task.StandardFlowTask": [[115, 4, 1, "", "compute_loss"], [115, 4, 1, "", "forward"], [115, 4, 1, "", "nb_inputs"]], "graphnet.models.task.task.StandardLearnedTask": [[115, 4, 1, "", "compute_loss"], [115, 3, 1, "", "nb_inputs"]], "graphnet.models.task.task.Task": [[115, 3, 1, "", "default_prediction_labels"], [115, 3, 1, "", "default_target_labels"], [115, 4, 1, "", "inference"], [115, 3, 1, "", "nb_inputs"], [115, 4, 1, "", "train_eval"]], "graphnet.models.transformer": [[117, 0, 0, "-", "iseecube"]], "graphnet.models.transformer.iseecube": [[117, 1, 1, "", "ISeeCube"]], "graphnet.models.transformer.iseecube.ISeeCube": [[117, 4, 1, "", "forward"]], "graphnet.models.utils": [[118, 5, 1, "", "array_to_sequence"], [118, 5, 1, "", "calculate_distance_matrix"], [118, 5, 1, "", "calculate_xyzt_homophily"], [118, 5, 1, "", "knn_graph_batch"]], "graphnet.training": [[120, 0, 0, "-", "callbacks"], [121, 0, 0, "-", "labels"], [122, 0, 0, "-", "loss_functions"], [123, 0, 0, "-", "utils"], [124, 0, 0, "-", "weight_fitting"]], "graphnet.training.callbacks": [[120, 1, 1, "", "GraphnetEarlyStopping"], [120, 1, 1, "", "PiecewiseLinearLR"], [120, 1, 1, "", "ProgressBar"]], "graphnet.training.callbacks.GraphnetEarlyStopping": [[120, 4, 1, "", "on_fit_end"], [120, 4, 1, "", "on_train_epoch_end"], [120, 4, 1, "", "on_validation_end"], [120, 4, 1, "", "setup"]], "graphnet.training.callbacks.PiecewiseLinearLR": [[120, 4, 1, "", "get_lr"]], "graphnet.training.callbacks.ProgressBar": [[120, 4, 1, "", "get_metrics"], [120, 4, 1, "", "init_predict_tqdm"], [120, 4, 1, "", "init_test_tqdm"], [120, 4, 1, "", "init_train_tqdm"], [120, 4, 1, "", "init_validation_tqdm"], [120, 4, 1, "", "on_train_epoch_end"], [120, 4, 1, "", "on_train_epoch_start"]], "graphnet.training.labels": [[121, 1, 1, "", "Direction"], [121, 1, 1, "", "Label"], [121, 1, 1, "", "Track"]], "graphnet.training.labels.Label": [[121, 3, 1, "", "key"]], "graphnet.training.loss_functions": [[122, 1, 1, "", "BinaryCrossEntropyLoss"], [122, 1, 1, "", "CrossEntropyLoss"], [122, 1, 1, "", "EnsembleLoss"], [122, 1, 1, "", "EuclideanDistanceLoss"], [122, 1, 1, "", "LogCMK"], [122, 1, 1, "", "LogCoshLoss"], [122, 1, 1, "", "LossFunction"], [122, 1, 1, "", "MSELoss"], [122, 1, 1, "", "RMSELoss"], [122, 1, 1, "", "RMSEVonMisesFisher3DLoss"], [122, 1, 1, "", "VonMisesFisher2DLoss"], [122, 1, 1, "", "VonMisesFisher3DLoss"], [122, 1, 1, "", "VonMisesFisherLoss"]], "graphnet.training.loss_functions.LogCMK": [[122, 4, 1, "", "backward"], [122, 4, 1, "", "forward"]], "graphnet.training.loss_functions.LossFunction": [[122, 4, 1, "", "forward"]], "graphnet.training.loss_functions.VonMisesFisherLoss": [[122, 4, 1, "", "log_cmk"], [122, 4, 1, "", "log_cmk_approx"], [122, 4, 1, "", "log_cmk_exact"]], "graphnet.training.utils": [[123, 5, 1, "", "collate_fn"], [123, 1, 1, "", "collator_sequence_buckleting"], [123, 5, 1, "", "get_predictions"], [123, 5, 1, "", "make_dataloader"], [123, 5, 1, "", "make_train_validation_dataloader"], [123, 5, 1, "", "save_results"], [123, 5, 1, "", "save_selection"]], "graphnet.training.weight_fitting": [[124, 1, 1, "", "BjoernLow"], [124, 1, 1, "", "Uniform"], [124, 1, 1, "", "WeightFitter"]], "graphnet.training.weight_fitting.WeightFitter": [[124, 4, 1, "", "fit"]], "graphnet.utilities": [[126, 0, 0, "-", "argparse"], [127, 0, 0, "-", "config"], [134, 0, 0, "-", "decorators"], [135, 0, 0, "-", "deprecation_tools"], [136, 0, 0, "-", "filesys"], [137, 0, 0, "-", "imports"], [138, 0, 0, "-", "logging"], [139, 0, 0, "-", "maths"]], "graphnet.utilities.argparse": [[126, 1, 1, "", "ArgumentParser"], [126, 1, 1, "", "Options"]], "graphnet.utilities.argparse.ArgumentParser": [[126, 2, 1, "", "standard_arguments"], [126, 4, 1, "", "with_standard_arguments"]], "graphnet.utilities.argparse.Options": [[126, 4, 1, "", "contains"], [126, 4, 1, "", "pop_default"]], "graphnet.utilities.config": [[128, 0, 0, "-", "base_config"], [129, 0, 0, "-", "configurable"], [130, 0, 0, "-", "dataset_config"], [131, 0, 0, "-", "model_config"], [132, 0, 0, "-", "parsing"], [133, 0, 0, "-", "training_config"]], "graphnet.utilities.config.base_config": [[128, 1, 1, "", "BaseConfig"], [128, 5, 1, "", "get_all_argument_values"]], "graphnet.utilities.config.base_config.BaseConfig": [[128, 4, 1, "", "as_dict"], [128, 4, 1, "", "dump"], [128, 4, 1, "", "load"], [128, 2, 1, "", "model_computed_fields"], [128, 2, 1, "", "model_config"], [128, 2, 1, "", "model_fields"]], "graphnet.utilities.config.configurable": [[129, 1, 1, "", "Configurable"]], "graphnet.utilities.config.configurable.Configurable": [[129, 3, 1, "", "config"], [129, 4, 1, "", "from_config"], [129, 4, 1, "", "save_config"]], "graphnet.utilities.config.dataset_config": [[130, 1, 1, "", "DatasetConfig"], [130, 1, 1, "", "DatasetConfigSaverABCMeta"], [130, 1, 1, "", "DatasetConfigSaverMeta"], [130, 5, 1, "", "save_dataset_config"]], "graphnet.utilities.config.dataset_config.DatasetConfig": [[130, 4, 1, "", "as_dict"], [130, 2, 1, "", "features"], [130, 2, 1, "", "graph_definition"], [130, 2, 1, "", "index_column"], [130, 2, 1, "", "labels"], [130, 2, 1, "", "loss_weight_column"], [130, 2, 1, "", "loss_weight_default_value"], [130, 2, 1, "", "loss_weight_table"], [130, 2, 1, "", "model_computed_fields"], [130, 2, 1, "", "model_config"], [130, 2, 1, "", "model_fields"], [130, 2, 1, "", "node_truth"], [130, 2, 1, "", "node_truth_table"], [130, 2, 1, "", "path"], [130, 2, 1, "", "pulsemaps"], [130, 2, 1, "", "seed"], [130, 2, 1, "", "selection"], [130, 2, 1, "", "string_selection"], [130, 2, 1, "", "truth"], [130, 2, 1, "", "truth_table"]], "graphnet.utilities.config.model_config": [[131, 1, 1, "", "ModelConfig"], [131, 1, 1, "", "ModelConfigSaverABC"], [131, 1, 1, "", "ModelConfigSaverMeta"], [131, 5, 1, "", "save_model_config"]], "graphnet.utilities.config.model_config.ModelConfig": [[131, 2, 1, "", "arguments"], [131, 4, 1, "", "as_dict"], [131, 2, 1, "", "class_name"], [131, 2, 1, "", "model_computed_fields"], [131, 2, 1, "", "model_config"], [131, 2, 1, "", "model_fields"]], "graphnet.utilities.config.parsing": [[132, 5, 1, "", "get_all_grapnet_classes"], [132, 5, 1, "", "get_graphnet_classes"], [132, 5, 1, "", "is_graphnet_class"], [132, 5, 1, "", "is_graphnet_module"], [132, 5, 1, "", "list_all_submodules"], [132, 5, 1, "", "traverse_and_apply"]], "graphnet.utilities.config.training_config": [[133, 1, 1, "", "TrainingConfig"]], "graphnet.utilities.config.training_config.TrainingConfig": [[133, 2, 1, "", "dataloader"], [133, 2, 1, "", "early_stopping_patience"], [133, 2, 1, "", "fit"], [133, 2, 1, "", "model_computed_fields"], [133, 2, 1, "", "model_config"], [133, 2, 1, "", "model_fields"], [133, 2, 1, "", "target"]], "graphnet.utilities.deprecation_tools": [[135, 5, 1, "", "rename_state_dict_entries"]], "graphnet.utilities.filesys": [[136, 5, 1, "", "find_i3_files"], [136, 5, 1, "", "has_extension"], [136, 5, 1, "", "is_gcd_file"], [136, 5, 1, "", "is_i3_file"]], "graphnet.utilities.imports": [[137, 5, 1, "", "has_icecube_package"], [137, 5, 1, "", "has_torch_package"], [137, 5, 1, "", "requires_icecube"]], "graphnet.utilities.logging": [[138, 1, 1, "", "Logger"], [138, 1, 1, "", "RepeatFilter"]], "graphnet.utilities.logging.Logger": [[138, 4, 1, "", "critical"], [138, 4, 1, "", "debug"], [138, 4, 1, "", "error"], [138, 3, 1, "", "file_handlers"], [138, 3, 1, "", "handlers"], [138, 4, 1, "", "info"], [138, 4, 1, "", "setLevel"], [138, 3, 1, "", "stream_handlers"], [138, 4, 1, "", "warning"], [138, 4, 1, "", "warning_once"]], "graphnet.utilities.logging.RepeatFilter": [[138, 4, 1, "", "filter"], [138, 2, 1, "", "nb_repeats_allowed"]], "graphnet.utilities.maths": [[139, 5, 1, "", "eps_like"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "property", "Python property"], "4": ["py", "method", "Python method"], "5": ["py", "function", "Python function"], "6": ["py", "exception", "Python exception"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:property", "4": "py:method", "5": "py:function", "6": "py:exception"}, "terms": {"": [0, 7, 8, 9, 11, 13, 15, 33, 44, 46, 48, 51, 52, 54, 61, 63, 68, 81, 85, 89, 92, 93, 102, 115, 118, 120, 124, 126, 130, 131, 138, 139, 142, 143, 144, 145, 147, 148, 149], "0": [9, 11, 13, 15, 44, 46, 49, 54, 59, 73, 79, 82, 83, 91, 92, 93, 95, 100, 101, 103, 106, 109, 118, 121, 122, 123, 130, 143, 144, 146, 147, 149], "000": 143, "001": [144, 149], "01": [144, 149], "0221": 144, "02_data": 144, "03042": 94, "03762": 81, "04616": 122, "04_ensemble_dataset": 144, "05": 122, "06": 141, "06166": 100, "0e04": 147, "0e4": 147, "1": [0, 7, 9, 11, 13, 18, 33, 44, 46, 54, 59, 62, 65, 68, 79, 82, 83, 91, 93, 95, 97, 100, 101, 103, 106, 109, 113, 114, 115, 118, 120, 121, 122, 123, 124, 130, 142, 143, 144, 145, 146, 148, 149], "10": [9, 65, 86, 87, 88, 105, 106, 126, 143, 144, 147, 149], "100": 143, "1000": [143, 144], "10000": [11, 13, 15, 59, 81], "1088": 144, "11": [144, 146], "12": [59, 97, 117, 130, 143, 144], "120": 144, "128": [81, 92, 93, 95, 126, 143, 144, 149], "13": 59, "14": [59, 130, 143, 144], "1536": 117, "15674": 81, "16": [59, 81, 91, 117, 130, 143, 144, 149], "17": 144, "1706": 81, "1748": 144, "1809": 100, "1812": 122, "192": 97, "196": 117, "1e6": 115, "2": [9, 33, 44, 54, 82, 83, 91, 93, 95, 100, 103, 106, 109, 114, 118, 122, 130, 143, 144, 146, 149], "20": [11, 13, 15, 59, 138, 144, 146, 147, 149], "200": [143, 147], "200000": 62, "2018": 141, "2019": 122, "2020": [0, 145, 148], "21": [141, 143, 144], "2209": 94, "2310": 81, "256": [93, 95, 117], "26": 143, "2d": 122, "2nd": [81, 97], "3": [83, 91, 92, 95, 101, 106, 109, 114, 117, 118, 122, 141, 144, 146, 147], "30": 147, "300": [143, 147], "32": [81, 97, 117], "336": [93, 95], "384": [81, 97, 117], "39": [0, 145, 148], "3d": [114, 122], "4": [82, 94, 97, 114, 144, 147, 149], "40": 147, "400": 63, "42": 9, "5": [11, 13, 15, 59, 91, 109, 122, 126, 142, 143, 144, 146, 147, 149], "50": [105, 106, 126, 147], "500": [106, 147], "50000": [59, 130, 143, 144], "5001": 143, "59": 146, "6": [81, 83, 97, 117], "64": 91, "7": [73, 83], "700": 122, "768": 105, "8": [82, 83, 91, 93, 95, 103, 109, 122, 123, 141, 143, 144, 146, 149], "80": [144, 149], "86": [21, 86], "890778": [0, 145, 148], "9": 9, "90": [105, 106], "A": [5, 7, 9, 11, 35, 48, 49, 50, 51, 52, 58, 63, 65, 66, 68, 69, 73, 83, 89, 102, 103, 106, 107, 111, 113, 115, 118, 122, 124, 128, 130, 131, 133, 142, 143, 144, 147, 149], "AND": 122, "AS": 122, "As": [93, 149], "BE": 122, "BUT": 122, "But": 149, "By": [0, 44, 46, 49, 54, 115, 143, 144, 145, 148, 149], "FOR": 122, "For": [36, 105, 120, 143, 144, 149], "IN": 122, "If": [5, 11, 13, 20, 22, 35, 63, 65, 66, 81, 82, 93, 97, 102, 105, 106, 107, 115, 120, 122, 124, 141, 142, 144, 149], "In": [44, 46, 48, 49, 54, 61, 130, 131, 142, 144, 146], "It": [1, 5, 33, 58, 73, 81, 106, 113, 115, 141, 143, 144, 149], "NO": 122, "NOT": [58, 122, 144], "No": [0, 144, 145, 148], "OF": 122, "ONE": 65, "OR": 122, "On": 5, "One": 144, "Or": 143, "Such": 58, "THE": 122, "TO": 122, "That": [11, 13, 15, 93, 114, 121, 144, 149], "The": [0, 7, 9, 11, 13, 15, 17, 33, 36, 44, 46, 54, 58, 61, 62, 63, 68, 69, 73, 75, 79, 81, 82, 83, 91, 93, 95, 97, 100, 102, 106, 109, 113, 114, 115, 117, 118, 120, 121, 122, 135, 142, 143, 145, 147, 148], "Then": [5, 141], "There": [144, 149], "These": [0, 48, 61, 63, 102, 141, 143, 144, 145, 147, 148, 149], "To": [143, 144, 146, 147, 149], "WITH": 122, "Will": [5, 65, 66, 68, 73, 75, 100, 142], "With": [144, 147, 149], "_": 144, "__": [33, 36, 144], "_____________________": 122, "__call__": [18, 20, 48, 69, 142, 143, 144, 147], "__fields__": [128, 130, 131, 133], "__init__": [130, 131, 142, 143, 144, 149], "_accepted_extractor": [142, 147], "_accepted_file_extens": [142, 147], "_and_": 93, "_column_nam": 142, "_construct_edg": 100, "_definition_": 144, "_extractor": [142, 147], "_extractor_nam": [142, 147], "_file_extens": 142, "_file_hash": 5, "_fit_weight": 124, "_forward": 149, "_indic": [11, 13], "_layer": 149, "_lrschedul": 120, "_may_": [11, 13], "_merge_datafram": 142, "_pred": 115, "_save_fil": 142, "_sensor_tim": 147, "_sensor_xyz": 147, "_tabl": 142, "_task": [89, 111], "_verify_column": 142, "_x_": 144, "a__b": 33, "ab": [59, 122, 130, 143, 144], "abc": [7, 11, 18, 48, 61, 68, 107, 121, 124, 129, 130, 131], "abcmeta": [130, 131], "abil": 143, "abl": [33, 105, 142, 144, 146, 147, 149], "about": [107, 128, 130, 131, 133, 143, 144, 147], "abov": [122, 124, 143, 144, 147, 149], "absopt": 105, "absorpt": 106, "abstract": [1, 5, 11, 61, 85, 96, 102, 115, 129, 144], "abstractmethod": 143, "acceler": 1, "accept": [48, 141, 149], "accepted_extractor": [48, 142], "accepted_file_extens": [48, 142], "access": [121, 143], "accompani": [44, 46, 49, 54, 144], "accord": [79, 83, 100, 102, 103, 106, 122], "achiev": 146, "achitectur": 149, "across": [1, 2, 11, 13, 15, 36, 55, 68, 83, 89, 111, 122, 125, 126, 127, 138, 147], "act": [115, 122, 144, 149], "action": 122, "activ": [82, 89, 91, 93, 105, 109, 115, 141], "activation_lay": 93, "actual": [144, 149], "ad": [7, 11, 13, 15, 21, 44, 46, 54, 81, 93, 97, 102, 105, 106], "adam": [144, 149], "adapt": [144, 149], "add": [11, 82, 93, 126, 135, 141, 144, 147], "add_count": [105, 106], "add_global_variables_after_pool": [93, 144, 149], "add_ice_properti": 105, "add_inactive_sensor": 102, "add_label": [11, 143, 144], "add_norm_lay": 93, "add_to_databas": 124, "addit": [48, 61, 79, 82, 89, 122, 124, 142, 144, 149], "additional_attribut": [89, 123, 144, 149], "address": 149, "adher": [141, 149], "adjac": 85, "adjust": 149, "advanc": [1, 83], "after": [9, 82, 91, 93, 95, 120, 126, 130, 143, 144, 149], "again": [144, 149], "against": 5, "aggr": 82, "aggreg": [82, 83], "agnost": [0, 145, 148, 149], "agreement": [0, 141, 145, 148], "ai": 144, "aim": [0, 1, 141, 144, 145, 148], "algorithm": 25, "all": [1, 5, 11, 13, 15, 17, 18, 20, 22, 35, 58, 63, 65, 66, 73, 81, 82, 83, 85, 93, 96, 101, 102, 107, 122, 124, 128, 129, 130, 131, 132, 133, 138, 141, 142, 143, 144, 147, 149], "allow": [0, 5, 38, 67, 78, 83, 120, 128, 133, 143, 144, 145, 148, 149], "along": [106, 144, 149], "alongsid": [144, 149], "alreadi": 58, "also": [7, 11, 13, 15, 59, 91, 130, 142, 143, 144, 147, 149], "alter": 102, "altern": [93, 122, 141], "alwai": 123, "amount": 91, "an": [0, 18, 36, 44, 46, 49, 54, 59, 102, 103, 109, 110, 122, 136, 138, 141, 142, 144, 145, 146, 147, 148, 149], "anaconda": 146, "analys": [67, 144], "analysi": 68, "angl": [114, 121, 144, 149], "ani": [6, 7, 8, 9, 11, 13, 15, 33, 34, 35, 36, 48, 50, 51, 52, 61, 63, 73, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 122, 124, 126, 128, 129, 130, 131, 132, 133, 138, 143, 144, 149], "annot": [130, 131, 133], "anoth": [130, 131, 143, 144], "anyth": 141, "api": [1, 142, 144], "appear": [68, 143, 144], "append": 102, "appli": [7, 11, 13, 15, 44, 46, 47, 48, 54, 68, 82, 83, 89, 91, 92, 93, 94, 95, 96, 97, 106, 109, 111, 113, 115, 117, 122, 132, 142, 143, 144], "applic": [33, 143, 144, 149], "appropri": [58, 115, 144], "approx": 122, "approxim": 63, "ar": [0, 1, 4, 5, 11, 13, 15, 20, 22, 35, 36, 48, 59, 61, 62, 63, 68, 73, 82, 83, 91, 93, 95, 98, 99, 100, 102, 103, 104, 105, 106, 109, 113, 122, 124, 130, 131, 141, 142, 143, 144, 145, 147, 148, 149], "arbitrari": [0, 145, 148], "arca": 88, "arca115": [84, 88], "architectur": [1, 92, 93, 94, 95, 97, 109, 117, 144, 149], "archiv": 123, "area": 1, "arg": [11, 13, 15, 17, 35, 79, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 107, 109, 110, 111, 113, 114, 115, 117, 122, 126, 128, 138, 142, 147], "argpars": 125, "argument": [5, 9, 62, 65, 66, 97, 120, 124, 126, 128, 130, 131, 133, 143, 144, 147, 149], "argumentpars": [125, 126], "aris": 122, "arrai": [18, 30, 33, 105, 106, 118, 142, 143, 144, 147], "array_to_sequ": [78, 118], "arriv": 143, "art": [0, 145, 148], "articl": 144, "artifact": [144, 149], "arxiv": [81, 100, 122], "as_dict": [128, 130, 131, 144, 149], "assert": [142, 143], "assertionerror": 142, "assign": [7, 11, 13, 15, 79, 83, 103, 141, 142], "associ": [73, 75, 102, 106, 114, 115, 122, 142, 143, 144, 147, 149], "assort": 139, "assum": [5, 73, 81, 85, 102, 106, 115, 118], "atmospher": 143, "attach": 58, "attach_index": [55, 58], "attempt": [20, 144], "attent": [81, 82, 97, 117], "attention_rel": [80, 82], "attn_drop": 82, "attn_head_dim": 82, "attn_mask": 82, "attribut": [5, 11, 13, 15, 79, 115, 143, 144, 149], "attributecoarsen": [78, 79], "author": [92, 94, 122], "auto": 115, "autom": 141, "automat": [22, 62, 81, 102, 122, 141, 142, 144, 147], "automatic_log_bin": 124, "auxiliari": [4, 81, 144, 149], "avail": [5, 7, 22, 65, 66, 113, 114, 115, 137, 142, 143, 144, 146, 147, 149], "available_backend": 5, "available_t": 142, "averag": [83, 110, 122], "avg": 79, "avg_pool": 79, "avg_pool_x": 79, "avoid": [13, 138, 141], "awai": [1, 144], "azimiuth": 121, "azimuth": [4, 114, 121], "azimuth_kappa": 114, "azimuth_kei": 121, "azimuth_pr": 114, "azimuthreconstruct": [112, 114], "azimuthreconstructionwithkappa": [112, 114], "b": [33, 79, 83, 118, 144, 147, 149], "backbon": 144, "backend": [5, 12, 14, 60, 62, 65, 66, 147], "backward": [106, 122], "baikal": 65, "baikalgvd8": [84, 88], "baikalgvdsmal": [64, 65], "bar": 120, "base": [0, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 59, 61, 62, 63, 65, 66, 68, 69, 73, 75, 77, 79, 81, 82, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 107, 109, 110, 111, 113, 114, 115, 117, 120, 121, 122, 123, 124, 126, 128, 129, 130, 131, 133, 137, 138, 142, 143, 144, 145, 148, 149], "base_config": 127, "baseclass": 68, "baseconfig": [127, 128, 129, 130, 131, 133], "basemodel": [128, 130, 131], "basi": 149, "basic": [1, 144], "batch": [0, 8, 13, 62, 79, 82, 83, 89, 109, 111, 118, 123, 126, 143, 145, 148], "batch_idx": [89, 110, 111, 118], "batch_siz": [8, 9, 118, 123, 143, 144, 149], "batch_split": 123, "becaus": [57, 144, 149], "been": [5, 73, 122, 141, 149], "befor": [11, 13, 93, 101, 109, 115, 120], "behavior": 142, "behaviour": 120, "behind": [144, 149], "being": [20, 73, 81, 113, 115, 143, 144, 149], "beitv2": 82, "belong": 118, "below": [5, 59, 105, 124, 141, 142, 144, 145, 147, 148, 149], "benchmark": 5, "besid": 143, "bessel": 122, "best": [0, 120, 141, 145, 148], "better": 141, "between": [38, 65, 81, 89, 98, 99, 100, 101, 104, 111, 115, 118, 120, 122, 124, 130, 131, 144, 149], "bia": [82, 117], "bias": [144, 149], "big": [144, 149], "biject": 142, "bin": 124, "binari": [111, 113, 122, 149], "binaryclassificationtask": [112, 113, 144, 149], "binaryclassificationtasklogit": [112, 113], "binarycrossentropyloss": [119, 122], "bjoernlow": [119, 124], "black": 141, "blob": [102, 122, 144], "block": [0, 1, 80, 82, 144, 145, 148], "block_rel": [80, 82], "boilerpl": 149, "bool": [8, 34, 35, 36, 58, 59, 61, 73, 81, 82, 89, 91, 93, 95, 97, 102, 105, 106, 107, 111, 117, 120, 122, 123, 124, 126, 132, 135, 136, 137, 138], "boost": 36, "border": 30, "both": [0, 22, 111, 115, 144, 145, 147, 148, 149], "boundari": 30, "box": [142, 144, 149], "branch": 141, "break_cyclic_recurs": [32, 36], "broken": [44, 46, 49, 54], "bucket": [117, 123], "bug": [141, 144], "build": [0, 1, 78, 85, 100, 101, 105, 106, 107, 128, 130, 131, 144, 145, 148, 149], "built": [0, 78, 102, 143, 144, 145, 147, 148, 149], "c": [20, 33, 83, 101, 122, 144], "c_": 122, "cach": 13, "cache_s": 13, "calcul": [73, 81, 89, 100, 103, 105, 111, 118, 121, 122, 143, 144, 149], "calculate_distance_matrix": [78, 118], "calculate_xyzt_homophili": [78, 118], "calibr": [34, 36], "call": [7, 22, 36, 81, 83, 115, 120, 124, 138, 142, 144, 147, 149], "callabl": [8, 11, 36, 82, 83, 85, 86, 87, 88, 102, 110, 115, 123, 124, 128, 130, 131, 132, 137, 147], "callback": [89, 119, 144, 149], "can": [0, 1, 5, 9, 11, 13, 15, 18, 22, 25, 73, 81, 83, 102, 124, 126, 128, 130, 131, 141, 142, 143, 144, 145, 147, 148, 149], "cannot": [36, 109, 124, 128, 133], "cap": 124, "capabl": [0, 111, 145, 148], "captur": [144, 149], "care": 143, "carlo": 34, "cascad": 114, "case": [11, 13, 15, 22, 44, 46, 49, 54, 73, 83, 106, 115, 142, 143, 144, 146, 149], "cast": [22, 36], "cast_object_to_pure_python": [32, 36], "cast_pulse_series_to_pure_python": [32, 36], "caus": 144, "caveat": [144, 149], "cc": 121, "cd": 146, "center": 100, "centr": 100, "central": [144, 146], "certain": 144, "cfg": 11, "cframe": 20, "chain": [0, 1, 67, 78, 89, 111, 122, 145, 146, 148], "chang": [122, 141, 144, 149], "charg": [4, 81, 91, 105, 106, 109, 122, 143, 144, 149], "charge_column": 105, "check": [8, 34, 35, 36, 48, 58, 105, 126, 136, 137, 141, 147], "checkpoint": 144, "checkpointing_bas": 144, "chenli2049": 117, "cherenkov": [105, 106, 144, 147, 149], "choic": [143, 144, 149], "choos": [144, 149], "chosen": [100, 106, 138, 143], "chunk": 142, "citat": 5, "cite": 5, "ckpt": [144, 149], "ckpt_path": 89, "claim": 122, "clash": 138, "class": [4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 59, 61, 62, 63, 65, 66, 68, 69, 73, 75, 79, 81, 82, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 107, 109, 110, 111, 113, 114, 115, 117, 120, 121, 122, 123, 124, 126, 128, 129, 130, 131, 132, 133, 138, 141, 142, 143], "class_nam": [11, 35, 48, 50, 51, 52, 61, 131, 138, 143, 144, 149], "classif": [1, 111, 112, 115, 122, 144, 149], "classifi": [113, 143, 144, 149], "classmethod": [8, 11, 107, 122, 128, 129, 144, 149], "classvar": [128, 130, 131, 133], "clean": [73, 141, 146], "clean_up_data_object": 109, "cleaning_modul": 72, "cleanup": 9, "clear": [138, 143], "cli": 126, "clone": 146, "close": 9, "closest": 120, "cloud": [144, 149], "cls_tocken": 97, "cluster": [79, 82, 83, 91, 93, 95, 105, 106, 109], "cluster_column": 106, "cluster_index": 83, "cluster_indic": 106, "cluster_on": [105, 106], "cluster_summarize_with_percentil": [98, 106], "cnn": [144, 149], "coarsen": [78, 83], "code": [0, 30, 44, 54, 58, 102, 130, 131, 142, 143, 144, 145, 147, 148, 149], "coincid": 105, "collabor": [1, 144, 149], "collate_fn": [3, 8, 119, 123], "collator_sequence_bucklet": [119, 123], "collect": [11, 19, 32, 122, 139, 144, 149], "column": [7, 11, 13, 15, 18, 40, 42, 44, 46, 54, 58, 62, 63, 69, 75, 77, 81, 85, 89, 91, 100, 102, 103, 105, 106, 109, 113, 114, 115, 118, 122, 124, 142, 143, 144, 147, 149], "column_nam": [40, 142], "column_offset": 106, "columnmissingexcept": [11, 13, 76, 77], "com": [97, 102, 117, 122, 144, 146], "combin": [17, 33, 46, 91, 111, 122, 130, 149], "combine_extractor": 16, "combinedextractor": [16, 17], "come": [5, 89, 115, 142, 143, 144, 149], "command": 126, "comment": 5, "commit": 141, "common": [0, 1, 122, 130, 131, 134, 137, 143, 144, 145, 148], "compar": [144, 149], "comparison": [25, 122], "compat": [48, 59, 89, 111, 115, 142, 143, 144, 149], "competit": [81, 82, 86, 95, 97], "complet": [0, 78, 144, 145, 146, 148, 149], "complex": [0, 78, 144, 145, 148], "compon": [0, 1, 78, 89, 107, 111, 144, 145, 148, 149], "compos": [144, 149], "composit": 138, "comprehens": 144, "compress": [5, 143], "compris": [0, 145, 148], "comput": [69, 82, 89, 101, 111, 115, 118, 122, 128, 130, 131, 133, 143, 144], "compute_loss": [89, 111, 115], "compute_minkowski_distance_mat": [99, 101], "computedfieldinfo": [128, 130, 131, 133], "con": [144, 149], "concatdataset": 11, "concaten": [11, 33, 93], "concept": 141, "conceptu": [142, 144], "concret": 144, "condit": 122, "confid": 144, "config": [8, 59, 120, 122, 125, 126, 143, 144, 149], "config_dir": [144, 149], "configdict": [128, 130, 131, 133], "configur": [0, 1, 9, 11, 45, 46, 69, 78, 89, 107, 127, 128, 130, 131, 133, 138, 142, 144, 145, 148, 149], "configure_optim": 89, "conflict": 144, "conform": [128, 130, 131, 133], "conjunct": [18, 115], "conn": 144, "connect": [0, 9, 100, 101, 102, 105, 122, 143, 144, 145, 148], "consequ": 107, "consid": [73, 91, 143, 144, 147], "consist": [81, 126, 138, 141, 144, 149], "consortium": [0, 145, 148], "constant": [1, 3, 140, 143, 144, 149], "constitut": [62, 143], "constraint": [89, 144], "construct": [5, 8, 9, 11, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 38, 40, 42, 48, 50, 51, 52, 59, 61, 62, 63, 65, 66, 69, 79, 80, 81, 82, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 120, 121, 122, 123, 124, 126, 129, 130, 131, 138, 142, 143, 144, 149], "constructor": [142, 143, 144], "consult": 149, "consum": 144, "consumpt": 143, "contain": [0, 5, 6, 7, 11, 13, 15, 16, 17, 20, 33, 34, 37, 38, 39, 42, 44, 46, 48, 49, 50, 54, 58, 61, 62, 63, 64, 65, 68, 69, 73, 75, 77, 89, 93, 98, 99, 101, 102, 103, 104, 106, 107, 111, 115, 118, 122, 124, 126, 142, 143, 144, 145, 147, 148, 149], "containeris": 1, "content": [142, 149], "context": 66, "continu": [0, 122, 144, 145, 148], "contract": 122, "contribut": [0, 122, 144, 145, 148], "contributor": 141, "conveni": [1, 141, 144, 149], "convent": [44, 46, 49, 54], "convers": [7, 37, 38, 42, 44, 54, 105, 143, 144, 147], "convert": [0, 1, 3, 5, 7, 13, 20, 33, 35, 44, 45, 46, 54, 56, 62, 64, 118, 142, 143, 144, 145, 146, 147, 148], "converteddataset": 5, "convnet": [90, 144], "convolut": [82, 92, 93, 94, 95], "coo": 143, "coordin": [30, 85, 101, 105, 106, 118, 144], "copi": [122, 143], "copyright": 122, "core": 96, "correct": 122, "correpond": 57, "correspond": [11, 13, 15, 33, 36, 57, 93, 102, 106, 124, 128, 130, 131, 133, 136, 143, 144, 147, 149], "cosh": 122, "could": [141, 144, 149], "counterpart": 143, "cover": 59, "cpu": [7, 44, 46, 54, 69], "creat": [5, 9, 58, 102, 103, 105, 128, 129, 133, 141, 143, 149], "create_t": [55, 58], "create_table_and_save_to_sql": [55, 58], "creator": 5, "critic": [138, 144, 147], "cross": 122, "crossentropyloss": [119, 122], "csv": [123, 130, 143, 144, 147, 149], "ctx": 122, "cuda": 146, "curat": 5, "curated_datamodul": 3, "curateddataset": [3, 5, 65, 66], "curi": [0, 145, 148], "current": [59, 109, 120, 141, 144], "curv": 124, "custom": [11, 48, 76, 102, 120, 149], "custom_label_funct": 102, "customdomcoarsen": [78, 79], "customis": 120, "cut": 123, "d": [33, 101, 102, 105, 118, 141, 147], "damag": 122, "data": [0, 1, 65, 66, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 102, 103, 105, 109, 110, 111, 115, 117, 118, 121, 123, 126, 128, 130, 133, 137, 140, 143, 144, 145, 148, 149], "data_path": 102, "databas": [5, 15, 58, 63, 124, 143, 144], "database_exist": [55, 58], "database_indic": 123, "database_nam": 63, "database_path": [58, 124], "database_table_exist": [55, 58], "dataclass": [3, 34], "dataconfig": [130, 143], "dataconvert": [3, 45, 61, 62, 63, 144, 147], "dataformat": [60, 63], "datafram": [58, 59, 61, 85, 89, 123, 124, 142, 144, 147, 149], "dataload": [3, 5, 9, 13, 65, 66, 89, 102, 123, 133, 143, 144, 149], "datamodul": [3, 5], "dataset": [1, 3, 5, 8, 9, 24, 59, 62, 77, 91, 102, 109, 126, 130, 140, 147, 149], "dataset_1": [143, 144], "dataset_2": [143, 144], "dataset_3": [143, 144], "dataset_arg": 9, "dataset_config": [127, 144, 149], "dataset_config_path": [144, 149], "dataset_dir": 5, "dataset_refer": 9, "datasetconfig": [8, 11, 59, 127, 130, 143, 149], "datasetconfigsav": 130, "datasetconfigsaverabcmeta": [127, 130], "datasetconfigsavermeta": [127, 130], "db": [63, 123, 124, 143, 144], "db_count_norm": 124, "ddp": [144, 149], "de": 33, "deactiv": [89, 115], "deal": 122, "debug": [138, 144], "decai": 97, "decor": [125, 137], "dedic": 141, "deem": 36, "deep": [0, 5, 61, 63, 82, 95, 97, 142, 144, 145, 146, 147, 148, 149], "deepcopi": 135, "deepcor": [4, 21, 86], "deepic": [90, 97], "def": [142, 143, 144, 147, 149], "default": [5, 7, 9, 11, 13, 15, 20, 22, 30, 33, 42, 44, 46, 49, 54, 58, 62, 63, 65, 66, 68, 69, 73, 75, 81, 82, 83, 91, 92, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107, 109, 115, 117, 118, 120, 121, 122, 124, 126, 128, 130, 136, 143, 144], "default_prediction_label": [113, 114, 115, 149], "default_target_label": [113, 114, 115, 149], "default_typ": 58, "defin": [5, 11, 13, 15, 59, 65, 66, 69, 73, 75, 83, 98, 99, 100, 102, 104, 106, 123, 128, 130, 131, 133, 143, 144, 147, 149], "definit": [100, 102, 103, 105, 107, 115, 141, 144, 149], "deleg": 138, "deliv": 89, "demo_ic": 88, "demo_wat": 88, "denot": [18, 120, 121, 142, 147], "dens": 83, "depend": [0, 81, 142, 143, 144, 145, 148, 149], "deploi": [0, 1, 67, 69, 144, 145, 146, 148], "deploy": [0, 1, 102, 140, 144, 145, 147, 148, 149], "deployment_modul": 67, "deploymentmodul": [67, 68, 69, 75], "deprec": [43, 44, 53, 54, 135], "deprecated_method": [43, 53, 70], "deprecation_tool": 125, "depth": [82, 97, 106, 117], "depth_rel": 97, "describ": [5, 141, 144], "descript": [5, 107, 126], "design": [1, 144, 147], "desir": [124, 136], "detail": [1, 5, 91, 107, 120, 143, 144, 146, 147, 149], "detector": [0, 1, 30, 78, 102, 103, 105, 143, 144, 145, 148, 149], "detector_respons": 144, "determin": [68, 91], "develop": [0, 1, 141, 143, 144, 145, 146, 147, 148, 149], "deviat": [102, 103, 106], "devic": 69, "df": [58, 142], "dfg": [0, 145, 148], "dict": [5, 8, 9, 11, 13, 15, 22, 33, 36, 58, 69, 85, 86, 87, 88, 89, 97, 102, 103, 105, 107, 110, 120, 123, 126, 128, 130, 131, 132, 133, 135, 142, 143, 144, 147], "dictionari": [11, 13, 15, 18, 33, 34, 36, 48, 58, 102, 103, 107, 128, 130, 131, 133, 142, 147], "differ": [0, 11, 13, 15, 18, 20, 38, 39, 40, 42, 48, 49, 50, 103, 123, 141, 142, 143, 144, 145, 147, 148, 149], "difficult": 143, "diffier": [144, 149], "digit": 81, "dim": [81, 82], "dimenion": [93, 95], "dimens": [81, 82, 86, 87, 88, 91, 92, 93, 95, 97, 106, 109, 115, 117, 118, 122, 147, 149], "dimension": [81, 82, 143, 149], "dir": 136, "dir_with_fil": [142, 147], "dir_x_pr": 114, "dir_y_pr": 114, "dir_z_pr": 114, "direct": [95, 97, 106, 113, 114, 115, 119, 121, 143, 147], "direction_kappa": 114, "directionreconstructionwithkappa": [112, 114, 144, 149], "directli": [0, 93, 142, 144, 145, 147, 148, 149], "directori": [5, 7, 44, 46, 48, 49, 50, 51, 52, 54, 61, 62, 65, 66, 120, 136, 142, 144, 149], "dirti": 144, "discard_empty_ev": 73, "disconnect": 143, "discuss": 141, "disk": [142, 143, 144], "distanc": [100, 101, 103, 118], "distribut": [83, 93, 114, 115, 122, 124, 146, 149], "distribution_strategi": 89, "ditto": 122, "diverg": 122, "divid": 68, "dk": 5, "dl": [144, 149], "dnn": [24, 31], "do": [0, 69, 73, 122, 130, 131, 141, 143, 144, 145, 148, 149], "do_shuffl": [3, 8], "doc": 144, "docformatt": 141, "docker": 1, "docstr": 141, "document": [122, 147, 149], "doe": [36, 113, 115, 131, 142, 143, 144, 149], "doesn": 58, "dom": [8, 11, 13, 15, 79, 83, 91, 105, 106, 109, 123, 144, 149], "dom_i": [4, 86, 105], "dom_numb": 4, "dom_tim": [4, 105], "dom_typ": 4, "dom_x": [4, 86, 105], "dom_z": [4, 86, 105], "domain": [0, 1, 3, 67, 144, 145, 148], "domandtimewindowcoarsen": [78, 79], "domcoarsen": [78, 79], "don": [120, 142], "done": [22, 83, 138, 141, 142, 144, 147], "dot": 82, "download": [5, 65, 66, 146], "download_dir": [5, 65, 66], "downsid": 143, "drawn": [98, 99, 103, 104, 144, 149], "drhb": 97, "drop": [82, 92], "drop_path": 82, "drop_prob": 82, "dropout": [82, 91, 109], "dropout_prob": 82, "dropout_ratio": 92, "droppath": [80, 82], "dtype": [11, 13, 15, 102, 103, 139, 143, 144, 149], "due": [143, 144, 149], "dummy_pid": [143, 144], "dump": [128, 130, 131, 142, 143, 144], "duplciat": 120, "duplic": 105, "dure": [82, 97, 102, 115, 120, 147], "dynam": [22, 82, 93, 94, 95, 144, 149], "dynedg": [73, 75, 90, 94, 95, 97, 144, 149], "dynedge_arg": 97, "dynedge_jinst": 90, "dynedge_kaggle_tito": 90, "dynedge_layer_s": [93, 144, 149], "dynedgeconv": [80, 82, 93], "dynedgejinst": [90, 94], "dynedgetito": [90, 91, 95], "dyntran": [80, 82, 91, 95], "dyntrans1": 82, "dyntrans_layer_s": [91, 95], "e": [1, 5, 8, 9, 11, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 36, 38, 42, 58, 59, 63, 69, 73, 75, 79, 81, 82, 83, 85, 86, 87, 88, 92, 96, 100, 102, 103, 105, 106, 107, 110, 111, 113, 114, 115, 118, 120, 121, 122, 124, 128, 138, 141, 142, 143, 144, 146, 149], "each": [5, 22, 33, 36, 57, 58, 62, 63, 68, 69, 79, 81, 82, 83, 86, 87, 88, 91, 93, 95, 100, 102, 103, 105, 106, 109, 113, 115, 118, 120, 122, 123, 136, 142, 143, 144, 147, 149], "earli": [120, 126], "early_stopping_pati": [89, 133], "earlystop": 120, "easi": [0, 142, 143, 144, 145, 148, 149], "easili": [1, 144, 149], "easy_model": 78, "easysyntax": [78, 89, 111], "ed": 122, "edg": [82, 83, 93, 94, 95, 98, 102, 103, 104, 105, 118, 143, 144, 149], "edge_attr": [143, 144], "edge_definit": 102, "edge_index": [79, 82, 118, 143, 144], "edgeconv": 82, "edgeconvtito": [80, 82], "edgedefinit": [98, 99, 100, 101, 102, 103, 104, 144, 149], "edgelessgraph": [98, 103], "effect": [120, 141, 144, 149], "effort": [141, 143, 147], "either": [0, 5, 9, 11, 15, 20, 65, 66, 122, 142, 144, 145, 148], "elast": 4, "element": [11, 13, 18, 33, 36, 89, 111, 118, 123, 132, 142, 144, 147], "elementwis": 122, "elimin": 73, "els": [73, 121, 142, 147], "ema": 110, "embed": [80, 91, 97, 109, 113, 115, 117], "embedding_dim": [91, 109], "empti": 73, "en": 144, "enabl": [0, 3, 89, 145, 148], "encod": [81, 121], "encount": 144, "encourag": [141, 144], "end": [0, 1, 120, 144, 145, 148], "energi": [4, 114, 115, 124, 143, 144, 147], "energy_cascad": [4, 114], "energy_cascade_pr": 114, "energy_pr": 114, "energy_reco": 75, "energy_sigma": 114, "energy_track": [4, 114], "energy_track_pr": 114, "energyreconstruct": [112, 114, 144, 149], "energyreconstructionwithpow": [112, 114], "energyreconstructionwithuncertainti": [112, 114, 144], "energytcreconstruct": [112, 114], "engin": [0, 145, 148], "enough": 107, "ensemble_dataset": [143, 144], "ensembledataset": [10, 11, 130, 143, 144], "ensembleloss": [119, 122], "ensur": [36, 57, 122, 138, 141, 149], "entir": [11, 13, 107, 142, 144, 149], "entiti": [144, 149], "entri": [73, 75, 93, 118, 126, 147], "entropi": 122, "enum": 36, "env": 146, "environ": [49, 146], "ep": [139, 144, 149], "epoch": [110, 120, 126], "eps_lik": [125, 139], "equival": [36, 144, 149], "erda": [5, 65], "erdahost": 66, "erdahosteddataset": [3, 5, 65, 66], "error": [122, 138, 141, 142, 144], "especi": 73, "establish": 149, "etc": [0, 122, 138, 143, 144, 145, 147, 148], "euclidean": [100, 141], "euclideandistanceloss": [119, 122], "euclideanedg": [99, 100], "european": [0, 145, 148], "eval": [107, 146], "evalu": [5, 115], "even": 57, "event": [0, 1, 5, 7, 9, 11, 13, 15, 17, 27, 42, 44, 46, 54, 58, 59, 62, 63, 65, 66, 73, 81, 83, 91, 102, 105, 106, 111, 115, 117, 118, 121, 122, 123, 124, 130, 142, 144, 145, 147, 148, 149], "event_no": [7, 11, 13, 15, 44, 46, 54, 58, 59, 62, 63, 124, 130, 143, 144, 149], "event_truth": 5, "events_per_batch": 62, "everi": [142, 144, 147], "everyth": [144, 149], "everytim": 141, "exact": [94, 122, 149], "exactli": [122, 138, 143], "exampl": [7, 33, 59, 79, 83, 106, 118, 122, 130, 131, 142, 143, 146], "example_energy_reconstruction_model": [126, 144, 149], "exce": 124, "exceed": 63, "except": [1, 140, 142], "exclud": 22, "exclude_kei": 22, "excluding_valu": 118, "execut": 58, "exist": [0, 11, 13, 15, 58, 78, 121, 130, 143, 144, 145, 148, 149], "exist_ok": [144, 149], "expand": [0, 144, 145, 148], "expans": 97, "expect": [58, 59, 61, 73, 75, 102, 105, 143, 144, 149], "expects_merged_datafram": 61, "experi": [0, 1, 5, 6, 7, 47, 48, 69, 119, 142, 144, 145, 148], "experiment": 149, "expert": 1, "explain": 144, "explicitli": [123, 128, 133], "exponenti": 122, "export": [142, 143, 144, 147, 149], "expos": 1, "express": [107, 122], "extend": [0, 1, 142, 143, 145, 148], "extens": [1, 5, 48, 61, 136], "extern": [143, 144], "extra": [82, 149], "extra_repr": [82, 107], "extra_repr_recurs": 107, "extracor_nam": 48, "extract": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 38, 40, 41, 42, 57, 73, 75, 115, 142, 144, 147], "extractor": [3, 7, 44, 46, 47, 48, 54, 73, 75], "extractor_nam": [17, 18, 20, 22, 25, 38, 40, 42, 142, 147], "f": [83, 142, 144, 149], "f1": 83, "f2": 83, "f_absorpt": 106, "f_scatter": 106, "factor": [82, 106, 120, 122, 144, 149], "fail": 17, "fals": [35, 73, 81, 82, 93, 97, 102, 107, 117, 120, 122, 124, 130, 144, 149], "fanci": 144, "fashion": 1, "fast": [0, 143, 144, 145, 148], "faster": [0, 142, 143, 145, 148], "favorit": 146, "favourit": 144, "fbeezabg5a": 5, "fc": 83, "featur": [1, 3, 4, 5, 11, 13, 15, 21, 63, 65, 66, 73, 75, 81, 82, 83, 85, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 109, 113, 117, 118, 123, 130, 141, 143, 144, 147, 149], "feature_idx": 106, "feature_map": [85, 86, 87, 88, 147], "feature_nam": 106, "features_subset": [82, 91, 93, 95, 109, 144, 149], "feedforward": 82, "feel": 144, "fetch": 126, "few": [0, 78, 141, 142, 143, 144, 145, 148, 149], "fiber_id": 87, "field": [121, 128, 130, 131, 133, 135, 142, 143, 144, 147], "fieldinfo": [128, 130, 131, 133], "figur": 0, "file": [0, 1, 3, 5, 7, 11, 13, 15, 18, 20, 33, 35, 38, 39, 40, 41, 42, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 61, 62, 63, 68, 69, 73, 75, 102, 107, 120, 122, 123, 126, 127, 128, 129, 130, 131, 136, 138, 142, 143, 144, 145, 146, 147, 148, 149], "file_extens": 61, "file_handl": 138, "file_path": [123, 142, 147], "file_read": [7, 142, 147], "filehandl": 138, "filenam": 136, "fileread": [18, 48], "files_list": 57, "filesi": 125, "fill": 5, "filter": [35, 44, 46, 49, 54, 138, 147], "filter_ani": 35, "filter_nam": 35, "filtermask": 35, "final": [0, 7, 83, 120, 130, 143, 144, 145, 148], "find": [20, 101, 136, 143, 144, 147, 149], "find_fil": [48, 49, 50, 51, 52, 142], "find_i3_fil": [125, 136], "first": [81, 91, 101, 109, 120, 123, 141, 144, 147], "fisher": 122, "fit": [9, 89, 122, 124, 133, 144, 149], "fit_weight": 124, "five": 143, "fix": [59, 144], "flag": [21, 73], "flake8": 141, "flatten": 33, "flatten_nested_dictionari": [32, 33], "flexibil": 149, "flexibl": 59, "float": [11, 13, 15, 73, 82, 89, 91, 92, 100, 101, 102, 103, 105, 106, 109, 120, 122, 123, 124, 130, 143], "float32": [11, 13, 15, 102, 103], "float64": 122, "flow": [115, 149], "flowchart": [0, 145, 148], "fly": [143, 144], "fn": [11, 36, 128, 132], "fn_kwarg": 132, "folder": [44, 46, 49, 50, 51, 52, 54, 68, 142], "folk": 144, "follow": [89, 93, 111, 122, 124, 141, 142, 143, 144], "fork": 141, "form": [0, 18, 78, 113, 128, 133, 142, 143, 145, 148, 149], "format": [0, 1, 3, 5, 7, 11, 33, 37, 38, 48, 50, 61, 62, 63, 81, 107, 109, 130, 141, 142, 143, 144, 145, 146, 147, 148, 149], "forward": [79, 81, 82, 85, 89, 91, 92, 93, 94, 95, 96, 97, 100, 102, 105, 109, 111, 115, 117, 122, 149], "found": [36, 44, 46, 49, 54, 62, 106, 122, 143, 144], "four": 81, "fourier": 81, "fourierencod": [80, 81, 97, 117], "fraction": [92, 109, 123], "frame": [20, 22, 32, 35, 36, 75], "frame_is_montecarlo": [32, 34], "frame_is_nois": [32, 34], "framework": [0, 144, 145, 148], "free": [0, 122, 144, 145, 148], "freeli": 144, "frequenc": 81, "friendli": [0, 61, 63, 142, 144, 145, 146, 148], "from": [0, 1, 5, 7, 8, 9, 11, 13, 15, 18, 19, 20, 22, 24, 25, 27, 33, 34, 35, 36, 38, 40, 41, 42, 48, 49, 51, 52, 56, 61, 63, 65, 66, 81, 83, 95, 97, 100, 102, 105, 106, 107, 110, 113, 114, 115, 118, 120, 121, 122, 128, 129, 130, 131, 133, 138, 141, 142, 143, 144, 145, 147, 148, 149], "from_config": [11, 107, 129, 130, 131, 143, 144, 149], "from_dataset_config": [8, 144, 149], "full": [62, 144, 149], "fulli": [142, 144, 149], "func": 144, "function": [0, 7, 8, 11, 20, 36, 38, 42, 57, 58, 73, 75, 79, 82, 83, 86, 87, 88, 93, 102, 106, 107, 115, 118, 122, 123, 125, 130, 131, 132, 135, 136, 137, 139, 143, 145, 147, 148, 149], "fund": [0, 145, 148], "furnish": 122, "further": 73, "furthermor": 109, "g": [1, 5, 11, 13, 15, 17, 18, 20, 30, 33, 36, 58, 59, 63, 73, 75, 83, 102, 105, 106, 115, 118, 122, 124, 138, 141, 143, 144, 146, 149], "galatict": 23, "gamma_1": 82, "gamma_2": 82, "gather": 106, "gather_cluster_sequ": [98, 106], "gcd": [20, 34, 44, 46, 49, 54, 57, 73, 75, 136], "gcd_dict": [34, 36], "gcd_file": [6, 20, 73, 75], "gcd_list": [57, 136], "gcd_rescu": [44, 46, 49, 54, 136], "gcd_shuffl": 57, "gelu": 82, "gener": [0, 5, 9, 11, 13, 15, 22, 35, 48, 61, 65, 68, 73, 75, 81, 98, 99, 102, 103, 104, 113, 122, 124, 143, 144, 145, 147, 148, 149], "geometr": 144, "geometri": [65, 85, 102, 149], "geometry_t": [85, 86, 87, 88, 147], "geometry_table_path": [86, 87, 88, 147], "germani": [0, 145, 148], "get": [18, 34, 58, 85, 120, 123, 144, 149], "get_all_argument_valu": [127, 128], "get_all_grapnet_class": [127, 132], "get_graphnet_class": [127, 132], "get_lr": 120, "get_map_funct": 7, "get_member_vari": [32, 36], "get_metr": 120, "get_om_keys_and_pulseseri": [32, 34], "get_predict": [119, 123], "get_primary_kei": [55, 58], "getting_start": 102, "gev": 65, "gframe": 20, "git": 146, "github": [97, 102, 117, 122, 144, 146], "given": [5, 11, 15, 20, 63, 65, 66, 81, 83, 100, 115, 122, 124, 126, 143, 147], "glob": 142, "global": [2, 4, 91, 93, 95, 107, 144], "global_index": 7, "global_pooling_schem": [91, 93, 95, 144, 149], "gnn": [1, 78, 102, 109, 117, 144, 149], "go": [141, 144], "googl": 141, "got": 142, "gpu": [89, 126, 144, 146, 149], "grab": 115, "grad_output": 122, "gradient_clip_v": 89, "grant": [0, 122, 145, 148], "graph": [0, 1, 8, 11, 13, 15, 78, 82, 83, 85, 109, 115, 118, 121, 123, 141, 143, 144, 145, 148, 149], "graph_definit": [5, 11, 13, 15, 65, 66, 98, 123, 130, 143, 144, 149], "graph_definiton": 143, "graphdefinit": [5, 11, 13, 15, 65, 66, 98, 99, 102, 103, 104, 123, 141, 143, 144], "graphnet": [0, 1, 140, 141, 142, 143, 145, 146, 147, 148, 149], "graphnet_file_read": [47, 142, 147], "graphnet_model": 120, "graphnet_writ": 60, "graphnetdatamodul": [3, 5, 9], "graphnetearlystop": [119, 120], "graphnetfileread": [7, 47, 48, 49, 50, 51, 52, 142], "graphnetfilesavemethod": [61, 63], "graphnetwrit": [7, 60, 61, 62, 63, 142], "grapnet": [132, 144], "greatli": [144, 149], "group": [0, 83, 144, 145, 148], "group_bi": [80, 83], "group_pulses_to_dom": [80, 83], "group_pulses_to_pmt": [80, 83], "groupbi": 83, "guarante": [144, 149], "guid": 141, "guidelin": 141, "gvd": [65, 88], "gz": 5, "h5": [40, 51, 142], "h5_extractor": 39, "h5extractor": [7, 39, 40, 48, 142], "h5hitextractor": [39, 40, 142], "h5py": 142, "h5truthextractor": [39, 40, 142], "ha": [0, 5, 36, 58, 73, 92, 106, 122, 136, 142, 143, 144, 145, 146, 147, 148, 149], "had": 147, "hadron": 114, "hand": [22, 143, 144], "handi": 57, "handl": [22, 122, 126, 135, 138, 142, 143, 144], "handler": 138, "happen": [124, 143, 147], "hard": [30, 105], "has_extens": [125, 136], "has_icecube_packag": [125, 137], "has_torch_packag": [125, 137], "have": [1, 5, 13, 22, 44, 46, 49, 54, 58, 59, 63, 83, 97, 102, 106, 115, 141, 143, 144, 147, 149], "head": [82, 91, 95, 97, 115, 117, 149], "head_dim": 82, "head_siz": 97, "heavi": 142, "help": [73, 75, 126, 141, 143, 144, 147, 149], "here": [102, 141, 143, 144, 146, 147, 149], "herebi": 122, "hidden": [81, 82, 91, 93, 94, 109], "hidden_dim": [97, 117], "hidden_featur": 82, "hidden_s": [109, 113, 114, 115, 144, 149], "high": [0, 144, 145, 148], "higher": 143, "highest_protocol": 142, "hint": 141, "hit": [8, 123, 143, 144, 147], "hitdata": 40, "hlc": 105, "hlc_name": 105, "hold": [102, 142, 147, 149], "holder": 122, "home": [86, 87, 88, 126, 142, 147], "homophili": 118, "hook": 141, "horizon": [0, 145, 148], "host": [5, 65, 147], "how": [5, 98, 99, 104, 142, 144, 149], "howev": [44, 46, 49, 54, 143, 144], "html": 144, "http": [5, 97, 100, 102, 117, 122, 141, 144, 146], "human": 144, "hybrid": 23, "hyperparamet": [131, 144, 149], "i": [0, 1, 5, 9, 11, 13, 15, 17, 18, 20, 22, 33, 34, 35, 36, 38, 40, 42, 44, 46, 49, 54, 57, 58, 59, 62, 63, 68, 73, 75, 79, 81, 82, 83, 92, 93, 97, 100, 102, 103, 105, 106, 109, 111, 114, 115, 118, 120, 121, 122, 123, 124, 126, 128, 131, 132, 133, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 147, 148, 149], "i3": [1, 20, 34, 35, 36, 44, 46, 49, 54, 57, 68, 73, 75, 136, 144, 146], "i3_fil": [6, 20], "i3_filt": [32, 44, 46, 49, 54], "i3_list": [57, 136], "i3_shuffl": 57, "i3calibr": 34, "i3deploy": [6, 72], "i3extractor": [7, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 44, 46, 48, 54], "i3featureextractor": [4, 19, 73, 75], "i3featureextractoricecube86": [19, 21], "i3featureextractoricecubedeepcor": [19, 21], "i3featureextractoricecubeupgrad": [19, 21], "i3fileset": [3, 6, 48, 49], "i3filt": [32, 35, 44, 46, 49, 54], "i3filtermask": [32, 35], "i3fram": [19, 22, 34, 36, 73, 75], "i3galacticplanehybridrecoextractor": [19, 23], "i3genericextractor": 19, "i3hybridrecoextractor": 19, "i3inferencemodul": [72, 73, 75], "i3mctre": 30, "i3modul": [1, 67, 69], "i3ntmuonlabelextractor": [19, 24], "i3ntmuonlabelsextractor": 19, "i3particl": 25, "i3particleextractor": 19, "i3pisaextractor": 19, "i3pulsecleanermodul": [72, 73], "i3pulsenoisetruthflagicecubeupgrad": [19, 21], "i3quesoextractor": 19, "i3read": [44, 46, 47, 54], "i3retroextractor": 19, "i3splinempeextractor": 19, "i3splinempeicextractor": [19, 29], "i3toparquetconvert": [44, 45, 46], "i3tosqliteconvert": [45, 46, 54], "i3truthextractor": [4, 19], "i3tumextractor": 19, "ic": [95, 97, 105], "ice_arg": 105, "ice_transpar": [98, 106], "icecub": [1, 16, 44, 46, 49, 54, 67, 82, 84, 95, 97, 105, 106, 137, 144, 149], "icecube86": [4, 84, 86, 88], "icecube86prometheu": [84, 88], "icecube_deepcor": 88, "icecube_gen2": 88, "icecube_upgrad": [86, 88], "icecubedeepcor": [84, 86], "icecubedeepcore8": [84, 88], "icecubegen2": [84, 88], "icecubekaggl": [84, 86], "icecubeupgrad": [84, 86], "icecubeupgrade7": [84, 88], "icedemo81": [84, 88], "icemix": 90, "icemixnod": [104, 105], "icetrai": [34, 36, 44, 46, 49, 54, 69, 137, 146], "icetray_verbos": [44, 46, 49, 54], "id": [5, 7, 9, 13, 44, 46, 54, 63, 85, 102, 123, 142, 143, 144, 147], "id_column": 105, "ideal": 149, "ident": [83, 115], "identifi": [7, 11, 13, 15, 30, 105, 106, 118, 130, 131, 147], "identify_indic": [98, 106], "identitytask": [112, 113, 115], "ie": 91, "ignor": [11, 13, 15, 36, 62], "illustr": [0, 141, 142, 145, 148], "imag": [0, 1, 141, 144, 145, 148, 149], "impact": 97, "implement": [1, 5, 18, 20, 48, 61, 69, 82, 91, 92, 93, 94, 95, 97, 100, 109, 117, 122, 141, 142, 144, 149], "impli": 122, "import": [0, 5, 58, 78, 125, 142, 143, 144, 145, 147, 148, 149], "impos": [11, 13, 89], "improv": [0, 1, 126, 144, 145, 148, 149], "in_featur": 82, "inaccur": 106, "inact": 102, "includ": [1, 5, 13, 65, 66, 82, 89, 105, 122, 128, 141, 143, 144, 147, 149], "include_dynedg": 97, "incompat": 144, "incorpor": 81, "increas": [0, 120, 145, 148], "indent": 107, "independ": [68, 142], "index": [1, 7, 11, 13, 15, 36, 58, 62, 83, 85, 91, 101, 106, 109, 120, 143, 144, 149], "index_column": [7, 11, 13, 15, 44, 46, 54, 58, 59, 62, 63, 123, 124, 130, 143, 144], "indic": [59, 77, 83, 91, 101, 106, 109, 120, 122, 126, 141, 144, 149], "indicesfor": 34, "indici": [11, 13, 15, 34, 59, 122], "individu": [0, 11, 13, 15, 83, 93, 118, 143, 145, 148, 149], "industri": [0, 3, 145, 148], "inelast": [4, 114], "inelasticity_pr": 114, "inelasticityreconstruct": [112, 114], "inf": 118, "infer": [0, 1, 63, 67, 69, 73, 75, 89, 115, 144, 145, 148], "inference_modul": 72, "info": [138, 144], "inform": [5, 11, 13, 15, 17, 18, 20, 22, 30, 38, 40, 42, 65, 66, 102, 105, 106, 107, 142, 143, 144, 147, 149], "ingest": [0, 1, 3, 84, 145, 148], "inherit": [5, 18, 20, 36, 48, 61, 85, 105, 122, 138, 142, 143, 144, 149], "init_fn": [130, 131], "init_global_index": [3, 7], "init_predict_tqdm": 120, "init_test_tqdm": 120, "init_train_tqdm": 120, "init_validation_tqdm": 120, "init_valu": 82, "initi": [7, 35, 49, 63, 68, 82, 91, 97, 101], "initial_st": 42, "initialis": [131, 144, 149], "injection_azimuth": [4, 143, 144], "injection_bjorkeni": [4, 143, 144], "injection_bjorkenx": [4, 143, 144], "injection_column_depth": [4, 143, 144], "injection_energi": [4, 143, 144], "injection_interaction_typ": [4, 143, 144], "injection_position_i": [4, 143, 144], "injection_position_x": [4, 143, 144], "injection_position_z": [4, 143, 144], "injection_typ": [4, 143, 144], "injection_zenith": [4, 143, 144, 149], "innov": [0, 145, 148], "input": [5, 7, 11, 13, 15, 44, 46, 48, 49, 54, 61, 65, 66, 68, 73, 75, 81, 82, 86, 91, 92, 93, 94, 95, 96, 97, 102, 103, 105, 109, 113, 115, 117, 118, 128, 133, 135, 142, 143, 144, 147, 149], "input_dim": [82, 149], "input_dir": [142, 147], "input_featur": [85, 102], "input_feature_nam": [85, 102, 103, 105], "input_fil": [48, 68], "ins": 85, "insid": 143, "inspect": [144, 149], "instal": [141, 144], "instanc": [11, 18, 20, 30, 36, 38, 40, 42, 44, 46, 49, 54, 102, 107, 121, 123, 129, 131, 142, 143, 144, 149], "instanti": [7, 9, 131, 142, 143, 147], "instead": [20, 44, 46, 49, 54, 122, 144, 149], "int": [5, 7, 8, 9, 11, 13, 15, 24, 27, 35, 44, 46, 48, 49, 50, 51, 52, 54, 59, 61, 62, 63, 68, 81, 82, 83, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 122, 123, 124, 126, 130, 133, 138, 142, 149], "integ": [58, 91, 93, 94, 122, 143, 144], "integer_primary_kei": 58, "integr": 149, "intend": [91, 109, 144], "interact": [114, 121, 143, 144], "interaction_kei": 121, "interaction_tim": [4, 114], "interaction_time_pr": 114, "interaction_typ": [4, 121], "interchang": [144, 149], "interfac": [0, 130, 131, 144, 145, 146, 147, 148], "interim": [7, 60, 61, 62, 63, 142], "intermedi": [0, 1, 3, 7, 11, 92, 144, 145, 148], "intern": [16, 46, 50], "internal_parquet_read": 47, "interpol": [106, 120], "interpret": 113, "interv": [81, 144, 149], "intract": 143, "introduc": 144, "intuit": [138, 149], "invers": 115, "invert": 115, "involv": 59, "io": [141, 144], "iop": 144, "iopscienc": 144, "is_boost_class": [32, 36], "is_boost_enum": [32, 36], "is_gcd_fil": [125, 136], "is_graphnet_class": [127, 132], "is_graphnet_modul": [127, 132], "is_i3_fil": [125, 136], "is_icecube_class": [32, 36], "is_method": [32, 36], "is_typ": [32, 36], "iseecub": 116, "isinst": 142, "isn": 36, "isol": 103, "issu": [144, 149], "iter": 11, "its": [36, 109, 143, 144, 149], "itself": [36, 115, 142, 144, 149], "iv": 122, "jacobian": 115, "job": 147, "join": [142, 144], "json": [33, 130, 143, 144], "just": [5, 83, 142, 143, 144, 149], "k": [82, 91, 93, 95, 100, 103, 109, 118, 122], "kaggl": [4, 81, 82, 86, 95, 97], "kappa": [114, 122], "kappa_switch": 122, "karg": [107, 110], "keep": [18, 20, 38, 40, 42, 105, 142], "kei": [11, 22, 33, 34, 36, 58, 63, 82, 83, 105, 121, 130, 131, 142, 143, 144, 147], "kept": 35, "key_padding_mask": 82, "keyword": [120, 128, 133], "kind": [122, 147], "km3net": [144, 149], "knn_graph_batch": [78, 118], "knnedg": [99, 100], "knngraph": [98, 103, 143, 144, 149], "know": 147, "known": 83, "kv": 82, "kwarg": [7, 8, 11, 13, 15, 35, 48, 50, 51, 52, 61, 79, 82, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 107, 109, 110, 111, 113, 114, 115, 117, 120, 122, 124, 128, 130, 131, 138], "l": [106, 118], "label": [11, 13, 15, 24, 27, 89, 92, 102, 111, 115, 119, 123, 130], "lai": 144, "lambda": [107, 144, 149], "land": 144, "larg": [0, 91, 122, 143, 145, 148], "larger": 142, "largest": 106, "last": [93, 109, 113, 114, 115, 120, 123, 149], "last_epoch": 120, "lastli": 147, "latent": [81, 91, 93, 95, 97, 109, 113, 114, 115, 117, 149], "latest": 144, "layer": [0, 80, 83, 91, 92, 93, 94, 95, 97, 109, 113, 114, 115, 145, 148], "layer_s": 82, "layer_size_scal": 94, "layernorm": 82, "ldot": [79, 83], "lead": [143, 144], "learn": [0, 1, 5, 61, 63, 73, 75, 111, 113, 115, 120, 142, 144, 145, 146, 147, 148, 149], "learnabl": [82, 90, 91, 92, 93, 94, 95, 96, 97, 109, 115, 117, 149], "learnedtask": [112, 115], "least": [13, 141, 143, 144], "leav": 120, "len": [11, 13, 106, 142, 143], "length": [11, 13, 36, 105, 106, 118, 120], "less": [8, 123, 144, 149], "let": [144, 147, 149], "level": [0, 5, 11, 13, 15, 17, 30, 35, 42, 44, 46, 48, 49, 50, 51, 52, 54, 58, 61, 62, 65, 66, 79, 83, 97, 111, 138, 143, 144, 145, 147, 148], "leverag": 1, "lex_sort": [98, 106], "liabil": 122, "liabl": 122, "lib": [86, 87, 88, 126], "licens": 122, "lift": 142, "light": 101, "lightn": [9, 120, 144, 149], "lightningdatamodul": 9, "lightningmodul": [81, 82, 107, 120, 138, 144, 149], "like": [18, 36, 83, 101, 115, 118, 122, 139, 141, 143, 144, 146, 149], "limit": [105, 122], "line": [120, 126, 142, 143, 147], "linear": [93, 149], "linearli": 120, "liquid": 87, "liquido": [4, 16, 51, 84, 142], "liquido_read": 47, "liquido_v1": [84, 87], "liquidoread": [47, 51, 142], "list": [5, 6, 7, 8, 9, 11, 13, 15, 17, 22, 30, 33, 35, 36, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 73, 75, 79, 82, 83, 85, 89, 91, 93, 95, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 115, 118, 120, 122, 123, 124, 130, 132, 133, 136, 138, 142, 143, 147], "list_all_submodul": [127, 132], "ljvmiranda921": 141, "load": [0, 8, 11, 57, 69, 107, 110, 128, 130, 143, 144, 145, 147, 148], "load_from_checkpoint": [144, 149], "load_modul": [10, 11, 107], "load_state_dict": [107, 110, 144, 149], "loaded_model": [144, 149], "local": [79, 86, 87, 88, 105, 126, 144, 146, 149], "lock": 13, "log": [0, 114, 119, 120, 122, 125, 143, 144, 145, 148, 149], "log10": [115, 124, 144, 149], "log_cmk": 122, "log_cmk_approx": 122, "log_cmk_exact": 122, "log_every_n_step": [89, 144, 149], "log_fold": [35, 48, 50, 51, 52, 61, 138], "log_model": [144, 149], "logcmk": [119, 122], "logcoshloss": [119, 122, 144, 149], "logger": [7, 9, 11, 18, 35, 48, 50, 51, 52, 59, 61, 68, 69, 89, 100, 107, 121, 124, 125, 138, 144, 149], "loggeradapt": 138, "logic": 143, "logit": [113, 122, 149], "logrecord": 138, "long": 143, "longev": [0, 145, 148], "longtensor": [79, 83, 118], "look": [22, 143, 144], "lookup": 132, "loop": [144, 149], "loss": [11, 13, 15, 89, 102, 111, 115, 120, 122, 126, 144, 149], "loss_factor": 122, "loss_funct": [115, 119, 144, 149], "loss_weight": [102, 115, 144, 149], "loss_weight_column": [11, 13, 15, 102, 123, 130], "loss_weight_default_valu": [11, 13, 15, 102, 130], "loss_weight_t": [11, 13, 15, 123, 130], "lossfunct": [115, 119, 122, 144], "lot": 141, "lower": [0, 144, 145, 148], "lr": [144, 149], "m": [101, 106, 122], "machin": 1, "made": [144, 149], "magnitud": [0, 145, 148], "mai": [48, 59, 69, 105, 143, 144, 146, 149], "main": [1, 90, 102, 141, 144], "mainli": 36, "major": [111, 115], "make": [0, 7, 105, 124, 130, 131, 141, 142, 143, 144, 145, 147, 148, 149], "make_dataload": [119, 123], "make_train_validation_dataload": [119, 123], "makedir": [144, 149], "manag": [0, 119, 142, 144, 145, 148], "mandatori": 81, "mangl": 36, "mani": [63, 142, 144, 149], "manipul": [33, 98, 99, 104], "map": [7, 11, 13, 15, 21, 22, 58, 86, 87, 88, 102, 103, 115, 128, 130, 131, 133, 144, 147, 149], "mari": [0, 145, 148], "martin": 92, "mask": [102, 118], "masked_entri": 118, "master": 122, "match": [48, 124, 136, 139, 142], "math": [82, 125], "mathbb": 83, "mathbf": [79, 83], "matic": 115, "matric": 82, "matrix": [83, 100, 101, 118, 122, 143], "max": [79, 82, 93, 95, 122, 124, 126, 144, 149], "max_activ": 105, "max_epoch": [89, 144, 149], "max_pool": [79, 83], "max_pool_x": [79, 83], "max_puls": 105, "max_rel_po": 117, "max_table_s": 63, "max_weight": 124, "maximum": [63, 83, 105, 106, 115, 117, 126], "mc": [22, 58], "mc_truth": [18, 42, 143, 144], "mctree": [30, 34], "md": [102, 144], "mean": [0, 11, 13, 15, 78, 93, 95, 106, 122, 131, 142, 143, 144, 145, 148, 149], "meaning": 81, "meant": [142, 144, 149], "measur": [105, 106, 118, 144, 147], "mechan": 82, "meet": 115, "member": [20, 22, 36, 48, 105, 130, 131, 138, 142, 147], "memori": [13, 143], "mention": 144, "merchant": 122, "merg": [7, 61, 62, 63, 122, 142, 143, 147], "merge_fil": [7, 61, 62, 63, 142, 147], "merged_database_nam": 63, "messag": [82, 120, 138, 144], "messagepass": 82, "metaclass": [130, 131], "metadata": [128, 130, 131, 133], "metaproject": 146, "meter": 144, "meth": 144, "method": [5, 7, 9, 11, 13, 15, 18, 20, 32, 33, 34, 36, 43, 44, 48, 53, 54, 61, 62, 63, 65, 66, 69, 82, 83, 85, 106, 114, 122, 124, 142, 144, 149], "metric": [91, 93, 95, 101, 109, 120, 144, 149], "might": [143, 144, 149], "mileston": [120, 144, 149], "million": [63, 65], "min": [79, 83, 93, 95, 124, 144, 149], "min_pool": [79, 80, 83], "min_pool_x": [79, 80, 83], "mind": 144, "minh": 92, "mini": 123, "minim": [89, 143, 144, 147, 149], "minimum": [105, 115], "minkowski": 99, "minkowskiknnedg": [99, 101], "minu": 122, "mise": 122, "miss": 77, "mit": 122, "mix": 17, "ml": [0, 1, 145, 148], "mlp": [80, 81, 82, 93, 97, 117, 149], "mlp_dim": [81, 117], "mlp_ratio": [82, 97], "mode": [89, 115], "model": [0, 1, 5, 67, 69, 73, 75, 119, 120, 122, 123, 126, 128, 130, 131, 133, 140, 142, 143, 145, 146, 147, 148], "model_computed_field": [128, 130, 131, 133], "model_config": [69, 73, 75, 127, 128, 130, 133, 144, 149], "model_config_path": [144, 149], "model_field": [128, 130, 131, 133], "model_nam": [73, 75], "modelconfig": [69, 73, 75, 107, 127, 130, 131], "modelconfigsav": 131, "modelconfigsaverabc": [127, 131], "modelconfigsavermeta": [127, 131], "modif": [144, 149], "modifi": [122, 144, 149], "modul": [0, 1, 3, 10, 12, 14, 16, 19, 32, 37, 39, 41, 43, 45, 47, 53, 55, 60, 64, 67, 70, 72, 76, 78, 80, 84, 90, 98, 99, 104, 108, 112, 116, 119, 125, 127, 140, 142, 144, 145, 148, 149], "modular": [0, 78, 142, 144, 145, 148, 149], "moduletyp": 132, "mont": 34, "more": [1, 11, 13, 57, 58, 91, 107, 130, 131, 138, 143, 144, 149], "most": [0, 1, 59, 101, 115, 142, 145, 147, 148, 149], "mryab": 122, "mseloss": [119, 122], "msg": 138, "mulitpli": 122, "multi": [82, 93, 111], "multiclassclassificationtask": [112, 113, 144], "multiheadattent": 82, "multiindex": 147, "multipl": [11, 13, 15, 17, 81, 106, 120, 122, 130, 138, 149], "multipli": [82, 120], "multiprocess": [7, 44, 46, 54, 142], "multiprocessing_context": 13, "muon": [24, 143, 149], "must": [13, 17, 48, 49, 58, 61, 79, 120, 122, 124, 141, 142, 143, 144, 147], "my": [143, 144, 147], "my_custom_label": [143, 144], "my_databas": 63, "my_fil": [142, 147], "my_geometry_t": 147, "my_outdir": [142, 147], "my_tabl": 147, "mycustomlabel": [143, 144], "mydetector": 147, "myexperi": 147, "myextractor": 147, "mygraphnetmodel": 149, "mymodel": 149, "mypi": 141, "mypicklewrit": 142, "myread": 147, "n": [18, 79, 83, 101, 118, 122, 143, 144, 147], "n_1": 83, "n_b": 83, "n_cluster": 106, "n_event": [142, 147], "n_featur": [81, 97, 117], "n_freq": 81, "n_head": [82, 91, 95], "n_pmt": 106, "n_puls": [105, 147], "n_rel": 97, "n_worker": 68, "name": [4, 5, 7, 8, 11, 13, 15, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 33, 35, 36, 38, 40, 42, 44, 46, 48, 50, 51, 52, 54, 58, 61, 62, 63, 69, 73, 75, 85, 102, 103, 105, 109, 115, 121, 124, 126, 128, 130, 131, 132, 133, 138, 141, 142, 143, 144, 147, 149], "namespac": [4, 107, 130, 131], "nan": 106, "narg": 126, "nb_dom": 118, "nb_file": 7, "nb_input": [91, 92, 93, 94, 95, 96, 109, 113, 114, 115, 144, 149], "nb_intermedi": 92, "nb_nearest_neighbour": [100, 101, 103, 143, 144, 149], "nb_neighbor": 82, "nb_neighbour": [91, 93, 95, 109, 144, 149], "nb_output": [92, 94, 96, 105, 113, 114, 115, 144, 149], "nb_repeats_allow": 138, "ndarrai": [11, 13, 30, 102, 106, 124, 142], "nearest": [91, 93, 95, 100, 101, 103, 109, 118, 144, 149], "nearli": 149, "necessari": [0, 9, 33, 141, 145, 148], "need": [0, 5, 9, 33, 63, 78, 81, 107, 109, 122, 135, 142, 143, 144, 145, 146, 147, 148, 149], "negat": 83, "neighbour": [82, 91, 93, 95, 100, 101, 103, 109, 118, 144, 149], "nest": 33, "nester": 33, "network": [1, 82, 92, 108, 149], "neural": [1, 108, 149], "neutrino": [0, 1, 20, 42, 49, 82, 95, 97, 106, 117, 143, 144, 145, 147, 148, 149], "new": [0, 1, 17, 82, 105, 128, 133, 141, 142, 144, 145, 148, 149], "new_features_nam": 105, "new_phras": 135, "nfdi": [0, 145, 148], "nn": [0, 78, 82, 100, 103, 145, 148, 149], "no_weight_decai": 97, "node": [11, 13, 15, 79, 83, 91, 92, 93, 95, 98, 99, 100, 102, 103, 109, 118, 143, 144, 149], "node_definit": [102, 103, 143, 144, 149], "node_feature_nam": [105, 143, 144, 149], "node_level": 123, "node_rnn": [91, 108], "node_truth": [11, 13, 15, 123, 130], "node_truth_t": [11, 13, 15, 123, 130, 144], "nodeasdomtimeseri": [104, 105], "nodedefinit": [102, 103, 104, 105, 144, 149], "nodesaspuls": [102, 104, 105, 143, 144, 149], "nodetimernn": 109, "nois": [21, 34, 73, 144], "non": [9, 33, 36, 58, 91, 122, 144], "none": [5, 7, 8, 9, 11, 13, 15, 20, 22, 30, 34, 35, 36, 44, 46, 48, 49, 50, 51, 52, 54, 58, 59, 61, 62, 63, 65, 66, 68, 69, 75, 82, 83, 89, 91, 93, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 115, 120, 122, 123, 124, 126, 128, 129, 130, 132, 136, 138, 142, 143, 144, 147, 149], "nonetyp": 130, "noninfring": 122, "norm_lay": 82, "normal": [82, 93, 106, 115, 147], "normalizingflow": 115, "northeren": 24, "note": [11, 13, 15, 49, 62, 63, 106, 131, 144], "notebook": 141, "notic": [63, 118, 122], "notimplementederror": 142, "now": [144, 147, 149], "np": [124, 142], "null": [35, 58, 143, 144, 149], "nullspliti3filt": [32, 35, 44, 46, 49, 54], "num": 126, "num_class": 122, "num_edg": 143, "num_edge_featur": 143, "num_featur": 143, "num_head": [82, 117], "num_lay": [109, 117], "num_nod": 143, "num_puls": 105, "num_register_token": 117, "num_row": [102, 143], "num_work": [7, 8, 9, 46, 62, 123, 142, 143, 144, 147, 149], "number": [0, 5, 7, 11, 13, 15, 18, 44, 46, 54, 59, 62, 63, 68, 81, 82, 83, 91, 92, 93, 94, 95, 96, 97, 100, 101, 103, 105, 106, 109, 113, 114, 115, 117, 118, 120, 123, 124, 126, 142, 143, 144, 145, 147, 148], "numer": [115, 147], "numpi": 106, "numu": 121, "numucc": 121, "o": [0, 87, 115, 142, 144, 145, 146, 148, 149], "obj": [33, 36, 132], "object": [4, 6, 11, 13, 15, 22, 33, 36, 79, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 107, 109, 110, 111, 113, 114, 115, 117, 120, 122, 123, 126, 128, 130, 131, 133, 138, 143, 144, 149], "observ": 147, "observatori": [20, 49], "obtain": [83, 122], "occur": [8, 123], "oerso": 94, "offer": 143, "offset": [105, 106], "ofintern": 37, "often": 143, "old_phras": 135, "om": [34, 36], "omit": 149, "on_fit_end": 120, "on_train_end": 110, "on_train_epoch_end": 120, "on_train_epoch_start": 120, "on_validation_end": 120, "onc": [138, 144, 146], "one": [11, 13, 20, 58, 73, 83, 130, 131, 136, 141, 142, 143, 144, 147, 149], "ones": 110, "onli": [0, 1, 11, 13, 15, 63, 78, 83, 91, 115, 124, 128, 131, 133, 137, 142, 143, 144, 145, 147, 148, 149], "open": [0, 48, 141, 142, 143, 144, 145, 146, 147, 148], "opensciencegrid": 146, "oper": [79, 82, 90, 93], "oppos": 143, "optic": [36, 106], "optim": [89, 110, 120, 144, 149], "optimis": [0, 1, 144, 145, 148, 149], "optimizer_class": [144, 149], "optimizer_closur": 110, "optimizer_kwarg": [144, 149], "optimizer_step": 110, "option": [5, 7, 9, 11, 13, 15, 20, 30, 63, 65, 66, 69, 75, 81, 82, 83, 91, 93, 95, 97, 101, 102, 103, 105, 106, 107, 109, 115, 120, 122, 124, 125, 126, 128, 130, 136, 142, 143, 144, 147, 149], "orca": 88, "orca150": [84, 88, 149], "orca150superdens": [84, 88], "orca_150": 88, "order": [0, 33, 48, 68, 79, 105, 118, 122, 144, 145, 148], "ordinari": 149, "ordinarili": 147, "org": [100, 122, 144, 146], "orient": [0, 78, 145, 148], "origin": [97, 143, 149], "ot": 122, "other": [25, 58, 100, 122, 141, 143, 144, 149], "otherwis": [36, 122], "our": [144, 147], "out": [5, 11, 13, 93, 112, 122, 138, 141, 142, 143, 144, 147, 149], "out_featur": 82, "outdir": [7, 44, 46, 54, 142, 144, 147, 149], "outer": 33, "outlin": [147, 149], "output": [18, 63, 68, 69, 81, 82, 89, 91, 92, 93, 94, 96, 105, 106, 109, 113, 114, 115, 124, 130, 131, 142, 147, 149], "output_dim": [81, 149], "output_dir": [61, 62, 63, 142], "output_fil": 7, "output_file_path": 142, "output_fold": [6, 68], "outsid": [66, 141], "over": [101, 105, 142, 143], "overal": 122, "overhead": 147, "overrid": [9, 120], "overridden": 105, "overview": [0, 145, 148], "overwrit": [69, 120], "overwritten": [48, 126, 128], "own": [141, 144], "ownership": 141, "p": [34, 65, 122, 142], "p11003": 144, "packag": [0, 1, 57, 132, 136, 137, 140, 141, 144, 145, 148, 149], "pad": [102, 106, 118], "padding_valu": [24, 27, 118], "pair": [20, 44, 46, 49, 54, 81], "pairwis": [101, 118], "pairwise_shuffl": [55, 57], "panda": [59, 124, 142, 144, 147, 149], "paper": 122, "paradigm": [144, 149], "parallel": [7, 44, 46, 54, 142, 147], "param": [38, 40, 42], "paramet": [5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 73, 75, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 122, 123, 124, 126, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139], "parent": [33, 144], "parent_kei": 33, "parquet": [3, 5, 10, 38, 41, 42, 46, 50, 52, 54, 56, 62, 65, 66, 86, 87, 88, 142, 143, 144, 147], "parquet_dataset": 12, "parquet_extractor": 37, "parquet_to_sqlit": 55, "parquet_writ": 60, "parquetdataconvert": [43, 44], "parquetdataset": [9, 12, 13, 142, 144], "parquetextractor": [7, 37, 38, 40, 46, 48], "parquetread": [47, 50], "parquettosqliteconvert": [45, 46], "parquetwrit": [13, 38, 46, 60, 62, 142, 143, 147], "pars": [22, 126, 127, 128, 133, 142], "parse_graph_definit": [10, 11], "parse_label": [10, 11], "part": [142, 144, 146, 147], "particl": [30, 58, 121, 143, 144, 147], "particular": [122, 141], "particularli": [143, 144, 149], "partit": 63, "partli": [0, 145, 148], "pass": [11, 15, 81, 82, 89, 91, 92, 93, 94, 95, 96, 97, 102, 109, 111, 115, 117, 120, 122, 124, 141, 142, 143, 144, 147, 149], "path": [5, 11, 13, 15, 20, 44, 46, 48, 49, 50, 51, 52, 54, 57, 58, 63, 68, 73, 75, 82, 102, 107, 110, 120, 123, 126, 128, 129, 130, 136, 142, 143, 144, 147, 149], "path_to_arrai": 147, "path_to_geometry_t": 147, "patienc": 126, "pd": [142, 144, 147], "pdf": 100, "pdg": 121, "penal": 122, "peopl": [144, 149], "pep257": 141, "pep8": 141, "per": [11, 13, 15, 22, 58, 82, 83, 91, 109, 115, 122, 124, 143, 144], "percentil": [105, 106], "percentileclust": [104, 105], "perceptron": [82, 93], "perform": [0, 9, 79, 81, 82, 83, 89, 90, 91, 93, 95, 105, 109, 110, 111, 113, 115, 123, 144, 145, 148, 149], "permiss": 122, "permit": 122, "persistent_work": [8, 123], "person": [5, 122], "perturb": [102, 103], "perturbation_dict": [102, 103], "pframe": [44, 46, 49, 54], "philosophi": [144, 149], "photon": [42, 143, 144], "phrase": 135, "phyic": 1, "physic": [0, 1, 20, 34, 36, 67, 73, 75, 78, 112, 115, 143, 144, 145, 148, 149], "physicist": [0, 1, 144, 145, 148], "physicst": 1, "pick": 143, "pickl": [142, 144, 147, 149], "pid": [4, 59, 121, 130, 143], "pid_kei": 121, "piecewiselinearlr": [119, 120, 144, 149], "pip": [141, 146], "pisa": 26, "place": [81, 97, 135, 141], "plai": 1, "plane": [23, 122], "pleas": [142, 143, 144, 147], "plot": 143, "plug": 1, "pmt": [83, 106, 143, 144], "pmt_area": 4, "pmt_dir_i": 4, "pmt_dir_x": 4, "pmt_dir_z": 4, "pmt_number": 4, "point": [5, 29, 121, 122, 123, 144, 147, 149], "pole": [95, 97], "pone": 88, "pone_triangl": 88, "ponesmal": [64, 65], "ponetriangl": [84, 88], "pool": [7, 79, 80, 91, 93, 95], "pop_default": 126, "popular": 149, "port": 144, "portabl": [0, 144, 145, 148, 149], "portion": 122, "pos_x": 144, "posit": [73, 81, 82, 83, 97, 106, 114, 117, 128, 133, 143, 147], "position_i": 4, "position_x": 4, "position_x_pr": 114, "position_y_pr": 114, "position_z": 4, "position_z_pr": 114, "positionreconstruct": [112, 114], "possibl": [0, 33, 63, 141, 145, 147, 148], "post": [91, 93, 95], "post_processing_layer_s": [91, 93, 95, 144, 149], "pow": [144, 149], "power": [142, 144, 149], "pr": 109, "practic": [0, 141, 145, 148], "pre": [0, 5, 45, 46, 64, 85, 102, 121, 141, 143, 144, 145, 148, 149], "pre_configur": 3, "precis": 122, "precommit": 141, "preconfigur": 46, "pred": [89, 111, 115], "predict": [0, 9, 25, 29, 31, 73, 75, 89, 92, 97, 111, 113, 115, 122, 123, 144, 145, 148, 149], "predict_as_datafram": [89, 144, 149], "prediction_column": [69, 75, 89, 123], "prediction_kei": 122, "prediction_label": [89, 115, 144, 149], "prefer": 101, "prefetch_factor": 8, "prepar": [0, 5, 9, 122, 143, 145, 148], "prepare_data": [5, 9], "preprocess": 144, "present": [11, 13, 20, 35, 118, 126, 136, 137, 143, 149], "previou": [120, 144, 149], "primari": [58, 63, 143, 144], "primary_hadron_1_direction_phi": [4, 143, 144], "primary_hadron_1_direction_theta": [4, 143, 144], "primary_hadron_1_energi": [4, 143, 144], "primary_hadron_1_position_i": [4, 143, 144], "primary_hadron_1_position_x": [4, 143, 144], "primary_hadron_1_position_z": [4, 143, 144], "primary_hadron_1_typ": [4, 143, 144], "primary_key_rescu": 63, "primary_lepton_1_direction_phi": [4, 143, 144], "primary_lepton_1_direction_theta": [4, 143, 144], "primary_lepton_1_energi": [4, 143, 144], "primary_lepton_1_position_i": [4, 143, 144], "primary_lepton_1_position_x": [4, 143, 144], "primary_lepton_1_position_z": [4, 143, 144], "primary_lepton_1_typ": [4, 143, 144], "principl": [1, 144], "print": [5, 107, 120, 138], "prior": 143, "prioriti": 141, "privat": 124, "pro": [144, 149], "probabl": [82, 122, 149], "problem": [0, 100, 141, 143, 144, 145, 148, 149], "procedur": 9, "proceedur": 63, "process": [1, 7, 44, 46, 54, 73, 81, 85, 91, 93, 95, 141, 142, 144, 149], "process_posit": 120, "produc": [5, 48, 81, 111, 121, 124, 143, 144], "product": [8, 82, 123], "programm": [0, 145, 148], "progress": 120, "progressbar": [119, 120, 144, 149], "proj_drop": 82, "project": [0, 52, 82, 141, 144, 145, 148, 149], "prometheu": [4, 16, 52, 65, 84, 143, 144, 149], "prometheus_dataset": 64, "prometheus_extractor": 41, "prometheus_read": 47, "prometheusextractor": [7, 41, 42, 48], "prometheusfeatureextractor": [41, 42], "prometheusread": [47, 52], "prometheustruthextractor": [41, 42], "prompt": 144, "prone": 144, "proof": [144, 149], "properti": [5, 9, 11, 18, 25, 36, 48, 61, 83, 85, 89, 96, 105, 106, 115, 121, 129, 138, 142], "protocol": 142, "prototyp": 87, "proven": [18, 20, 38, 40, 42, 142], "provid": [0, 1, 7, 11, 13, 15, 73, 78, 97, 102, 107, 122, 141, 142, 143, 144, 145, 148, 149], "pth": [144, 149], "public": [65, 85, 124], "publicprometheusdataset": [64, 65], "publish": [122, 144, 149], "puls": [5, 11, 13, 15, 17, 21, 22, 34, 36, 42, 58, 73, 79, 83, 97, 102, 105, 106, 111, 117, 118, 143, 144, 147, 149], "pulse_truth": 5, "pulsemap": [5, 11, 13, 15, 21, 65, 66, 73, 75, 123, 130, 143, 144], "pulsemap_extractor": [73, 75], "pulseseri": 34, "pulsmap": [73, 75], "punch4nfdi": [0, 145, 148], "pure": [7, 18, 19, 22, 36], "purpos": [0, 78, 122, 145, 147, 148], "put": [63, 144, 149], "py": [122, 144], "py3": 146, "pydant": [128, 130, 131, 133], "pydantic_cor": [128, 133], "pydocstyl": 141, "pyg": [143, 144, 149], "pylint": 141, "python": [0, 1, 7, 18, 19, 22, 33, 36, 141, 144, 145, 146, 148, 149], "python3": [86, 87, 88, 126], "pytorch": [15, 120, 144, 146, 149], "pytorch_lightn": [89, 120, 138, 144, 149], "pytorchlightn": 144, "q": 82, "qk_scale": 82, "qkv_bia": 82, "qualiti": [0, 144, 145, 148], "quantiti": [26, 115, 118, 144], "queri": [11, 13, 15, 58, 59, 63, 82, 143, 144], "query_databas": [55, 58], "query_t": [11, 13, 15, 143], "queso": 27, "question": 144, "quick": 144, "r": [83, 100, 142, 144, 146, 147], "radial": 100, "radialedg": [99, 100], "radiat": [105, 106, 144, 149], "radiu": [100, 144], "rais": [11, 13, 20, 22, 107, 128, 133, 142], "random": [11, 13, 15, 55, 59, 62, 105, 130, 143, 144], "randomli": [59, 102, 103, 131, 144, 149], "rang": [115, 145, 147, 148, 149], "rare": 142, "rasmu": [0, 94, 145, 148], "rate": 120, "rather": [115, 138, 144, 149], "ratio": [9, 82, 97], "raw": [0, 105, 106, 143, 144, 145, 147, 148, 149], "rde": 4, "re": [129, 143, 144, 147, 149], "reach": [143, 147], "read": [0, 3, 7, 11, 13, 15, 33, 47, 49, 50, 51, 52, 85, 93, 112, 142, 143, 144, 145, 147, 148], "read_csv": 147, "read_sql": 144, "readabl": 144, "reader": [3, 46, 147], "readi": [64, 147, 149], "readm": 144, "readout": [91, 93, 95], "readout_layer_s": [91, 93, 95, 144, 149], "readthedoc": 144, "receiv": [0, 145, 148, 149], "reciev": [61, 142, 147, 149], "recommend": [144, 146, 147, 149], "reconstruct": [0, 1, 21, 23, 24, 28, 29, 31, 67, 95, 97, 109, 112, 115, 143, 144, 145, 148], "record": 138, "recov": 115, "recreat": [143, 144, 149], "recurr": 108, "recurs": [22, 36, 44, 46, 48, 49, 54, 107, 132, 136], "reduc": [144, 149], "reduce_opt": 79, "refer": [9, 88, 130, 143, 144, 147, 149], "refresh_r": 120, "regardless": [143, 144, 149], "regist": 117, "regress": 111, "regular": [36, 82, 144, 149], "rel": [82, 97, 117], "rel_pos_bia": 82, "rel_pos_bucket": 117, "relat": [57, 136, 147], "relev": [1, 36, 57, 136, 141], "reli": 49, "reload": 149, "remain": 143, "remov": [8, 44, 54, 102, 123, 126, 147], "renam": 135, "rename_state_dict_entri": [125, 135], "repeat": 138, "repeatfilt": [125, 138], "replac": [128, 130, 131, 133, 135], "repo": 141, "repositori": 141, "repres": [83, 91, 102, 103, 105, 106, 118, 128, 130, 131, 142, 143, 144, 147, 149], "represent": [5, 11, 13, 15, 36, 65, 66, 81, 82, 83, 103, 107, 109, 143, 144, 147, 149], "reproduc": [130, 131, 149], "repurpos": 149, "requir": [0, 20, 26, 38, 42, 58, 105, 113, 122, 130, 131, 133, 141, 142, 143, 144, 145, 146, 147, 148, 149], "requires_icecub": [125, 137], "research": [0, 144, 145, 148], "reset": 82, "reset_paramet": 82, "resolv": [11, 13, 15, 59], "respect": [123, 144, 147], "respons": [143, 144], "restrict": [115, 122, 149], "result": [58, 62, 83, 103, 106, 120, 122, 123, 132, 144, 147, 149], "retriev": [85, 142, 143], "retro": 28, "return": [5, 7, 8, 9, 11, 13, 15, 17, 18, 20, 33, 34, 36, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 63, 68, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 122, 123, 124, 126, 128, 129, 130, 131, 132, 135, 136, 137, 138, 139, 142, 143, 144, 147, 149], "return_discard": 36, "return_el": 122, "reusabl": [0, 145, 148], "reuseabl": [144, 149], "review": 141, "rhel_7_x86_64": 146, "right": [122, 144], "rmse": 122, "rmseloss": [119, 122], "rmsevonmisesfisher3dloss": [119, 122], "rng": 57, "rnn": [78, 91], "rnn_dropout": 91, "rnn_dynedg": 91, "rnn_hidden_s": 91, "rnn_layer": 91, "rnn_tito": 90, "role": 149, "root": 122, "roughli": 143, "row": [58, 63, 106, 118, 143, 144, 147, 149], "run": [1, 49, 68, 142, 144, 146, 147, 149], "run_sql_cod": [55, 58], "runner": [86, 87, 88, 126], "runtim": [121, 146], "runtimeerror": 20, "ryabinin": 122, "sai": [144, 149], "same": [17, 36, 58, 79, 83, 106, 113, 118, 120, 132, 138, 143, 144, 149], "sampl": [59, 82, 102, 103, 105, 115, 144, 149], "satisfi": [0, 142, 145, 148], "save": [7, 18, 20, 33, 38, 40, 42, 44, 46, 54, 58, 60, 61, 63, 107, 120, 122, 123, 124, 128, 129, 130, 131, 142, 144, 147], "save_config": [129, 144, 149], "save_dataset_config": [127, 130], "save_dir": [120, 144, 149], "save_fil": [61, 142], "save_method": [7, 142, 147], "save_model_config": [127, 131], "save_result": [119, 123], "save_select": [119, 123], "save_state_dict": [107, 144, 149], "save_to_sql": [55, 58], "scalabl": 143, "scalar": [11, 13, 18, 118, 122], "scale": [81, 82, 94, 97, 101, 102, 105, 106, 115, 117, 122, 143, 149], "scaled_emb": [97, 117], "scatter": [105, 106], "scheduler_class": [144, 149], "scheduler_config": [144, 149], "scheduler_kwarg": [144, 149], "schema": 144, "scheme": [91, 93, 95, 142], "scientif": [0, 1, 145, 148], "scope": 141, "script": [144, 149], "search": [44, 46, 48, 49, 50, 51, 52, 54, 136, 142], "sec": 122, "second": 101, "section": 144, "see": [81, 91, 100, 102, 120, 141, 143, 144, 146], "seed": [9, 11, 13, 15, 59, 102, 103, 123, 130, 143, 144], "seen": 81, "select": [5, 8, 9, 11, 13, 15, 27, 59, 123, 124, 130, 141, 144, 147], "selection_nam": 8, "self": [11, 13, 89, 102, 111, 128, 133, 142, 143, 144, 147, 149], "sell": 122, "send": 115, "sensor": [85, 102, 143, 144, 147, 149], "sensor_i": 147, "sensor_id": [86, 88, 147], "sensor_id_column": [86, 87, 88, 147], "sensor_index_nam": 85, "sensor_mask": 102, "sensor_pos_i": [4, 88, 143, 144, 149], "sensor_pos_x": [4, 88, 143, 144, 149], "sensor_pos_z": [4, 88, 143, 144, 149], "sensor_position_nam": 85, "sensor_string_id": 88, "sensor_tim": 147, "sensor_x": [143, 147], "sensor_z": 147, "separ": [33, 101, 120, 144, 146], "seper": [109, 143], "seq_length": [81, 97, 117, 118], "sequenc": [68, 81, 82, 106, 118, 123, 144, 149], "sequenti": [11, 13], "sequential_index": [11, 13, 15], "seri": [11, 13, 15, 21, 22, 34, 36, 58, 73, 91, 105, 109, 143, 144, 149], "serial": [142, 143], "serialis": [32, 33, 144, 149], "serv": 143, "session": [130, 131, 143, 144, 149], "set": [3, 6, 9, 13, 20, 22, 44, 46, 48, 49, 54, 61, 81, 82, 97, 105, 106, 107, 115, 121, 123, 141, 142, 144, 147, 149], "set_extractor": 48, "set_gcd": 20, "set_index": 147, "set_number_of_input": 105, "set_output_feature_nam": 105, "set_verbose_print_recurs": 107, "setlevel": 138, "setup": [9, 120, 146], "setuptool": 146, "sever": [144, 149], "sh": 146, "shall": 122, "shape": [18, 101, 102, 105, 118, 122, 142, 143], "share": [89, 111, 144, 149], "share_redirect": 5, "shared_step": [89, 111], "sharelink": 5, "shell": 146, "should": [8, 11, 13, 15, 18, 20, 33, 59, 66, 69, 82, 83, 91, 97, 102, 103, 109, 118, 122, 123, 128, 130, 131, 133, 141, 142, 143, 144, 146, 147, 149], "show": [59, 120, 144], "shown": 144, "shuffl": [8, 9, 57, 62, 123, 143], "shutdown": 9, "sid": 5, "sigmoid": 149, "sign": 122, "signal": [73, 149], "signatur": [22, 36], "signific": 143, "significantli": 143, "signup": 144, "similar": [22, 36, 105, 144, 149], "similarli": [36, 142, 143, 144, 149], "simpl": [0, 78, 89, 144, 145, 148, 149], "simplecoarsen": 79, "simplest": [144, 149], "simpli": [144, 149], "simul": [34, 42, 52, 65, 73, 144, 147], "sinc": [73, 122, 144], "singl": [5, 11, 17, 61, 63, 83, 93, 106, 121, 124, 130, 131, 142, 143, 144, 147, 149], "sinusoid": [81, 97, 117], "sinusoidalposemb": [80, 81], "sipm_i": [4, 87], "sipm_id": 87, "sipm_x": [4, 87], "sipm_z": [4, 87], "situat": 141, "size": [63, 81, 82, 83, 91, 93, 94, 95, 97, 118, 126, 143], "skip": [35, 93, 144], "skip_readout": 93, "sklearn": [144, 149], "sk\u0142odowska": [0, 145, 148], "slack": 144, "slice": [82, 93], "slower": 63, "small": [122, 143, 144, 149], "smaller": [61, 142], "smooth": 141, "snippet": [144, 149], "so": [122, 143, 144, 146, 147, 149], "soft": 81, "softmax": 122, "softwar": [0, 49, 122, 145, 148], "solut": [81, 82, 95, 97, 141], "solv": [1, 141, 149], "some": [11, 13, 15, 44, 46, 49, 54, 102, 106, 143, 144], "someth": [144, 149], "somewhat": 144, "sort": [102, 106], "sort_bi": 102, "sota": 5, "sourc": [0, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 73, 75, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 122, 123, 124, 126, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 143, 144, 145, 148], "south": [95, 97], "space": [81, 100, 101, 115, 124], "space_coord": 101, "spacetim": 81, "spacetimeencod": [80, 81], "sparsetensor": 82, "spatial": 106, "spawn": 13, "special": [22, 73, 109, 118], "specialis": [144, 149], "specif": [0, 1, 3, 5, 6, 7, 11, 13, 15, 16, 18, 21, 36, 47, 48, 49, 58, 63, 67, 69, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 96, 100, 102, 105, 108, 112, 113, 114, 115, 116, 122, 141, 142, 143, 144, 145, 147, 148, 149], "specifi": [11, 13, 15, 59, 79, 106, 115, 120, 143, 144, 147, 149], "speed": [73, 101, 143], "sphere": 100, "spite": 122, "splinemp": 29, "split": [0, 9, 35, 63, 79, 145, 148], "split_se": 9, "splitinicepuls": 58, "sql": 124, "sqlite": [1, 3, 5, 9, 10, 46, 56, 58, 63, 65, 66, 143, 144], "sqlite3": 144, "sqlite_dataset": 14, "sqlite_util": 55, "sqlite_writ": 60, "sqlitedataconvert": [53, 54], "sqlitedatas": 143, "sqlitedataset": [9, 14, 15, 142], "sqlitewrit": [60, 63, 142, 143], "squar": 122, "src": 144, "stabl": [114, 115], "stage": [9, 120], "standalon": 109, "standard": [0, 3, 4, 35, 59, 69, 86, 87, 88, 91, 102, 103, 105, 110, 111, 115, 126, 141, 144, 145, 147, 148, 149], "standard_argu": 126, "standard_averaged_model": 78, "standard_model": [78, 144], "standardaveragedmodel": [78, 110], "standardaveragemodel": 110, "standardflowtask": [112, 115], "standardis": 84, "standardlearnedtask": [112, 113, 114, 115, 149], "standardmodel": [78, 89, 110, 111], "start": [30, 141, 144, 147, 149], "state": [0, 69, 91, 109, 135, 145, 148], "state_dict": [69, 73, 75, 107, 110, 135, 144], "static": [122, 141], "std": 83, "std_pool": [80, 83], "std_pool_x": [80, 83], "stdout": 120, "step": [89, 110, 111, 118, 120, 144, 147, 149], "still": 130, "stochast": 82, "stop": [30, 120, 126], "stopped_muon": 4, "store": [11, 13, 15, 58, 61, 62, 63, 121, 142, 143, 144, 147, 149], "str": [5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 73, 75, 82, 83, 85, 86, 87, 88, 89, 91, 93, 95, 97, 102, 103, 105, 106, 107, 110, 115, 120, 121, 123, 124, 126, 128, 129, 130, 131, 132, 133, 135, 136, 138, 142, 147], "straightforward": 143, "strategi": [144, 149], "stream_handl": 138, "streamhandl": 138, "streamlin": 1, "string": [4, 5, 11, 13, 15, 33, 59, 83, 85, 86, 102, 107, 128, 144, 147, 149], "string_id": 147, "string_id_column": [86, 87, 88, 147], "string_index_nam": 85, "string_mask": 102, "string_select": [11, 13, 15, 123, 130], "string_selection_resolv": 55, "stringselectionresolv": [55, 59], "strongli": [144, 149], "structur": [89, 132, 142, 143, 144, 149], "style": 141, "sub": 144, "subclass": [0, 5, 78, 89, 142, 143, 144, 145, 148, 149], "subfold": [44, 46, 49, 54], "subject": [97, 122], "sublicens": 122, "submodul": [132, 140], "subpackag": 140, "subsampl": [62, 143], "subsequ": 144, "subset": [11, 13, 15, 82, 91, 93, 95, 109, 144], "substanti": 122, "suggest": [89, 122, 144], "suit": [0, 115, 144, 145, 148], "suitabl": [1, 147], "sum": [79, 83, 89, 93, 95, 111, 124, 144, 149], "sum_pool": [79, 80, 83], "sum_pool_and_distribut": [80, 83], "sum_pool_x": [79, 80, 83], "summar": [73, 75, 105, 106], "summari": [105, 106], "summaris": [144, 149], "summariz": 149, "summarization_indic": 106, "super": [142, 143, 144, 149], "supervis": [111, 115, 149], "support": [0, 7, 36, 141, 142, 143, 144, 145, 148], "suppos": [5, 106, 143, 147], "sure": [141, 142], "swa": 110, "swapabl": 144, "switch": [122, 144, 149], "synchron": 7, "syntax": [59, 89, 122, 143, 144], "system": [136, 144, 149], "t": [4, 36, 58, 120, 122, 142, 143, 144, 147, 149], "t_co": 8, "tabl": [5, 11, 13, 15, 17, 18, 20, 38, 40, 42, 48, 58, 62, 63, 85, 102, 124, 142, 143, 144], "table_nam": [42, 58], "table_without_index": 147, "tackl": 149, "tag": [123, 141], "take": [36, 83, 106, 109, 141, 143], "talk": 144, "tar": 5, "target": [89, 113, 115, 122, 133, 144, 149], "target_label": [89, 115, 144, 149], "target_pr": [113, 149], "task": [0, 1, 9, 78, 89, 111, 122, 141, 144, 145, 148], "team": [102, 141, 143, 144, 146, 147, 149], "teardown": 9, "technic": [0, 145, 147, 148], "techniqu": [0, 145, 148, 149], "telescop": [0, 1, 144, 145, 147, 148, 149], "tend": 63, "tensor": [11, 13, 15, 69, 79, 81, 82, 83, 85, 89, 91, 92, 93, 94, 95, 96, 97, 101, 105, 109, 110, 111, 115, 117, 118, 122, 135, 139, 143, 144, 147, 149], "term": [82, 122, 149], "termin": 144, "test": [5, 9, 59, 65, 66, 115, 123, 130, 137, 141, 143, 144, 149], "test_dataload": 9, "test_dataloader_kwarg": [5, 9, 65, 66], "test_dataset": 64, "test_funct": 137, "test_select": [9, 130, 143, 144], "test_siz": 123, "testdataset": [64, 66], "tev": 65, "than": [0, 8, 115, 123, 138, 143, 144, 145, 148, 149], "thei": [68, 142, 143, 144, 149], "them": [0, 1, 33, 69, 78, 93, 115, 143, 144, 145, 147, 148, 149], "themselv": [1, 130, 131, 144, 149], "therebi": [1, 130, 131, 144, 149], "therefor": [33, 49, 142, 143, 144, 147, 149], "thi": [0, 3, 5, 7, 9, 11, 13, 15, 17, 18, 20, 22, 36, 38, 40, 42, 44, 46, 48, 49, 54, 57, 58, 62, 63, 66, 73, 78, 81, 83, 89, 91, 93, 97, 101, 102, 103, 105, 106, 109, 111, 113, 114, 115, 118, 120, 122, 123, 124, 128, 130, 131, 133, 138, 141, 142, 143, 144, 145, 146, 147, 148, 149], "thing": 144, "those": [20, 143, 144], "thread": 13, "three": [106, 122, 149], "threshold": [0, 73, 145, 148], "through": [0, 113, 114, 115, 122, 142, 144, 145, 148, 149], "throw": 142, "thu": [131, 149], "ti": 143, "time": [0, 4, 58, 79, 81, 83, 91, 101, 105, 106, 109, 114, 118, 124, 138, 143, 144, 145, 147, 148], "time_column": 105, "time_coord": 101, "time_lik": 101, "time_like_weight": 101, "time_series_column": [91, 109], "time_window": 79, "timereconstruct": [112, 114], "tini": 144, "tito": [82, 91, 95], "to_config": 149, "to_csv": [144, 149], "to_parquet": 147, "todo": 144, "togeth": [0, 78, 100, 122, 145, 148], "token": 117, "too": [144, 149], "tool": [0, 1, 145, 148], "top": 149, "torch": [0, 11, 13, 15, 78, 82, 102, 103, 107, 137, 143, 144, 145, 146, 147, 148, 149], "torch_cpu": 146, "torch_geometr": [83, 118, 143, 144, 149], "torch_lightn": 149, "tort": 122, "total": [118, 123, 124, 143, 144, 147], "total_energi": [4, 143, 144, 149], "tqdmprogressbar": 120, "track": [0, 18, 20, 24, 38, 40, 42, 65, 114, 119, 121, 141, 142, 144, 145, 148], "tradit": [0, 145, 148], "train": [0, 1, 5, 7, 9, 10, 59, 64, 65, 66, 67, 73, 82, 89, 97, 102, 110, 111, 118, 126, 130, 131, 133, 140, 142, 143, 144, 145, 147, 148], "train_batch": [89, 110], "train_dataload": [9, 89, 144, 149], "train_dataloader_kwarg": [5, 9, 65, 66], "train_ev": 115, "train_select": [130, 143, 144], "train_val_split": 9, "trainabl": 131, "trainer": [89, 120, 123, 144, 149], "trainer_kwarg": 89, "training_config": [127, 144, 149], "training_example_data_sqlit": [126, 143, 144, 149], "training_step": [89, 110], "trainingconfig": [127, 133, 144, 149], "transform": [1, 78, 82, 83, 95, 97, 109, 115, 124, 144, 149], "transform_infer": [115, 144, 149], "transform_prediction_and_target": [115, 144, 149], "transform_support": [115, 144, 149], "transform_target": [115, 144, 149], "transit": 135, "transpar": [130, 131, 141, 144, 149], "transpos": 33, "transpose_list_of_dict": [32, 33], "traverse_and_appli": [127, 132], "treat": [91, 109], "tree": [22, 144], "tri": [22, 36], "triangl": 88, "trident": [65, 88], "trident1211": [84, 88], "tridentsmal": [64, 65], "trigger": [22, 143, 144, 149], "trivial": [36, 115], "true": [35, 58, 73, 91, 93, 95, 97, 102, 105, 107, 120, 122, 124, 130, 131, 133, 136, 142, 143, 144, 149], "trust": [107, 144, 149], "truth": [3, 4, 5, 11, 13, 15, 21, 30, 42, 58, 62, 65, 66, 102, 115, 123, 124, 130, 143, 147, 149], "truth_dict": 102, "truth_label": 143, "truth_tabl": [5, 11, 13, 15, 62, 123, 124, 130, 143, 144], "truthdata": 40, "try": [36, 142], "tum": [24, 31], "tupl": [7, 11, 13, 15, 34, 36, 58, 82, 91, 93, 95, 106, 115, 118, 123, 126, 135], "turn": [106, 141], "tutorial_output": [144, 149], "two": [8, 93, 120, 122, 123, 142, 143, 144, 147], "txt": 146, "type": [0, 5, 7, 8, 9, 11, 13, 15, 20, 32, 33, 34, 40, 42, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 63, 68, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 122, 123, 124, 126, 128, 129, 130, 131, 132, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 147, 148], "typic": [0, 33, 109, 143, 145, 147, 148], "u": [143, 147], "ultra": 143, "unaccur": 122, "unambigu": [130, 131], "unbatch_edge_index": [78, 79], "uncertainti": [114, 144, 149], "uncompress": 143, "under": [0, 144, 145, 147, 148, 149], "unfamiliar": 149, "uniform": [119, 124], "uniformweightfitt": 124, "union": [0, 7, 8, 9, 11, 13, 15, 22, 33, 36, 44, 46, 48, 49, 50, 51, 52, 54, 68, 69, 73, 75, 79, 82, 83, 89, 91, 93, 102, 103, 111, 115, 130, 133, 136, 142, 145, 147, 148], "uniqu": [11, 13, 15, 58, 105, 118, 130, 144, 147, 149], "unit": [0, 7, 66, 101, 137, 141, 145, 148], "univers": [95, 97], "unlik": 143, "unscal": 149, "untransform": 113, "up": [0, 73, 141, 145, 148], "updat": [109, 110, 118, 120, 144, 146, 149], "upgrad": [4, 21, 86, 144, 146], "upon": 149, "us": [0, 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 20, 25, 30, 32, 33, 38, 40, 42, 44, 46, 48, 49, 53, 54, 55, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 75, 78, 81, 82, 83, 85, 89, 91, 93, 94, 95, 97, 100, 102, 103, 105, 106, 107, 109, 112, 113, 114, 115, 117, 118, 120, 121, 122, 124, 125, 126, 127, 130, 131, 132, 137, 138, 141, 142, 145, 146, 147, 148], "usabl": [0, 145, 148], "usag": 126, "use_cach": 59, "use_global_featur": [91, 95], "use_post_processing_lay": [91, 95], "user": [0, 5, 78, 89, 120, 143, 144, 145, 146, 148, 149], "usual": 143, "util": [1, 3, 19, 78, 98, 119, 140, 143, 144, 146, 149], "v": 82, "v1": [128, 130, 131, 133, 146], "v4": 146, "val_batch": [89, 110], "val_dataload": [9, 89], "valid": [5, 9, 36, 59, 65, 66, 89, 110, 111, 115, 120, 122, 126, 128, 133, 143, 144, 149], "validate_fil": 48, "validate_task": [89, 111], "validation_dataloader_kwarg": [5, 9, 65, 66], "validation_step": [89, 110], "validationerror": [128, 133], "valu": [11, 13, 15, 30, 33, 58, 82, 83, 101, 102, 103, 118, 121, 122, 126, 128, 149], "valueerror": [22, 107], "var": 114, "var1": 18, "var_n": 18, "variabl": [18, 20, 22, 36, 48, 93, 105, 106, 118, 124, 138, 142, 147, 149], "varieti": 144, "variou": [1, 60, 144], "vast": [111, 115], "vector": [79, 82, 83, 122, 142, 149], "verbos": [44, 46, 49, 54, 89, 111, 120], "verbose_print": 107, "veri": [59, 143, 144, 149], "verifi": [89, 111], "versa": 120, "version": [83, 106, 115, 120, 141, 144, 149], "vertex": [114, 144], "vertex_i": 4, "vertex_x": 4, "vertex_z": 4, "vertexreconstruct": [112, 114], "viabl": 147, "vice": 120, "virtual": 146, "visit": 147, "vmf": 114, "vmf_loss": 122, "vmfs_factor": 122, "volum": 30, "von": 122, "vonmisesfisher2dloss": [119, 122, 144, 149], "vonmisesfisher3dloss": [119, 122], "vonmisesfisherloss": [119, 122], "w": [144, 149], "wa": [0, 7, 143, 144, 145, 147, 148, 149], "wai": [36, 59, 111, 141, 144, 147, 149], "wandb": [144, 149], "wandb_dir": [144, 149], "wandb_logg": [144, 149], "wandblogg": [144, 149], "want": [143, 144, 146, 147, 149], "warn": [138, 144], "warning_onc": [138, 144], "warranti": 122, "waterdemo81": [84, 88], "wb": 142, "we": [33, 36, 59, 106, 141, 144, 146, 147, 149], "weight": [11, 13, 15, 73, 75, 82, 97, 102, 115, 122, 124, 131, 144, 149], "weight_fit": 119, "weight_nam": 124, "weightfitt": [119, 124], "well": [141, 144, 149], "what": [1, 81, 102, 141, 144, 149], "whatev": 144, "wheel": 146, "when": [0, 11, 13, 15, 33, 35, 58, 73, 82, 91, 93, 95, 109, 121, 138, 141, 142, 143, 144, 145, 146, 147, 148, 149], "whenev": 146, "where": [18, 44, 46, 49, 54, 102, 103, 105, 106, 109, 118, 121, 142, 143, 144, 147, 149], "wherea": [124, 143], "whether": [8, 34, 36, 58, 81, 82, 91, 93, 95, 97, 107, 117, 122, 132, 136, 137, 144], "which": [0, 5, 11, 13, 15, 18, 20, 21, 30, 34, 38, 40, 42, 59, 61, 63, 68, 79, 83, 93, 102, 103, 106, 107, 113, 118, 122, 123, 126, 142, 143, 144, 145, 148, 149], "while": [0, 22, 89, 120, 141, 143, 145, 148], "who": [5, 135, 144, 149], "whom": 122, "whose": 73, "wide": 149, "willing": [143, 147], "window": [79, 143, 144], "wise": 83, "wish": [0, 68, 141, 145, 148], "with_standard_argu": 126, "within": [30, 79, 82, 83, 93, 100, 144, 149], "without": [1, 100, 103, 105, 122, 143, 146], "work": [0, 4, 34, 91, 141, 142, 143, 144, 145, 148, 149], "worker": [6, 7, 44, 54, 57, 62, 68, 126, 138], "workflow": [0, 145, 148], "would": [141, 143, 144, 147, 149], "wrap": [120, 130, 131], "write": [62, 73, 75, 142, 144, 149], "writer": [3, 46, 147], "written": [46, 68, 142], "wrt": 115, "www": 144, "x": [4, 30, 81, 82, 83, 86, 101, 105, 106, 109, 115, 118, 122, 124, 143, 144, 147, 149], "x8": 143, "x_i": 82, "x_j": 82, "x_low": 124, "xyz": [85, 86, 87, 88, 105, 106, 143, 147], "xyz_coord": 118, "xyzt": 118, "y": [4, 30, 81, 86, 101, 118], "yaml": [128, 129, 144], "yield": [0, 93, 122, 145, 148], "yml": [59, 126, 130, 131, 143, 144, 149], "you": [63, 68, 81, 130, 131, 141, 143, 144, 146, 147, 149], "your": [103, 141, 142, 143, 144, 146], "yourself": 141, "z": [4, 30, 81, 86, 101, 105, 106, 118], "z_name": 105, "z_offset": [105, 106], "z_scale": [105, 106], "zenith": [4, 114, 121, 144, 149], "zenith_kappa": 114, "zenith_kei": 121, "zenith_pr": 114, "zenithreconstruct": [112, 114], "zenithreconstructionwithkappa": [112, 114, 144, 149], "\u00f8rs\u00f8e": [0, 145, 148]}, "titles": ["Usage", "Subpackages", "graphnet.constants module", "graphnet.data package", "graphnet.data.constants module", "graphnet.data.curated_datamodule module", "graphnet.data.dataclasses module", "graphnet.data.dataconverter module", "graphnet.data.dataloader module", "graphnet.data.datamodule module", "graphnet.data.dataset package", "graphnet.data.dataset.dataset module", "graphnet.data.dataset.parquet package", "graphnet.data.dataset.parquet.parquet_dataset module", "graphnet.data.dataset.sqlite package", "graphnet.data.dataset.sqlite.sqlite_dataset module", "graphnet.data.extractors package", "graphnet.data.extractors.combine_extractors module", "graphnet.data.extractors.extractor module", "graphnet.data.extractors.icecube package", "graphnet.data.extractors.icecube.i3extractor module", "graphnet.data.extractors.icecube.i3featureextractor module", "graphnet.data.extractors.icecube.i3genericextractor module", "graphnet.data.extractors.icecube.i3hybridrecoextractor module", "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor module", "graphnet.data.extractors.icecube.i3particleextractor module", "graphnet.data.extractors.icecube.i3pisaextractor module", "graphnet.data.extractors.icecube.i3quesoextractor module", "graphnet.data.extractors.icecube.i3retroextractor module", "graphnet.data.extractors.icecube.i3splinempeextractor module", "graphnet.data.extractors.icecube.i3truthextractor module", "graphnet.data.extractors.icecube.i3tumextractor module", "graphnet.data.extractors.icecube.utilities package", "graphnet.data.extractors.icecube.utilities.collections module", "graphnet.data.extractors.icecube.utilities.frames module", "graphnet.data.extractors.icecube.utilities.i3_filters module", "graphnet.data.extractors.icecube.utilities.types module", "graphnet.data.extractors.internal package", "graphnet.data.extractors.internal.parquet_extractor module", "graphnet.data.extractors.liquido package", "graphnet.data.extractors.liquido.h5_extractor module", "graphnet.data.extractors.prometheus package", "graphnet.data.extractors.prometheus.prometheus_extractor module", "graphnet.data.parquet package", "graphnet.data.parquet.deprecated_methods module", "graphnet.data.pre_configured package", "graphnet.data.pre_configured.dataconverters module", "graphnet.data.readers package", "graphnet.data.readers.graphnet_file_reader module", "graphnet.data.readers.i3reader module", "graphnet.data.readers.internal_parquet_reader module", "graphnet.data.readers.liquido_reader module", "graphnet.data.readers.prometheus_reader module", "graphnet.data.sqlite package", "graphnet.data.sqlite.deprecated_methods module", "graphnet.data.utilities package", "graphnet.data.utilities.parquet_to_sqlite module", "graphnet.data.utilities.random module", "graphnet.data.utilities.sqlite_utilities module", "graphnet.data.utilities.string_selection_resolver module", "graphnet.data.writers package", "graphnet.data.writers.graphnet_writer module", "graphnet.data.writers.parquet_writer module", "graphnet.data.writers.sqlite_writer module", "graphnet.datasets package", "graphnet.datasets.prometheus_datasets module", "graphnet.datasets.test_dataset module", "graphnet.deployment package", "graphnet.deployment.deployer module", "graphnet.deployment.deployment_module module", "graphnet.deployment.i3modules package", "graphnet.deployment.i3modules.deprecated_methods module", "graphnet.deployment.icecube package", "graphnet.deployment.icecube.cleaning_module module", "graphnet.deployment.icecube.i3deployer module", "graphnet.deployment.icecube.inference_module module", "graphnet.exceptions package", "graphnet.exceptions.exceptions module", "graphnet.models package", "graphnet.models.coarsening module", "graphnet.models.components package", "graphnet.models.components.embedding module", "graphnet.models.components.layers module", "graphnet.models.components.pool module", "graphnet.models.detector package", "graphnet.models.detector.detector module", "graphnet.models.detector.icecube module", "graphnet.models.detector.liquido module", "graphnet.models.detector.prometheus module", "graphnet.models.easy_model module", "graphnet.models.gnn package", "graphnet.models.gnn.RNN_tito module", "graphnet.models.gnn.convnet module", "graphnet.models.gnn.dynedge module", "graphnet.models.gnn.dynedge_jinst module", "graphnet.models.gnn.dynedge_kaggle_tito module", "graphnet.models.gnn.gnn module", "graphnet.models.gnn.icemix module", "graphnet.models.graphs package", "graphnet.models.graphs.edges package", "graphnet.models.graphs.edges.edges module", "graphnet.models.graphs.edges.minkowski module", "graphnet.models.graphs.graph_definition module", "graphnet.models.graphs.graphs module", "graphnet.models.graphs.nodes package", "graphnet.models.graphs.nodes.nodes module", "graphnet.models.graphs.utils module", "graphnet.models.model module", "graphnet.models.rnn package", "graphnet.models.rnn.node_rnn module", "graphnet.models.standard_averaged_model module", "graphnet.models.standard_model module", "graphnet.models.task package", "graphnet.models.task.classification module", "graphnet.models.task.reconstruction module", "graphnet.models.task.task module", "graphnet.models.transformer package", "graphnet.models.transformer.iseecube module", "graphnet.models.utils module", "graphnet.training package", "graphnet.training.callbacks module", "graphnet.training.labels module", "graphnet.training.loss_functions module", "graphnet.training.utils module", "graphnet.training.weight_fitting module", "graphnet.utilities package", "graphnet.utilities.argparse module", "graphnet.utilities.config package", "graphnet.utilities.config.base_config module", "graphnet.utilities.config.configurable module", "graphnet.utilities.config.dataset_config module", "graphnet.utilities.config.model_config module", "graphnet.utilities.config.parsing module", "graphnet.utilities.config.training_config module", "graphnet.utilities.decorators module", "graphnet.utilities.deprecation_tools module", "graphnet.utilities.filesys module", "graphnet.utilities.imports module", "graphnet.utilities.logging module", "graphnet.utilities.maths module", "src", "Contributing To GraphNeT", "Data Conversion in GraphNeT", "Datasets In GraphNeT", "GraphNeT tutorial", "GraphNeT", "Installation", "Integrating New Experiments into GraphNeT", "GraphNeT", "Models In GraphNeT", "<no title>"], "titleterms": {"1": 147, "2": 147, "In": [143, 149], "The": [144, 149], "To": 141, "acknowledg": 0, "ad": [143, 144, 147, 149], "advanc": 144, "appendix": 144, "appli": 147, "argpars": 126, "backbon": 149, "base_config": 128, "befor": 147, "callback": 120, "checkpoint": 149, "choos": 143, "class": [144, 147, 149], "classif": 113, "cleaning_modul": 73, "coarsen": 79, "code": 141, "collect": 33, "combin": [143, 144], "combine_extractor": 17, "compon": [80, 81, 82, 83], "config": [127, 128, 129, 130, 131, 132, 133], "configur": 129, "constant": [2, 4], "content": 144, "contribut": 141, "convent": 141, "convers": 142, "convnet": 92, "creat": 144, "curated_datamodul": 5, "custom": [143, 144], "cvmf": 146, "data": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 142, 147], "dataclass": 6, "dataconfig": 144, "dataconvert": [7, 46, 142], "dataload": 8, "datamodul": 9, "dataset": [10, 11, 12, 13, 14, 15, 64, 65, 66, 143, 144], "dataset_config": 130, "datasetconfig": 144, "decor": 134, "deploy": [67, 68, 69, 70, 71, 72, 73, 74, 75], "deployment_modul": 69, "deprecated_method": [44, 54, 71], "deprecation_tool": 135, "detector": [84, 85, 86, 87, 88, 147], "dynedg": 93, "dynedge_jinst": 94, "dynedge_kaggle_tito": 95, "easy_model": 89, "edg": [99, 100, 101], "embed": 81, "energi": 149, "event": 143, "exampl": [144, 147, 149], "except": [76, 77], "experi": [147, 149], "extractor": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 142, 147], "filesi": 136, "frame": 34, "function": 144, "geometri": 147, "github": 141, "gnn": [90, 91, 92, 93, 94, 95, 96, 97], "graph": [98, 99, 100, 101, 102, 103, 104, 105, 106], "graph_definit": 102, "graphdefinit": 149, "graphnet": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 144], "graphnet_file_read": 48, "graphnet_writ": 61, "graphnetfileread": 147, "graphnetgraphnet": [141, 142, 143, 145, 147, 148, 149], "h5_extractor": 40, "i3_filt": 35, "i3deploy": 74, "i3extractor": 20, "i3featureextractor": 21, "i3genericextractor": 22, "i3hybridrecoextractor": 23, "i3modul": [70, 71], "i3ntmuonlabelsextractor": 24, "i3particleextractor": 25, "i3pisaextractor": 26, "i3quesoextractor": 27, "i3read": 49, "i3retroextractor": 28, "i3splinempeextractor": 29, "i3truthextractor": 30, "i3tumextractor": 31, "icecub": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 72, 73, 74, 75, 86, 146], "icemix": 97, "implement": [143, 147], "import": 137, "index": 147, "inference_modul": 75, "instal": 146, "instanti": 149, "integr": 147, "intern": [37, 38], "internal_parquet_read": 50, "introduct": 144, "iseecub": 117, "issu": 141, "label": [121, 143, 144], "layer": 82, "liquido": [39, 40, 87], "liquido_read": 51, "load": 149, "log": 138, "loss_funct": 122, "math": 139, "minkowski": 101, "model": [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 144, 149], "model_config": 131, "modelconfig": [144, 149], "modul": [2, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 122, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], "multi": 147, "multipl": [143, 144], "new": [143, 147], "node": [104, 105], "node_rnn": 109, "overview": 144, "own": [147, 149], "packag": [3, 10, 12, 14, 16, 19, 32, 37, 39, 41, 43, 45, 47, 53, 55, 60, 64, 67, 70, 72, 76, 78, 80, 84, 90, 98, 99, 104, 108, 112, 116, 119, 125, 127], "parquet": [12, 13, 43, 44], "parquet_dataset": 13, "parquet_extractor": 38, "parquet_to_sqlit": 56, "parquet_writ": 62, "parquetdataset": 143, "pars": 132, "pool": 83, "pre_configur": [45, 46], "prometheu": [41, 42, 88], "prometheus_dataset": 65, "prometheus_extractor": 42, "prometheus_read": 52, "pull": 141, "qualiti": 141, "quick": 146, "random": 57, "reader": [47, 48, 49, 50, 51, 52, 142], "reconstruct": [114, 149], "reproduc": 144, "request": 141, "rnn": [108, 109], "rnn_tito": 91, "save": 149, "select": 143, "sqlite": [14, 15, 53, 54], "sqlite_dataset": 15, "sqlite_util": 58, "sqlite_writ": 63, "sqlitedataset": [143, 144], "src": 140, "standard_averaged_model": 110, "standard_model": 111, "standardmodel": [144, 149], "start": 146, "state_dict": 149, "string_selection_resolv": 59, "submodul": [1, 3, 10, 12, 14, 16, 19, 32, 37, 39, 41, 43, 45, 47, 53, 55, 60, 64, 67, 70, 72, 76, 78, 80, 84, 90, 98, 99, 104, 108, 112, 116, 119, 125, 127], "subpackag": [1, 3, 10, 16, 19, 67, 78, 98, 125], "subset": 143, "support": 147, "syntax": 149, "tabl": 147, "task": [112, 113, 114, 115, 149], "test_dataset": 66, "track": 149, "train": [119, 120, 121, 122, 123, 124, 149], "training_config": 133, "transform": [116, 117], "truth": 144, "tutori": 144, "type": 36, "us": [143, 144, 149], "usag": 0, "util": [32, 33, 34, 35, 36, 55, 56, 57, 58, 59, 106, 118, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], "v": 143, "weight_fit": 124, "write": 147, "writer": [60, 61, 62, 63, 142], "your": [147, 149]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"1) Adding Support for Your Data": [[150, "adding-support-for-your-data"]], "2) Implementing a Detector Class": [[150, "implementing-a-detector-class"]], "Acknowledgements": [[0, "acknowledgements"]], "Adding Your Own Model": [[152, "adding-your-own-model"]], "Adding custom Labels": [[146, "adding-custom-labels"]], "Adding custom truth labels": [[147, "adding-custom-truth-labels"]], "Advanced Functionality in SQLiteDataset": [[147, "advanced-functionality-in-sqlitedataset"]], "Appendix": [[147, "appendix"]], "Choosing a subset of events using selection": [[146, "choosing-a-subset-of-events-using-selection"]], "Code quality": [[144, "code-quality"]], "Combining Multiple Datasets": [[146, "combining-multiple-datasets"], [147, "combining-multiple-datasets"]], "Contents": [[147, "contents"]], "Contributing To GraphNeTgraphnet": [[144, null]], "Conventions": [[144, "conventions"]], "Creating reproducible Datasets using DatasetConfig": [[147, "creating-reproducible-datasets-using-datasetconfig"]], "Creating reproducible Models using ModelConfig": [[147, "creating-reproducible-models-using-modelconfig"]], "Data Conversion in GraphNeTgraphnet": [[145, null]], "DataConverter": [[145, "dataconverter"]], "Dataset": [[146, "dataset"]], "Datasets In GraphNeTgraphnet": [[146, null]], "Example DataConfig": [[147, "example-dataconfig"]], "Example ModelConfig": [[147, "example-modelconfig"]], "Example of geometry table before applying multi-index": [[150, "id1"]], "Example: Energy Reconstruction using ModelConfig": [[152, "example-energy-reconstruction-using-modelconfig"]], "Experiment Tracking": [[152, "experiment-tracking"]], "Extractors": [[145, "extractors"]], "GitHub issues": [[144, "github-issues"]], "GraphDefinition, backbone & Task": [[152, "graphdefinition-backbone-task"]], "GraphNeT tutorial": [[147, null]], "GraphNeTgraphnet": [[148, null], [151, null]], "Implementing a new Dataset": [[146, "implementing-a-new-dataset"]], "Installation": [[149, null]], "Installation in CVMFS (IceCube)": [[149, "installation-in-cvmfs-icecube"]], "Instantiating a StandardModel": [[152, "instantiating-a-standardmodel"]], "Integrating New Experiments into GraphNeTgraphnet": [[150, null]], "Introduction": [[147, "introduction"]], "Model.save": [[152, "model-save"]], "ModelConfig and state_dict": [[152, "modelconfig-and-state-dict"]], "Models In GraphNeTgraphnet": [[152, null]], "Overview of GraphNeT": [[147, "overview-of-graphnet"]], "Pull requests": [[144, "pull-requests"]], "Quick Start": [[149, "quick-start"]], "Readers": [[145, "readers"]], "SQLiteDataset & ParquetDataset": [[146, "sqlitedataset-parquetdataset"]], "SQLiteDataset vs. ParquetDataset": [[146, "sqlitedataset-vs-parquetdataset"]], "Saving, loading, and checkpointing Models": [[152, "saving-loading-and-checkpointing-models"]], "Submodules": [[1, "submodules"], [3, "submodules"], [10, "submodules"], [12, "submodules"], [15, "submodules"], [17, "submodules"], [20, "submodules"], [33, "submodules"], [38, "submodules"], [40, "submodules"], [42, "submodules"], [44, "submodules"], [46, "submodules"], [48, "submodules"], [54, "submodules"], [56, "submodules"], [61, "submodules"], [65, "submodules"], [68, "submodules"], [71, "submodules"], [73, "submodules"], [77, "submodules"], [79, "submodules"], [81, "submodules"], [85, "submodules"], [91, "submodules"], [100, "submodules"], [101, "submodules"], [106, "submodules"], [111, "submodules"], [115, "submodules"], [119, "submodules"], [122, "submodules"], [128, "submodules"], [130, "submodules"]], "Subpackages": [[1, null], [3, "subpackages"], [10, "subpackages"], [17, "subpackages"], [20, "subpackages"], [68, "subpackages"], [79, "subpackages"], [100, "subpackages"], [128, "subpackages"]], "The Model class": [[147, "the-model-class"], [152, "the-model-class"]], "The StandardModel class": [[147, "the-standardmodel-class"], [152, "the-standardmodel-class"]], "Training Syntax for StandardModel": [[152, "training-syntax-for-standardmodel"]], "Usage": [[0, null]], "Using checkpoints": [[152, "using-checkpoints"]], "Writers": [[145, "writers"]], "Writing your own Extractor and GraphNeTFileReader": [[150, "writing-your-own-extractor-and-graphnetfilereader"]], "graphnet.constants module": [[2, null]], "graphnet.data package": [[3, null]], "graphnet.data.constants module": [[4, null]], "graphnet.data.curated_datamodule module": [[5, null]], "graphnet.data.dataclasses module": [[6, null]], "graphnet.data.dataconverter module": [[7, null]], "graphnet.data.dataloader module": [[8, null]], "graphnet.data.datamodule module": [[9, null]], "graphnet.data.dataset package": [[10, null]], "graphnet.data.dataset.dataset module": [[11, null]], "graphnet.data.dataset.parquet package": [[12, null]], "graphnet.data.dataset.parquet.parquet_dataset module": [[13, null]], "graphnet.data.dataset.samplers module": [[14, null]], "graphnet.data.dataset.sqlite package": [[15, null]], "graphnet.data.dataset.sqlite.sqlite_dataset module": [[16, null]], "graphnet.data.extractors package": [[17, null]], "graphnet.data.extractors.combine_extractors module": [[18, null]], "graphnet.data.extractors.extractor module": [[19, null]], "graphnet.data.extractors.icecube package": [[20, null]], "graphnet.data.extractors.icecube.i3extractor module": [[21, null]], "graphnet.data.extractors.icecube.i3featureextractor module": [[22, null]], "graphnet.data.extractors.icecube.i3genericextractor module": [[23, null]], "graphnet.data.extractors.icecube.i3hybridrecoextractor module": [[24, null]], "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor module": [[25, null]], "graphnet.data.extractors.icecube.i3particleextractor module": [[26, null]], "graphnet.data.extractors.icecube.i3pisaextractor module": [[27, null]], "graphnet.data.extractors.icecube.i3quesoextractor module": [[28, null]], "graphnet.data.extractors.icecube.i3retroextractor module": [[29, null]], "graphnet.data.extractors.icecube.i3splinempeextractor module": [[30, null]], "graphnet.data.extractors.icecube.i3truthextractor module": [[31, null]], "graphnet.data.extractors.icecube.i3tumextractor module": [[32, null]], "graphnet.data.extractors.icecube.utilities package": [[33, null]], "graphnet.data.extractors.icecube.utilities.collections module": [[34, null]], "graphnet.data.extractors.icecube.utilities.frames module": [[35, null]], "graphnet.data.extractors.icecube.utilities.i3_filters module": [[36, null]], "graphnet.data.extractors.icecube.utilities.types module": [[37, null]], "graphnet.data.extractors.internal package": [[38, null]], "graphnet.data.extractors.internal.parquet_extractor module": [[39, null]], "graphnet.data.extractors.liquido package": [[40, null]], "graphnet.data.extractors.liquido.h5_extractor module": [[41, null]], "graphnet.data.extractors.prometheus package": [[42, null]], "graphnet.data.extractors.prometheus.prometheus_extractor module": [[43, null]], "graphnet.data.parquet package": [[44, null]], "graphnet.data.parquet.deprecated_methods module": [[45, null]], "graphnet.data.pre_configured package": [[46, null]], "graphnet.data.pre_configured.dataconverters module": [[47, null]], "graphnet.data.readers package": [[48, null]], "graphnet.data.readers.graphnet_file_reader module": [[49, null]], "graphnet.data.readers.i3reader module": [[50, null]], "graphnet.data.readers.internal_parquet_reader module": [[51, null]], "graphnet.data.readers.liquido_reader module": [[52, null]], "graphnet.data.readers.prometheus_reader module": [[53, null]], "graphnet.data.sqlite package": [[54, null]], "graphnet.data.sqlite.deprecated_methods module": [[55, null]], "graphnet.data.utilities package": [[56, null]], "graphnet.data.utilities.parquet_to_sqlite module": [[57, null]], "graphnet.data.utilities.random module": [[58, null]], "graphnet.data.utilities.sqlite_utilities module": [[59, null]], "graphnet.data.utilities.string_selection_resolver module": [[60, null]], "graphnet.data.writers package": [[61, null]], "graphnet.data.writers.graphnet_writer module": [[62, null]], "graphnet.data.writers.parquet_writer module": [[63, null]], "graphnet.data.writers.sqlite_writer module": [[64, null]], "graphnet.datasets package": [[65, null]], "graphnet.datasets.prometheus_datasets module": [[66, null]], "graphnet.datasets.test_dataset module": [[67, null]], "graphnet.deployment package": [[68, null]], "graphnet.deployment.deployer module": [[69, null]], "graphnet.deployment.deployment_module module": [[70, null]], "graphnet.deployment.i3modules package": [[71, null]], "graphnet.deployment.i3modules.deprecated_methods module": [[72, null]], "graphnet.deployment.icecube package": [[73, null]], "graphnet.deployment.icecube.cleaning_module module": [[74, null]], "graphnet.deployment.icecube.i3deployer module": [[75, null]], "graphnet.deployment.icecube.inference_module module": [[76, null]], "graphnet.exceptions package": [[77, null]], "graphnet.exceptions.exceptions module": [[78, null]], "graphnet.models package": [[79, null]], "graphnet.models.coarsening module": [[80, null]], "graphnet.models.components package": [[81, null]], "graphnet.models.components.embedding module": [[82, null]], "graphnet.models.components.layers module": [[83, null]], "graphnet.models.components.pool module": [[84, null]], "graphnet.models.detector package": [[85, null]], "graphnet.models.detector.detector module": [[86, null]], "graphnet.models.detector.icecube module": [[87, null]], "graphnet.models.detector.liquido module": [[88, null]], "graphnet.models.detector.prometheus module": [[89, null]], "graphnet.models.easy_model module": [[90, null]], "graphnet.models.gnn package": [[91, null]], "graphnet.models.gnn.RNN_tito module": [[92, null]], "graphnet.models.gnn.convnet module": [[93, null]], "graphnet.models.gnn.dynedge module": [[94, null]], "graphnet.models.gnn.dynedge_jinst module": [[95, null]], "graphnet.models.gnn.dynedge_kaggle_tito module": [[96, null]], "graphnet.models.gnn.gnn module": [[97, null]], "graphnet.models.gnn.icemix module": [[98, null]], "graphnet.models.gnn.particlenet module": [[99, null]], "graphnet.models.graphs package": [[100, null]], "graphnet.models.graphs.edges package": [[101, null]], "graphnet.models.graphs.edges.edges module": [[102, null]], "graphnet.models.graphs.edges.minkowski module": [[103, null]], "graphnet.models.graphs.graph_definition module": [[104, null]], "graphnet.models.graphs.graphs module": [[105, null]], "graphnet.models.graphs.nodes package": [[106, null]], "graphnet.models.graphs.nodes.nodes module": [[107, null]], "graphnet.models.graphs.utils module": [[108, null]], "graphnet.models.model module": [[109, null]], "graphnet.models.normalizing_flow module": [[110, null]], "graphnet.models.rnn package": [[111, null]], "graphnet.models.rnn.node_rnn module": [[112, null]], "graphnet.models.standard_averaged_model module": [[113, null]], "graphnet.models.standard_model module": [[114, null]], "graphnet.models.task package": [[115, null]], "graphnet.models.task.classification module": [[116, null]], "graphnet.models.task.reconstruction module": [[117, null]], "graphnet.models.task.task module": [[118, null]], "graphnet.models.transformer package": [[119, null]], "graphnet.models.transformer.iseecube module": [[120, null]], "graphnet.models.utils module": [[121, null]], "graphnet.training package": [[122, null]], "graphnet.training.callbacks module": [[123, null]], "graphnet.training.labels module": [[124, null]], "graphnet.training.loss_functions module": [[125, null]], "graphnet.training.utils module": [[126, null]], "graphnet.training.weight_fitting module": [[127, null]], "graphnet.utilities package": [[128, null]], "graphnet.utilities.argparse module": [[129, null]], "graphnet.utilities.config package": [[130, null]], "graphnet.utilities.config.base_config module": [[131, null]], "graphnet.utilities.config.configurable module": [[132, null]], "graphnet.utilities.config.dataset_config module": [[133, null]], "graphnet.utilities.config.model_config module": [[134, null]], "graphnet.utilities.config.parsing module": [[135, null]], "graphnet.utilities.config.training_config module": [[136, null]], "graphnet.utilities.decorators module": [[137, null]], "graphnet.utilities.deprecation_tools module": [[138, null]], "graphnet.utilities.filesys module": [[139, null]], "graphnet.utilities.imports module": [[140, null]], "graphnet.utilities.logging module": [[141, null]], "graphnet.utilities.maths module": [[142, null]], "src": [[143, null]]}, "docnames": ["about/about", "api/graphnet", "api/graphnet.constants", "api/graphnet.data", "api/graphnet.data.constants", "api/graphnet.data.curated_datamodule", "api/graphnet.data.dataclasses", "api/graphnet.data.dataconverter", "api/graphnet.data.dataloader", "api/graphnet.data.datamodule", "api/graphnet.data.dataset", "api/graphnet.data.dataset.dataset", "api/graphnet.data.dataset.parquet", "api/graphnet.data.dataset.parquet.parquet_dataset", "api/graphnet.data.dataset.samplers", "api/graphnet.data.dataset.sqlite", "api/graphnet.data.dataset.sqlite.sqlite_dataset", "api/graphnet.data.extractors", "api/graphnet.data.extractors.combine_extractors", "api/graphnet.data.extractors.extractor", "api/graphnet.data.extractors.icecube", "api/graphnet.data.extractors.icecube.i3extractor", "api/graphnet.data.extractors.icecube.i3featureextractor", "api/graphnet.data.extractors.icecube.i3genericextractor", "api/graphnet.data.extractors.icecube.i3hybridrecoextractor", "api/graphnet.data.extractors.icecube.i3ntmuonlabelsextractor", "api/graphnet.data.extractors.icecube.i3particleextractor", "api/graphnet.data.extractors.icecube.i3pisaextractor", "api/graphnet.data.extractors.icecube.i3quesoextractor", "api/graphnet.data.extractors.icecube.i3retroextractor", "api/graphnet.data.extractors.icecube.i3splinempeextractor", "api/graphnet.data.extractors.icecube.i3truthextractor", "api/graphnet.data.extractors.icecube.i3tumextractor", "api/graphnet.data.extractors.icecube.utilities", "api/graphnet.data.extractors.icecube.utilities.collections", "api/graphnet.data.extractors.icecube.utilities.frames", "api/graphnet.data.extractors.icecube.utilities.i3_filters", "api/graphnet.data.extractors.icecube.utilities.types", "api/graphnet.data.extractors.internal", "api/graphnet.data.extractors.internal.parquet_extractor", "api/graphnet.data.extractors.liquido", "api/graphnet.data.extractors.liquido.h5_extractor", "api/graphnet.data.extractors.prometheus", "api/graphnet.data.extractors.prometheus.prometheus_extractor", "api/graphnet.data.parquet", "api/graphnet.data.parquet.deprecated_methods", "api/graphnet.data.pre_configured", "api/graphnet.data.pre_configured.dataconverters", "api/graphnet.data.readers", "api/graphnet.data.readers.graphnet_file_reader", "api/graphnet.data.readers.i3reader", "api/graphnet.data.readers.internal_parquet_reader", "api/graphnet.data.readers.liquido_reader", "api/graphnet.data.readers.prometheus_reader", "api/graphnet.data.sqlite", "api/graphnet.data.sqlite.deprecated_methods", "api/graphnet.data.utilities", "api/graphnet.data.utilities.parquet_to_sqlite", "api/graphnet.data.utilities.random", "api/graphnet.data.utilities.sqlite_utilities", "api/graphnet.data.utilities.string_selection_resolver", "api/graphnet.data.writers", "api/graphnet.data.writers.graphnet_writer", "api/graphnet.data.writers.parquet_writer", "api/graphnet.data.writers.sqlite_writer", "api/graphnet.datasets", "api/graphnet.datasets.prometheus_datasets", "api/graphnet.datasets.test_dataset", "api/graphnet.deployment", "api/graphnet.deployment.deployer", "api/graphnet.deployment.deployment_module", "api/graphnet.deployment.i3modules", "api/graphnet.deployment.i3modules.deprecated_methods", "api/graphnet.deployment.icecube", "api/graphnet.deployment.icecube.cleaning_module", "api/graphnet.deployment.icecube.i3deployer", "api/graphnet.deployment.icecube.inference_module", "api/graphnet.exceptions", "api/graphnet.exceptions.exceptions", "api/graphnet.models", "api/graphnet.models.coarsening", "api/graphnet.models.components", "api/graphnet.models.components.embedding", "api/graphnet.models.components.layers", "api/graphnet.models.components.pool", "api/graphnet.models.detector", "api/graphnet.models.detector.detector", "api/graphnet.models.detector.icecube", "api/graphnet.models.detector.liquido", "api/graphnet.models.detector.prometheus", "api/graphnet.models.easy_model", "api/graphnet.models.gnn", "api/graphnet.models.gnn.RNN_tito", "api/graphnet.models.gnn.convnet", "api/graphnet.models.gnn.dynedge", "api/graphnet.models.gnn.dynedge_jinst", "api/graphnet.models.gnn.dynedge_kaggle_tito", "api/graphnet.models.gnn.gnn", "api/graphnet.models.gnn.icemix", "api/graphnet.models.gnn.particlenet", "api/graphnet.models.graphs", "api/graphnet.models.graphs.edges", "api/graphnet.models.graphs.edges.edges", "api/graphnet.models.graphs.edges.minkowski", "api/graphnet.models.graphs.graph_definition", "api/graphnet.models.graphs.graphs", "api/graphnet.models.graphs.nodes", "api/graphnet.models.graphs.nodes.nodes", "api/graphnet.models.graphs.utils", "api/graphnet.models.model", "api/graphnet.models.normalizing_flow", "api/graphnet.models.rnn", "api/graphnet.models.rnn.node_rnn", "api/graphnet.models.standard_averaged_model", "api/graphnet.models.standard_model", "api/graphnet.models.task", "api/graphnet.models.task.classification", "api/graphnet.models.task.reconstruction", "api/graphnet.models.task.task", "api/graphnet.models.transformer", "api/graphnet.models.transformer.iseecube", "api/graphnet.models.utils", "api/graphnet.training", "api/graphnet.training.callbacks", "api/graphnet.training.labels", "api/graphnet.training.loss_functions", "api/graphnet.training.utils", "api/graphnet.training.weight_fitting", "api/graphnet.utilities", "api/graphnet.utilities.argparse", "api/graphnet.utilities.config", "api/graphnet.utilities.config.base_config", "api/graphnet.utilities.config.configurable", "api/graphnet.utilities.config.dataset_config", "api/graphnet.utilities.config.model_config", "api/graphnet.utilities.config.parsing", "api/graphnet.utilities.config.training_config", "api/graphnet.utilities.decorators", "api/graphnet.utilities.deprecation_tools", "api/graphnet.utilities.filesys", "api/graphnet.utilities.imports", "api/graphnet.utilities.logging", "api/graphnet.utilities.maths", "api/modules", "contribute/contribute", "data_conversion/data_conversion", "datasets/datasets", "getting_started/getting_started", "index", "installation/install", "integration/integration", "intro/intro", "models/models", "substitutions"], "envversion": {"sphinx": 63, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["about/about.rst", "api/graphnet.rst", "api/graphnet.constants.rst", "api/graphnet.data.rst", "api/graphnet.data.constants.rst", "api/graphnet.data.curated_datamodule.rst", "api/graphnet.data.dataclasses.rst", "api/graphnet.data.dataconverter.rst", "api/graphnet.data.dataloader.rst", "api/graphnet.data.datamodule.rst", "api/graphnet.data.dataset.rst", "api/graphnet.data.dataset.dataset.rst", "api/graphnet.data.dataset.parquet.rst", "api/graphnet.data.dataset.parquet.parquet_dataset.rst", "api/graphnet.data.dataset.samplers.rst", "api/graphnet.data.dataset.sqlite.rst", "api/graphnet.data.dataset.sqlite.sqlite_dataset.rst", "api/graphnet.data.extractors.rst", "api/graphnet.data.extractors.combine_extractors.rst", "api/graphnet.data.extractors.extractor.rst", "api/graphnet.data.extractors.icecube.rst", "api/graphnet.data.extractors.icecube.i3extractor.rst", "api/graphnet.data.extractors.icecube.i3featureextractor.rst", "api/graphnet.data.extractors.icecube.i3genericextractor.rst", "api/graphnet.data.extractors.icecube.i3hybridrecoextractor.rst", "api/graphnet.data.extractors.icecube.i3ntmuonlabelsextractor.rst", "api/graphnet.data.extractors.icecube.i3particleextractor.rst", "api/graphnet.data.extractors.icecube.i3pisaextractor.rst", "api/graphnet.data.extractors.icecube.i3quesoextractor.rst", "api/graphnet.data.extractors.icecube.i3retroextractor.rst", "api/graphnet.data.extractors.icecube.i3splinempeextractor.rst", "api/graphnet.data.extractors.icecube.i3truthextractor.rst", "api/graphnet.data.extractors.icecube.i3tumextractor.rst", "api/graphnet.data.extractors.icecube.utilities.rst", "api/graphnet.data.extractors.icecube.utilities.collections.rst", "api/graphnet.data.extractors.icecube.utilities.frames.rst", "api/graphnet.data.extractors.icecube.utilities.i3_filters.rst", "api/graphnet.data.extractors.icecube.utilities.types.rst", "api/graphnet.data.extractors.internal.rst", "api/graphnet.data.extractors.internal.parquet_extractor.rst", "api/graphnet.data.extractors.liquido.rst", "api/graphnet.data.extractors.liquido.h5_extractor.rst", "api/graphnet.data.extractors.prometheus.rst", "api/graphnet.data.extractors.prometheus.prometheus_extractor.rst", "api/graphnet.data.parquet.rst", "api/graphnet.data.parquet.deprecated_methods.rst", "api/graphnet.data.pre_configured.rst", "api/graphnet.data.pre_configured.dataconverters.rst", "api/graphnet.data.readers.rst", "api/graphnet.data.readers.graphnet_file_reader.rst", "api/graphnet.data.readers.i3reader.rst", "api/graphnet.data.readers.internal_parquet_reader.rst", "api/graphnet.data.readers.liquido_reader.rst", "api/graphnet.data.readers.prometheus_reader.rst", "api/graphnet.data.sqlite.rst", "api/graphnet.data.sqlite.deprecated_methods.rst", "api/graphnet.data.utilities.rst", "api/graphnet.data.utilities.parquet_to_sqlite.rst", "api/graphnet.data.utilities.random.rst", "api/graphnet.data.utilities.sqlite_utilities.rst", "api/graphnet.data.utilities.string_selection_resolver.rst", "api/graphnet.data.writers.rst", "api/graphnet.data.writers.graphnet_writer.rst", "api/graphnet.data.writers.parquet_writer.rst", "api/graphnet.data.writers.sqlite_writer.rst", "api/graphnet.datasets.rst", "api/graphnet.datasets.prometheus_datasets.rst", "api/graphnet.datasets.test_dataset.rst", "api/graphnet.deployment.rst", "api/graphnet.deployment.deployer.rst", "api/graphnet.deployment.deployment_module.rst", "api/graphnet.deployment.i3modules.rst", "api/graphnet.deployment.i3modules.deprecated_methods.rst", "api/graphnet.deployment.icecube.rst", "api/graphnet.deployment.icecube.cleaning_module.rst", "api/graphnet.deployment.icecube.i3deployer.rst", "api/graphnet.deployment.icecube.inference_module.rst", "api/graphnet.exceptions.rst", "api/graphnet.exceptions.exceptions.rst", "api/graphnet.models.rst", "api/graphnet.models.coarsening.rst", "api/graphnet.models.components.rst", "api/graphnet.models.components.embedding.rst", "api/graphnet.models.components.layers.rst", "api/graphnet.models.components.pool.rst", "api/graphnet.models.detector.rst", "api/graphnet.models.detector.detector.rst", "api/graphnet.models.detector.icecube.rst", "api/graphnet.models.detector.liquido.rst", "api/graphnet.models.detector.prometheus.rst", "api/graphnet.models.easy_model.rst", "api/graphnet.models.gnn.rst", "api/graphnet.models.gnn.RNN_tito.rst", "api/graphnet.models.gnn.convnet.rst", "api/graphnet.models.gnn.dynedge.rst", "api/graphnet.models.gnn.dynedge_jinst.rst", "api/graphnet.models.gnn.dynedge_kaggle_tito.rst", "api/graphnet.models.gnn.gnn.rst", "api/graphnet.models.gnn.icemix.rst", "api/graphnet.models.gnn.particlenet.rst", "api/graphnet.models.graphs.rst", "api/graphnet.models.graphs.edges.rst", "api/graphnet.models.graphs.edges.edges.rst", "api/graphnet.models.graphs.edges.minkowski.rst", "api/graphnet.models.graphs.graph_definition.rst", "api/graphnet.models.graphs.graphs.rst", "api/graphnet.models.graphs.nodes.rst", "api/graphnet.models.graphs.nodes.nodes.rst", "api/graphnet.models.graphs.utils.rst", "api/graphnet.models.model.rst", "api/graphnet.models.normalizing_flow.rst", "api/graphnet.models.rnn.rst", "api/graphnet.models.rnn.node_rnn.rst", "api/graphnet.models.standard_averaged_model.rst", "api/graphnet.models.standard_model.rst", "api/graphnet.models.task.rst", "api/graphnet.models.task.classification.rst", "api/graphnet.models.task.reconstruction.rst", "api/graphnet.models.task.task.rst", "api/graphnet.models.transformer.rst", "api/graphnet.models.transformer.iseecube.rst", "api/graphnet.models.utils.rst", "api/graphnet.training.rst", "api/graphnet.training.callbacks.rst", "api/graphnet.training.labels.rst", "api/graphnet.training.loss_functions.rst", "api/graphnet.training.utils.rst", "api/graphnet.training.weight_fitting.rst", "api/graphnet.utilities.rst", "api/graphnet.utilities.argparse.rst", "api/graphnet.utilities.config.rst", "api/graphnet.utilities.config.base_config.rst", "api/graphnet.utilities.config.configurable.rst", "api/graphnet.utilities.config.dataset_config.rst", "api/graphnet.utilities.config.model_config.rst", "api/graphnet.utilities.config.parsing.rst", "api/graphnet.utilities.config.training_config.rst", "api/graphnet.utilities.decorators.rst", "api/graphnet.utilities.deprecation_tools.rst", "api/graphnet.utilities.filesys.rst", "api/graphnet.utilities.imports.rst", "api/graphnet.utilities.logging.rst", "api/graphnet.utilities.maths.rst", "api/modules.rst", "contribute/contribute.rst", "data_conversion/data_conversion.rst", "datasets/datasets.rst", "getting_started/getting_started.md", "index.rst", "installation/install.rst", "integration/integration.rst", "intro/intro.rst", "models/models.rst", "substitutions.rst"], "indexentries": {"accepted_extractors (graphnet.data.readers.graphnet_file_reader.graphnetfilereader property)": [[49, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.accepted_extractors", false]], "accepted_file_extensions (graphnet.data.readers.graphnet_file_reader.graphnetfilereader property)": [[49, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.accepted_file_extensions", false]], "add_label() (graphnet.data.dataset.dataset.dataset method)": [[11, "graphnet.data.dataset.dataset.Dataset.add_label", false]], "arca115 (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.ARCA115", false]], "argumentparser (class in graphnet.utilities.argparse)": [[129, "graphnet.utilities.argparse.ArgumentParser", false]], "arguments (graphnet.utilities.config.model_config.modelconfig attribute)": [[134, "graphnet.utilities.config.model_config.ModelConfig.arguments", false]], "array_to_sequence() (in module graphnet.models.utils)": [[121, "graphnet.models.utils.array_to_sequence", false]], "as_dict() (graphnet.utilities.config.base_config.baseconfig method)": [[131, "graphnet.utilities.config.base_config.BaseConfig.as_dict", false]], "as_dict() (graphnet.utilities.config.dataset_config.datasetconfig method)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.as_dict", false]], "as_dict() (graphnet.utilities.config.model_config.modelconfig method)": [[134, "graphnet.utilities.config.model_config.ModelConfig.as_dict", false]], "attach_index() (in module graphnet.data.utilities.sqlite_utilities)": [[59, "graphnet.data.utilities.sqlite_utilities.attach_index", false]], "attention_rel (class in graphnet.models.components.layers)": [[83, "graphnet.models.components.layers.Attention_rel", false]], "attributecoarsening (class in graphnet.models.coarsening)": [[80, "graphnet.models.coarsening.AttributeCoarsening", false]], "available_backends (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.available_backends", false]], "azimuthreconstruction (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.AzimuthReconstruction", false]], "azimuthreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa", false]], "backward() (graphnet.training.loss_functions.logcmk static method)": [[125, "graphnet.training.loss_functions.LogCMK.backward", false]], "baikalgvd8 (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.BaikalGVD8", false]], "baikalgvdsmall (class in graphnet.datasets.prometheus_datasets)": [[66, "graphnet.datasets.prometheus_datasets.BaikalGVDSmall", false]], "baseconfig (class in graphnet.utilities.config.base_config)": [[131, "graphnet.utilities.config.base_config.BaseConfig", false]], "binaryclassificationtask (class in graphnet.models.task.classification)": [[116, "graphnet.models.task.classification.BinaryClassificationTask", false]], "binaryclassificationtasklogits (class in graphnet.models.task.classification)": [[116, "graphnet.models.task.classification.BinaryClassificationTaskLogits", false]], "binarycrossentropyloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.BinaryCrossEntropyLoss", false]], "bjoernlow (class in graphnet.training.weight_fitting)": [[127, "graphnet.training.weight_fitting.BjoernLow", false]], "block (class in graphnet.models.components.layers)": [[83, "graphnet.models.components.layers.Block", false]], "block_rel (class in graphnet.models.components.layers)": [[83, "graphnet.models.components.layers.Block_rel", false]], "break_cyclic_recursion() (in module graphnet.data.extractors.icecube.utilities.types)": [[37, "graphnet.data.extractors.icecube.utilities.types.break_cyclic_recursion", false]], "calculate_distance_matrix() (in module graphnet.models.utils)": [[121, "graphnet.models.utils.calculate_distance_matrix", false]], "calculate_xyzt_homophily() (in module graphnet.models.utils)": [[121, "graphnet.models.utils.calculate_xyzt_homophily", false]], "cast_object_to_pure_python() (in module graphnet.data.extractors.icecube.utilities.types)": [[37, "graphnet.data.extractors.icecube.utilities.types.cast_object_to_pure_python", false]], "cast_pulse_series_to_pure_python() (in module graphnet.data.extractors.icecube.utilities.types)": [[37, "graphnet.data.extractors.icecube.utilities.types.cast_pulse_series_to_pure_python", false]], "chunk_sizes (graphnet.data.dataset.parquet.parquet_dataset.parquetdataset property)": [[13, "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset.chunk_sizes", false]], "chunks (graphnet.data.dataset.samplers.randomchunksampler property)": [[14, "graphnet.data.dataset.samplers.RandomChunkSampler.chunks", false]], "citation (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.citation", false]], "class_name (graphnet.utilities.config.model_config.modelconfig attribute)": [[134, "graphnet.utilities.config.model_config.ModelConfig.class_name", false]], "clean_up_data_object() (graphnet.models.rnn.node_rnn.node_rnn method)": [[112, "graphnet.models.rnn.node_rnn.Node_RNN.clean_up_data_object", false]], "cluster_summarize_with_percentiles() (in module graphnet.models.graphs.utils)": [[108, "graphnet.models.graphs.utils.cluster_summarize_with_percentiles", false]], "coarsening (class in graphnet.models.coarsening)": [[80, "graphnet.models.coarsening.Coarsening", false]], "collate_fn() (in module graphnet.data.dataloader)": [[8, "graphnet.data.dataloader.collate_fn", false]], "collate_fn() (in module graphnet.training.utils)": [[126, "graphnet.training.utils.collate_fn", false]], "collator_sequence_buckleting (class in graphnet.training.utils)": [[126, "graphnet.training.utils.collator_sequence_buckleting", false]], "columnmissingexception": [[78, "graphnet.exceptions.exceptions.ColumnMissingException", false]], "combinedextractor (class in graphnet.data.extractors.combine_extractors)": [[18, "graphnet.data.extractors.combine_extractors.CombinedExtractor", false]], "comments (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.comments", false]], "compute_loss() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.compute_loss", false]], "compute_loss() (graphnet.models.standard_model.standardmodel method)": [[114, "graphnet.models.standard_model.StandardModel.compute_loss", false]], "compute_loss() (graphnet.models.task.task.learnedtask method)": [[118, "graphnet.models.task.task.LearnedTask.compute_loss", false]], "compute_loss() (graphnet.models.task.task.standardlearnedtask method)": [[118, "graphnet.models.task.task.StandardLearnedTask.compute_loss", false]], "compute_minkowski_distance_mat() (in module graphnet.models.graphs.edges.minkowski)": [[103, "graphnet.models.graphs.edges.minkowski.compute_minkowski_distance_mat", false]], "concatenate() (graphnet.data.dataset.dataset.dataset class method)": [[11, "graphnet.data.dataset.dataset.Dataset.concatenate", false]], "config (graphnet.utilities.config.configurable.configurable property)": [[132, "graphnet.utilities.config.configurable.Configurable.config", false]], "configurable (class in graphnet.utilities.config.configurable)": [[132, "graphnet.utilities.config.configurable.Configurable", false]], "configure_optimizers() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.configure_optimizers", false]], "contains() (graphnet.utilities.argparse.options method)": [[129, "graphnet.utilities.argparse.Options.contains", false]], "convnet (class in graphnet.models.gnn.convnet)": [[93, "graphnet.models.gnn.convnet.ConvNet", false]], "create_table() (in module graphnet.data.utilities.sqlite_utilities)": [[59, "graphnet.data.utilities.sqlite_utilities.create_table", false]], "create_table_and_save_to_sql() (in module graphnet.data.utilities.sqlite_utilities)": [[59, "graphnet.data.utilities.sqlite_utilities.create_table_and_save_to_sql", false]], "creator (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.creator", false]], "critical() (graphnet.utilities.logging.logger method)": [[141, "graphnet.utilities.logging.Logger.critical", false]], "crossentropyloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.CrossEntropyLoss", false]], "curateddataset (class in graphnet.data.curated_datamodule)": [[5, "graphnet.data.curated_datamodule.CuratedDataset", false]], "customdomcoarsening (class in graphnet.models.coarsening)": [[80, "graphnet.models.coarsening.CustomDOMCoarsening", false]], "data_source (graphnet.data.dataset.samplers.randomchunksampler property)": [[14, "graphnet.data.dataset.samplers.RandomChunkSampler.data_source", false]], "database_exists() (in module graphnet.data.utilities.sqlite_utilities)": [[59, "graphnet.data.utilities.sqlite_utilities.database_exists", false]], "database_table_exists() (in module graphnet.data.utilities.sqlite_utilities)": [[59, "graphnet.data.utilities.sqlite_utilities.database_table_exists", false]], "dataconverter (class in graphnet.data.dataconverter)": [[7, "graphnet.data.dataconverter.DataConverter", false]], "dataloader (class in graphnet.data.dataloader)": [[8, "graphnet.data.dataloader.DataLoader", false]], "dataloader (graphnet.utilities.config.training_config.trainingconfig attribute)": [[136, "graphnet.utilities.config.training_config.TrainingConfig.dataloader", false]], "dataset (class in graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.Dataset", false]], "dataset_dir (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.dataset_dir", false]], "datasetconfig (class in graphnet.utilities.config.dataset_config)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig", false]], "datasetconfigsaverabcmeta (class in graphnet.utilities.config.dataset_config)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfigSaverABCMeta", false]], "datasetconfigsavermeta (class in graphnet.utilities.config.dataset_config)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfigSaverMeta", false]], "debug() (graphnet.utilities.logging.logger method)": [[141, "graphnet.utilities.logging.Logger.debug", false]], "deepcore (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.DEEPCORE", false]], "deepcore (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.DEEPCORE", false]], "deepice (class in graphnet.models.gnn.icemix)": [[98, "graphnet.models.gnn.icemix.DeepIce", false]], "default_prediction_labels (graphnet.models.task.classification.binaryclassificationtask attribute)": [[116, "graphnet.models.task.classification.BinaryClassificationTask.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[116, "graphnet.models.task.classification.BinaryClassificationTaskLogits.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.AzimuthReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[117, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[117, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.EnergyReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[117, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[117, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.energytcreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.EnergyTCReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.InelasticityReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.PositionReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.timereconstruction attribute)": [[117, "graphnet.models.task.reconstruction.TimeReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.VertexReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.ZenithReconstruction.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[117, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.task.identitytask property)": [[118, "graphnet.models.task.task.IdentityTask.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.task.standardflowtask property)": [[118, "graphnet.models.task.task.StandardFlowTask.default_prediction_labels", false]], "default_prediction_labels (graphnet.models.task.task.task property)": [[118, "graphnet.models.task.task.Task.default_prediction_labels", false]], "default_target_labels (graphnet.models.task.classification.binaryclassificationtask attribute)": [[116, "graphnet.models.task.classification.BinaryClassificationTask.default_target_labels", false]], "default_target_labels (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[116, "graphnet.models.task.classification.BinaryClassificationTaskLogits.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.AzimuthReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[117, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[117, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.EnergyReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[117, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[117, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.energytcreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.EnergyTCReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.InelasticityReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.PositionReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.timereconstruction attribute)": [[117, "graphnet.models.task.reconstruction.TimeReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.VertexReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.ZenithReconstruction.default_target_labels", false]], "default_target_labels (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[117, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.default_target_labels", false]], "default_target_labels (graphnet.models.task.task.identitytask property)": [[118, "graphnet.models.task.task.IdentityTask.default_target_labels", false]], "default_target_labels (graphnet.models.task.task.task property)": [[118, "graphnet.models.task.task.Task.default_target_labels", false]], "deployer (class in graphnet.deployment.deployer)": [[69, "graphnet.deployment.deployer.Deployer", false]], "deploymentmodule (class in graphnet.deployment.deployment_module)": [[70, "graphnet.deployment.deployment_module.DeploymentModule", false]], "description() (graphnet.data.curated_datamodule.curateddataset method)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.description", false]], "detector (class in graphnet.models.detector.detector)": [[86, "graphnet.models.detector.detector.Detector", false]], "direction (class in graphnet.training.labels)": [[124, "graphnet.training.labels.Direction", false]], "directionreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa", false]], "do_shuffle() (in module graphnet.data.dataloader)": [[8, "graphnet.data.dataloader.do_shuffle", false]], "domandtimewindowcoarsening (class in graphnet.models.coarsening)": [[80, "graphnet.models.coarsening.DOMAndTimeWindowCoarsening", false]], "domcoarsening (class in graphnet.models.coarsening)": [[80, "graphnet.models.coarsening.DOMCoarsening", false]], "droppath (class in graphnet.models.components.layers)": [[83, "graphnet.models.components.layers.DropPath", false]], "dump() (graphnet.utilities.config.base_config.baseconfig method)": [[131, "graphnet.utilities.config.base_config.BaseConfig.dump", false]], "dynedge (class in graphnet.models.gnn.dynedge)": [[94, "graphnet.models.gnn.dynedge.DynEdge", false]], "dynedgeconv (class in graphnet.models.components.layers)": [[83, "graphnet.models.components.layers.DynEdgeConv", false]], "dynedgejinst (class in graphnet.models.gnn.dynedge_jinst)": [[95, "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST", false]], "dynedgetito (class in graphnet.models.gnn.dynedge_kaggle_tito)": [[96, "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO", false]], "dyntrans (class in graphnet.models.components.layers)": [[83, "graphnet.models.components.layers.DynTrans", false]], "early_stopping_patience (graphnet.utilities.config.training_config.trainingconfig attribute)": [[136, "graphnet.utilities.config.training_config.TrainingConfig.early_stopping_patience", false]], "easysyntax (class in graphnet.models.easy_model)": [[90, "graphnet.models.easy_model.EasySyntax", false]], "edgeconvtito (class in graphnet.models.components.layers)": [[83, "graphnet.models.components.layers.EdgeConvTito", false]], "edgedefinition (class in graphnet.models.graphs.edges.edges)": [[102, "graphnet.models.graphs.edges.edges.EdgeDefinition", false]], "edgelessgraph (class in graphnet.models.graphs.graphs)": [[105, "graphnet.models.graphs.graphs.EdgelessGraph", false]], "energyreconstruction (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.EnergyReconstruction", false]], "energyreconstructionwithpower (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower", false]], "energyreconstructionwithuncertainty (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty", false]], "energytcreconstruction (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.EnergyTCReconstruction", false]], "ensembledataset (class in graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.EnsembleDataset", false]], "ensembleloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.EnsembleLoss", false]], "eps_like() (in module graphnet.utilities.maths)": [[142, "graphnet.utilities.maths.eps_like", false]], "erdahosteddataset (class in graphnet.data.curated_datamodule)": [[5, "graphnet.data.curated_datamodule.ERDAHostedDataset", false]], "error() (graphnet.utilities.logging.logger method)": [[141, "graphnet.utilities.logging.Logger.error", false]], "euclideandistanceloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.EuclideanDistanceLoss", false]], "euclideanedges (class in graphnet.models.graphs.edges.edges)": [[102, "graphnet.models.graphs.edges.edges.EuclideanEdges", false]], "event_truth (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.event_truth", false]], "events (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.events", false]], "expects_merged_dataframes (graphnet.data.writers.graphnet_writer.graphnetwriter property)": [[62, "graphnet.data.writers.graphnet_writer.GraphNeTWriter.expects_merged_dataframes", false]], "experiment (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.experiment", false]], "extra_repr() (graphnet.models.components.layers.droppath method)": [[83, "graphnet.models.components.layers.DropPath.extra_repr", false]], "extra_repr() (graphnet.models.model.model method)": [[109, "graphnet.models.model.Model.extra_repr", false]], "extra_repr_recursive() (graphnet.models.model.model method)": [[109, "graphnet.models.model.Model.extra_repr_recursive", false]], "extracor_names (graphnet.data.readers.graphnet_file_reader.graphnetfilereader property)": [[49, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.extracor_names", false]], "extractor (class in graphnet.data.extractors.extractor)": [[19, "graphnet.data.extractors.extractor.Extractor", false]], "feature_map() (graphnet.models.detector.detector.detector method)": [[86, "graphnet.models.detector.detector.Detector.feature_map", false]], "feature_map() (graphnet.models.detector.icecube.icecube86 method)": [[87, "graphnet.models.detector.icecube.IceCube86.feature_map", false]], "feature_map() (graphnet.models.detector.icecube.icecubedeepcore method)": [[87, "graphnet.models.detector.icecube.IceCubeDeepCore.feature_map", false]], "feature_map() (graphnet.models.detector.icecube.icecubekaggle method)": [[87, "graphnet.models.detector.icecube.IceCubeKaggle.feature_map", false]], "feature_map() (graphnet.models.detector.icecube.icecubeupgrade method)": [[87, "graphnet.models.detector.icecube.IceCubeUpgrade.feature_map", false]], "feature_map() (graphnet.models.detector.liquido.liquido_v1 method)": [[88, "graphnet.models.detector.liquido.LiquidO_v1.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.arca115 method)": [[89, "graphnet.models.detector.prometheus.ARCA115.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.baikalgvd8 method)": [[89, "graphnet.models.detector.prometheus.BaikalGVD8.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icecube86prometheus method)": [[89, "graphnet.models.detector.prometheus.IceCube86Prometheus.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icecubedeepcore8 method)": [[89, "graphnet.models.detector.prometheus.IceCubeDeepCore8.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icecubegen2 method)": [[89, "graphnet.models.detector.prometheus.IceCubeGen2.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icecubeupgrade7 method)": [[89, "graphnet.models.detector.prometheus.IceCubeUpgrade7.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.icedemo81 method)": [[89, "graphnet.models.detector.prometheus.IceDemo81.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.orca150 method)": [[89, "graphnet.models.detector.prometheus.ORCA150.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.orca150superdense method)": [[89, "graphnet.models.detector.prometheus.ORCA150SuperDense.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.ponetriangle method)": [[89, "graphnet.models.detector.prometheus.PONETriangle.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.trident1211 method)": [[89, "graphnet.models.detector.prometheus.TRIDENT1211.feature_map", false]], "feature_map() (graphnet.models.detector.prometheus.waterdemo81 method)": [[89, "graphnet.models.detector.prometheus.WaterDemo81.feature_map", false]], "features (class in graphnet.data.constants)": [[4, "graphnet.data.constants.FEATURES", false]], "features (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.features", false]], "features (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.features", false]], "file_extension (graphnet.data.writers.graphnet_writer.graphnetwriter property)": [[62, "graphnet.data.writers.graphnet_writer.GraphNeTWriter.file_extension", false]], "file_handlers (graphnet.utilities.logging.logger property)": [[141, "graphnet.utilities.logging.Logger.file_handlers", false]], "filter() (graphnet.utilities.logging.repeatfilter method)": [[141, "graphnet.utilities.logging.RepeatFilter.filter", false]], "find_files() (graphnet.data.readers.graphnet_file_reader.graphnetfilereader method)": [[49, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.find_files", false]], "find_files() (graphnet.data.readers.i3reader.i3reader method)": [[50, "graphnet.data.readers.i3reader.I3Reader.find_files", false]], "find_files() (graphnet.data.readers.internal_parquet_reader.parquetreader method)": [[51, "graphnet.data.readers.internal_parquet_reader.ParquetReader.find_files", false]], "find_files() (graphnet.data.readers.liquido_reader.liquidoreader method)": [[52, "graphnet.data.readers.liquido_reader.LiquidOReader.find_files", false]], "find_files() (graphnet.data.readers.prometheus_reader.prometheusreader method)": [[53, "graphnet.data.readers.prometheus_reader.PrometheusReader.find_files", false]], "find_i3_files() (in module graphnet.utilities.filesys)": [[139, "graphnet.utilities.filesys.find_i3_files", false]], "fit (graphnet.utilities.config.training_config.trainingconfig attribute)": [[136, "graphnet.utilities.config.training_config.TrainingConfig.fit", false]], "fit() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.fit", false]], "fit() (graphnet.training.weight_fitting.weightfitter method)": [[127, "graphnet.training.weight_fitting.WeightFitter.fit", false]], "flatten_nested_dictionary() (in module graphnet.data.extractors.icecube.utilities.collections)": [[34, "graphnet.data.extractors.icecube.utilities.collections.flatten_nested_dictionary", false]], "forward() (graphnet.models.coarsening.coarsening method)": [[80, "graphnet.models.coarsening.Coarsening.forward", false]], "forward() (graphnet.models.components.embedding.fourierencoder method)": [[82, "graphnet.models.components.embedding.FourierEncoder.forward", false]], "forward() (graphnet.models.components.embedding.sinusoidalposemb method)": [[82, "graphnet.models.components.embedding.SinusoidalPosEmb.forward", false]], "forward() (graphnet.models.components.embedding.spacetimeencoder method)": [[82, "graphnet.models.components.embedding.SpacetimeEncoder.forward", false]], "forward() (graphnet.models.components.layers.attention_rel method)": [[83, "graphnet.models.components.layers.Attention_rel.forward", false]], "forward() (graphnet.models.components.layers.block method)": [[83, "graphnet.models.components.layers.Block.forward", false]], "forward() (graphnet.models.components.layers.block_rel method)": [[83, "graphnet.models.components.layers.Block_rel.forward", false]], "forward() (graphnet.models.components.layers.droppath method)": [[83, "graphnet.models.components.layers.DropPath.forward", false]], "forward() (graphnet.models.components.layers.dynedgeconv method)": [[83, "graphnet.models.components.layers.DynEdgeConv.forward", false]], "forward() (graphnet.models.components.layers.dyntrans method)": [[83, "graphnet.models.components.layers.DynTrans.forward", false]], "forward() (graphnet.models.components.layers.edgeconvtito method)": [[83, "graphnet.models.components.layers.EdgeConvTito.forward", false]], "forward() (graphnet.models.components.layers.mlp method)": [[83, "graphnet.models.components.layers.Mlp.forward", false]], "forward() (graphnet.models.detector.detector.detector method)": [[86, "graphnet.models.detector.detector.Detector.forward", false]], "forward() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.forward", false]], "forward() (graphnet.models.gnn.convnet.convnet method)": [[93, "graphnet.models.gnn.convnet.ConvNet.forward", false]], "forward() (graphnet.models.gnn.dynedge.dynedge method)": [[94, "graphnet.models.gnn.dynedge.DynEdge.forward", false]], "forward() (graphnet.models.gnn.dynedge_jinst.dynedgejinst method)": [[95, "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST.forward", false]], "forward() (graphnet.models.gnn.dynedge_kaggle_tito.dynedgetito method)": [[96, "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO.forward", false]], "forward() (graphnet.models.gnn.gnn.gnn method)": [[97, "graphnet.models.gnn.gnn.GNN.forward", false]], "forward() (graphnet.models.gnn.icemix.deepice method)": [[98, "graphnet.models.gnn.icemix.DeepIce.forward", false]], "forward() (graphnet.models.gnn.particlenet.particlenet method)": [[99, "graphnet.models.gnn.particlenet.ParticleNeT.forward", false]], "forward() (graphnet.models.gnn.rnn_tito.rnn_tito method)": [[92, "graphnet.models.gnn.RNN_tito.RNN_TITO.forward", false]], "forward() (graphnet.models.graphs.edges.edges.edgedefinition method)": [[102, "graphnet.models.graphs.edges.edges.EdgeDefinition.forward", false]], "forward() (graphnet.models.graphs.graph_definition.graphdefinition method)": [[104, "graphnet.models.graphs.graph_definition.GraphDefinition.forward", false]], "forward() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[107, "graphnet.models.graphs.nodes.nodes.NodeDefinition.forward", false]], "forward() (graphnet.models.normalizing_flow.normalizingflow method)": [[110, "graphnet.models.normalizing_flow.NormalizingFlow.forward", false]], "forward() (graphnet.models.rnn.node_rnn.node_rnn method)": [[112, "graphnet.models.rnn.node_rnn.Node_RNN.forward", false]], "forward() (graphnet.models.standard_model.standardmodel method)": [[114, "graphnet.models.standard_model.StandardModel.forward", false]], "forward() (graphnet.models.task.task.learnedtask method)": [[118, "graphnet.models.task.task.LearnedTask.forward", false]], "forward() (graphnet.models.task.task.standardflowtask method)": [[118, "graphnet.models.task.task.StandardFlowTask.forward", false]], "forward() (graphnet.models.transformer.iseecube.iseecube method)": [[120, "graphnet.models.transformer.iseecube.ISeeCube.forward", false]], "forward() (graphnet.training.loss_functions.logcmk static method)": [[125, "graphnet.training.loss_functions.LogCMK.forward", false]], "forward() (graphnet.training.loss_functions.lossfunction method)": [[125, "graphnet.training.loss_functions.LossFunction.forward", false]], "fourierencoder (class in graphnet.models.components.embedding)": [[82, "graphnet.models.components.embedding.FourierEncoder", false]], "frame_is_montecarlo() (in module graphnet.data.extractors.icecube.utilities.frames)": [[35, "graphnet.data.extractors.icecube.utilities.frames.frame_is_montecarlo", false]], "frame_is_noise() (in module graphnet.data.extractors.icecube.utilities.frames)": [[35, "graphnet.data.extractors.icecube.utilities.frames.frame_is_noise", false]], "from_config() (graphnet.data.dataset.dataset.dataset class method)": [[11, "graphnet.data.dataset.dataset.Dataset.from_config", false]], "from_config() (graphnet.models.model.model class method)": [[109, "graphnet.models.model.Model.from_config", false]], "from_config() (graphnet.utilities.config.configurable.configurable class method)": [[132, "graphnet.utilities.config.configurable.Configurable.from_config", false]], "from_dataset_config() (graphnet.data.dataloader.dataloader class method)": [[8, "graphnet.data.dataloader.DataLoader.from_dataset_config", false]], "gather_cluster_sequence() (in module graphnet.models.graphs.utils)": [[108, "graphnet.models.graphs.utils.gather_cluster_sequence", false]], "gather_len_matched_buckets() (in module graphnet.data.dataset.samplers)": [[14, "graphnet.data.dataset.samplers.gather_len_matched_buckets", false]], "gcd_file (graphnet.data.dataclasses.i3fileset attribute)": [[6, "graphnet.data.dataclasses.I3FileSet.gcd_file", false]], "gcd_file (graphnet.data.dataclasses.settings attribute)": [[6, "graphnet.data.dataclasses.Settings.gcd_file", false]], "geometry_table (graphnet.models.detector.detector.detector property)": [[86, "graphnet.models.detector.detector.Detector.geometry_table", false]], "geometry_table_path (graphnet.models.detector.icecube.icecube86 attribute)": [[87, "graphnet.models.detector.icecube.IceCube86.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.icecube.icecubekaggle attribute)": [[87, "graphnet.models.detector.icecube.IceCubeKaggle.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.icecube.icecubeupgrade attribute)": [[87, "graphnet.models.detector.icecube.IceCubeUpgrade.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.liquido.liquido_v1 attribute)": [[88, "graphnet.models.detector.liquido.LiquidO_v1.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.arca115 attribute)": [[89, "graphnet.models.detector.prometheus.ARCA115.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.baikalgvd8 attribute)": [[89, "graphnet.models.detector.prometheus.BaikalGVD8.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icecube86prometheus attribute)": [[89, "graphnet.models.detector.prometheus.IceCube86Prometheus.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icecubedeepcore8 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeDeepCore8.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icecubegen2 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeGen2.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icecubeupgrade7 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeUpgrade7.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.icedemo81 attribute)": [[89, "graphnet.models.detector.prometheus.IceDemo81.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.orca150 attribute)": [[89, "graphnet.models.detector.prometheus.ORCA150.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.orca150superdense attribute)": [[89, "graphnet.models.detector.prometheus.ORCA150SuperDense.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.ponetriangle attribute)": [[89, "graphnet.models.detector.prometheus.PONETriangle.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.trident1211 attribute)": [[89, "graphnet.models.detector.prometheus.TRIDENT1211.geometry_table_path", false]], "geometry_table_path (graphnet.models.detector.prometheus.waterdemo81 attribute)": [[89, "graphnet.models.detector.prometheus.WaterDemo81.geometry_table_path", false]], "get_all_argument_values() (in module graphnet.utilities.config.base_config)": [[131, "graphnet.utilities.config.base_config.get_all_argument_values", false]], "get_all_grapnet_classes() (in module graphnet.utilities.config.parsing)": [[135, "graphnet.utilities.config.parsing.get_all_grapnet_classes", false]], "get_fields() (in module graphnet.models.utils)": [[121, "graphnet.models.utils.get_fields", false]], "get_graphnet_classes() (in module graphnet.utilities.config.parsing)": [[135, "graphnet.utilities.config.parsing.get_graphnet_classes", false]], "get_lr() (graphnet.training.callbacks.piecewiselinearlr method)": [[123, "graphnet.training.callbacks.PiecewiseLinearLR.get_lr", false]], "get_map_function() (graphnet.data.dataconverter.dataconverter method)": [[7, "graphnet.data.dataconverter.DataConverter.get_map_function", false]], "get_member_variables() (in module graphnet.data.extractors.icecube.utilities.types)": [[37, "graphnet.data.extractors.icecube.utilities.types.get_member_variables", false]], "get_metrics() (graphnet.training.callbacks.progressbar method)": [[123, "graphnet.training.callbacks.ProgressBar.get_metrics", false]], "get_om_keys_and_pulseseries() (in module graphnet.data.extractors.icecube.utilities.frames)": [[35, "graphnet.data.extractors.icecube.utilities.frames.get_om_keys_and_pulseseries", false]], "get_predictions() (in module graphnet.training.utils)": [[126, "graphnet.training.utils.get_predictions", false]], "get_primary_keys() (in module graphnet.data.utilities.sqlite_utilities)": [[59, "graphnet.data.utilities.sqlite_utilities.get_primary_keys", false]], "gnn (class in graphnet.models.gnn.gnn)": [[97, "graphnet.models.gnn.gnn.GNN", false]], "graph_definition (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.graph_definition", false]], "graphdefinition (class in graphnet.models.graphs.graph_definition)": [[104, "graphnet.models.graphs.graph_definition.GraphDefinition", false]], "graphnet": [[1, "module-graphnet", false]], "graphnet.constants": [[2, "module-graphnet.constants", false]], "graphnet.data": [[3, "module-graphnet.data", false]], "graphnet.data.constants": [[4, "module-graphnet.data.constants", false]], "graphnet.data.curated_datamodule": [[5, "module-graphnet.data.curated_datamodule", false]], "graphnet.data.dataclasses": [[6, "module-graphnet.data.dataclasses", false]], "graphnet.data.dataconverter": [[7, "module-graphnet.data.dataconverter", false]], "graphnet.data.dataloader": [[8, "module-graphnet.data.dataloader", false]], "graphnet.data.datamodule": [[9, "module-graphnet.data.datamodule", false]], "graphnet.data.dataset": [[10, "module-graphnet.data.dataset", false]], "graphnet.data.dataset.dataset": [[11, "module-graphnet.data.dataset.dataset", false]], "graphnet.data.dataset.parquet": [[12, "module-graphnet.data.dataset.parquet", false]], "graphnet.data.dataset.parquet.parquet_dataset": [[13, "module-graphnet.data.dataset.parquet.parquet_dataset", false]], "graphnet.data.dataset.samplers": [[14, "module-graphnet.data.dataset.samplers", false]], "graphnet.data.dataset.sqlite": [[15, "module-graphnet.data.dataset.sqlite", false]], "graphnet.data.dataset.sqlite.sqlite_dataset": [[16, "module-graphnet.data.dataset.sqlite.sqlite_dataset", false]], "graphnet.data.extractors": [[17, "module-graphnet.data.extractors", false]], "graphnet.data.extractors.combine_extractors": [[18, "module-graphnet.data.extractors.combine_extractors", false]], "graphnet.data.extractors.extractor": [[19, "module-graphnet.data.extractors.extractor", false]], "graphnet.data.extractors.icecube": [[20, "module-graphnet.data.extractors.icecube", false]], "graphnet.data.extractors.icecube.i3extractor": [[21, "module-graphnet.data.extractors.icecube.i3extractor", false]], "graphnet.data.extractors.icecube.i3featureextractor": [[22, "module-graphnet.data.extractors.icecube.i3featureextractor", false]], "graphnet.data.extractors.icecube.i3genericextractor": [[23, "module-graphnet.data.extractors.icecube.i3genericextractor", false]], "graphnet.data.extractors.icecube.i3hybridrecoextractor": [[24, "module-graphnet.data.extractors.icecube.i3hybridrecoextractor", false]], "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor": [[25, "module-graphnet.data.extractors.icecube.i3ntmuonlabelsextractor", false]], "graphnet.data.extractors.icecube.i3particleextractor": [[26, "module-graphnet.data.extractors.icecube.i3particleextractor", false]], "graphnet.data.extractors.icecube.i3pisaextractor": [[27, "module-graphnet.data.extractors.icecube.i3pisaextractor", false]], "graphnet.data.extractors.icecube.i3quesoextractor": [[28, "module-graphnet.data.extractors.icecube.i3quesoextractor", false]], "graphnet.data.extractors.icecube.i3retroextractor": [[29, "module-graphnet.data.extractors.icecube.i3retroextractor", false]], "graphnet.data.extractors.icecube.i3splinempeextractor": [[30, "module-graphnet.data.extractors.icecube.i3splinempeextractor", false]], "graphnet.data.extractors.icecube.i3truthextractor": [[31, "module-graphnet.data.extractors.icecube.i3truthextractor", false]], "graphnet.data.extractors.icecube.i3tumextractor": [[32, "module-graphnet.data.extractors.icecube.i3tumextractor", false]], "graphnet.data.extractors.icecube.utilities": [[33, "module-graphnet.data.extractors.icecube.utilities", false]], "graphnet.data.extractors.icecube.utilities.collections": [[34, "module-graphnet.data.extractors.icecube.utilities.collections", false]], "graphnet.data.extractors.icecube.utilities.frames": [[35, "module-graphnet.data.extractors.icecube.utilities.frames", false]], "graphnet.data.extractors.icecube.utilities.i3_filters": [[36, "module-graphnet.data.extractors.icecube.utilities.i3_filters", false]], "graphnet.data.extractors.icecube.utilities.types": [[37, "module-graphnet.data.extractors.icecube.utilities.types", false]], "graphnet.data.extractors.internal": [[38, "module-graphnet.data.extractors.internal", false]], "graphnet.data.extractors.internal.parquet_extractor": [[39, "module-graphnet.data.extractors.internal.parquet_extractor", false]], "graphnet.data.extractors.liquido": [[40, "module-graphnet.data.extractors.liquido", false]], "graphnet.data.extractors.liquido.h5_extractor": [[41, "module-graphnet.data.extractors.liquido.h5_extractor", false]], "graphnet.data.extractors.prometheus": [[42, "module-graphnet.data.extractors.prometheus", false]], "graphnet.data.extractors.prometheus.prometheus_extractor": [[43, "module-graphnet.data.extractors.prometheus.prometheus_extractor", false]], "graphnet.data.parquet": [[44, "module-graphnet.data.parquet", false]], "graphnet.data.parquet.deprecated_methods": [[45, "module-graphnet.data.parquet.deprecated_methods", false]], "graphnet.data.pre_configured": [[46, "module-graphnet.data.pre_configured", false]], "graphnet.data.pre_configured.dataconverters": [[47, "module-graphnet.data.pre_configured.dataconverters", false]], "graphnet.data.readers": [[48, "module-graphnet.data.readers", false]], "graphnet.data.readers.graphnet_file_reader": [[49, "module-graphnet.data.readers.graphnet_file_reader", false]], "graphnet.data.readers.i3reader": [[50, "module-graphnet.data.readers.i3reader", false]], "graphnet.data.readers.internal_parquet_reader": [[51, "module-graphnet.data.readers.internal_parquet_reader", false]], "graphnet.data.readers.liquido_reader": [[52, "module-graphnet.data.readers.liquido_reader", false]], "graphnet.data.readers.prometheus_reader": [[53, "module-graphnet.data.readers.prometheus_reader", false]], "graphnet.data.sqlite": [[54, "module-graphnet.data.sqlite", false]], "graphnet.data.sqlite.deprecated_methods": [[55, "module-graphnet.data.sqlite.deprecated_methods", false]], "graphnet.data.utilities": [[56, "module-graphnet.data.utilities", false]], "graphnet.data.utilities.parquet_to_sqlite": [[57, "module-graphnet.data.utilities.parquet_to_sqlite", false]], "graphnet.data.utilities.random": [[58, "module-graphnet.data.utilities.random", false]], "graphnet.data.utilities.sqlite_utilities": [[59, "module-graphnet.data.utilities.sqlite_utilities", false]], "graphnet.data.utilities.string_selection_resolver": [[60, "module-graphnet.data.utilities.string_selection_resolver", false]], "graphnet.data.writers": [[61, "module-graphnet.data.writers", false]], "graphnet.data.writers.graphnet_writer": [[62, "module-graphnet.data.writers.graphnet_writer", false]], "graphnet.data.writers.parquet_writer": [[63, "module-graphnet.data.writers.parquet_writer", false]], "graphnet.data.writers.sqlite_writer": [[64, "module-graphnet.data.writers.sqlite_writer", false]], "graphnet.datasets": [[65, "module-graphnet.datasets", false]], "graphnet.datasets.prometheus_datasets": [[66, "module-graphnet.datasets.prometheus_datasets", false]], "graphnet.datasets.test_dataset": [[67, "module-graphnet.datasets.test_dataset", false]], "graphnet.deployment": [[68, "module-graphnet.deployment", false]], "graphnet.deployment.deployer": [[69, "module-graphnet.deployment.deployer", false]], "graphnet.deployment.deployment_module": [[70, "module-graphnet.deployment.deployment_module", false]], "graphnet.deployment.icecube.cleaning_module": [[74, "module-graphnet.deployment.icecube.cleaning_module", false]], "graphnet.deployment.icecube.inference_module": [[76, "module-graphnet.deployment.icecube.inference_module", false]], "graphnet.exceptions": [[77, "module-graphnet.exceptions", false]], "graphnet.exceptions.exceptions": [[78, "module-graphnet.exceptions.exceptions", false]], "graphnet.models": [[79, "module-graphnet.models", false]], "graphnet.models.coarsening": [[80, "module-graphnet.models.coarsening", false]], "graphnet.models.components": [[81, "module-graphnet.models.components", false]], "graphnet.models.components.embedding": [[82, "module-graphnet.models.components.embedding", false]], "graphnet.models.components.layers": [[83, "module-graphnet.models.components.layers", false]], "graphnet.models.components.pool": [[84, "module-graphnet.models.components.pool", false]], "graphnet.models.detector": [[85, "module-graphnet.models.detector", false]], "graphnet.models.detector.detector": [[86, "module-graphnet.models.detector.detector", false]], "graphnet.models.detector.icecube": [[87, "module-graphnet.models.detector.icecube", false]], "graphnet.models.detector.liquido": [[88, "module-graphnet.models.detector.liquido", false]], "graphnet.models.detector.prometheus": [[89, "module-graphnet.models.detector.prometheus", false]], "graphnet.models.easy_model": [[90, "module-graphnet.models.easy_model", false]], "graphnet.models.gnn": [[91, "module-graphnet.models.gnn", false]], "graphnet.models.gnn.convnet": [[93, "module-graphnet.models.gnn.convnet", false]], "graphnet.models.gnn.dynedge": [[94, "module-graphnet.models.gnn.dynedge", false]], "graphnet.models.gnn.dynedge_jinst": [[95, "module-graphnet.models.gnn.dynedge_jinst", false]], "graphnet.models.gnn.dynedge_kaggle_tito": [[96, "module-graphnet.models.gnn.dynedge_kaggle_tito", false]], "graphnet.models.gnn.gnn": [[97, "module-graphnet.models.gnn.gnn", false]], "graphnet.models.gnn.icemix": [[98, "module-graphnet.models.gnn.icemix", false]], "graphnet.models.gnn.particlenet": [[99, "module-graphnet.models.gnn.particlenet", false]], "graphnet.models.gnn.rnn_tito": [[92, "module-graphnet.models.gnn.RNN_tito", false]], "graphnet.models.graphs": [[100, "module-graphnet.models.graphs", false]], "graphnet.models.graphs.edges": [[101, "module-graphnet.models.graphs.edges", false]], "graphnet.models.graphs.edges.edges": [[102, "module-graphnet.models.graphs.edges.edges", false]], "graphnet.models.graphs.edges.minkowski": [[103, "module-graphnet.models.graphs.edges.minkowski", false]], "graphnet.models.graphs.graph_definition": [[104, "module-graphnet.models.graphs.graph_definition", false]], "graphnet.models.graphs.graphs": [[105, "module-graphnet.models.graphs.graphs", false]], "graphnet.models.graphs.nodes": [[106, "module-graphnet.models.graphs.nodes", false]], "graphnet.models.graphs.nodes.nodes": [[107, "module-graphnet.models.graphs.nodes.nodes", false]], "graphnet.models.graphs.utils": [[108, "module-graphnet.models.graphs.utils", false]], "graphnet.models.model": [[109, "module-graphnet.models.model", false]], "graphnet.models.normalizing_flow": [[110, "module-graphnet.models.normalizing_flow", false]], "graphnet.models.rnn": [[111, "module-graphnet.models.rnn", false]], "graphnet.models.rnn.node_rnn": [[112, "module-graphnet.models.rnn.node_rnn", false]], "graphnet.models.standard_averaged_model": [[113, "module-graphnet.models.standard_averaged_model", false]], "graphnet.models.standard_model": [[114, "module-graphnet.models.standard_model", false]], "graphnet.models.task": [[115, "module-graphnet.models.task", false]], "graphnet.models.task.classification": [[116, "module-graphnet.models.task.classification", false]], "graphnet.models.task.reconstruction": [[117, "module-graphnet.models.task.reconstruction", false]], "graphnet.models.task.task": [[118, "module-graphnet.models.task.task", false]], "graphnet.models.transformer": [[119, "module-graphnet.models.transformer", false]], "graphnet.models.transformer.iseecube": [[120, "module-graphnet.models.transformer.iseecube", false]], "graphnet.models.utils": [[121, "module-graphnet.models.utils", false]], "graphnet.training": [[122, "module-graphnet.training", false]], "graphnet.training.callbacks": [[123, "module-graphnet.training.callbacks", false]], "graphnet.training.labels": [[124, "module-graphnet.training.labels", false]], "graphnet.training.loss_functions": [[125, "module-graphnet.training.loss_functions", false]], "graphnet.training.utils": [[126, "module-graphnet.training.utils", false]], "graphnet.training.weight_fitting": [[127, "module-graphnet.training.weight_fitting", false]], "graphnet.utilities": [[128, "module-graphnet.utilities", false]], "graphnet.utilities.argparse": [[129, "module-graphnet.utilities.argparse", false]], "graphnet.utilities.config": [[130, "module-graphnet.utilities.config", false]], "graphnet.utilities.config.base_config": [[131, "module-graphnet.utilities.config.base_config", false]], "graphnet.utilities.config.configurable": [[132, "module-graphnet.utilities.config.configurable", false]], "graphnet.utilities.config.dataset_config": [[133, "module-graphnet.utilities.config.dataset_config", false]], "graphnet.utilities.config.model_config": [[134, "module-graphnet.utilities.config.model_config", false]], "graphnet.utilities.config.parsing": [[135, "module-graphnet.utilities.config.parsing", false]], "graphnet.utilities.config.training_config": [[136, "module-graphnet.utilities.config.training_config", false]], "graphnet.utilities.decorators": [[137, "module-graphnet.utilities.decorators", false]], "graphnet.utilities.deprecation_tools": [[138, "module-graphnet.utilities.deprecation_tools", false]], "graphnet.utilities.filesys": [[139, "module-graphnet.utilities.filesys", false]], "graphnet.utilities.imports": [[140, "module-graphnet.utilities.imports", false]], "graphnet.utilities.logging": [[141, "module-graphnet.utilities.logging", false]], "graphnet.utilities.maths": [[142, "module-graphnet.utilities.maths", false]], "graphnetdatamodule (class in graphnet.data.datamodule)": [[9, "graphnet.data.datamodule.GraphNeTDataModule", false]], "graphnetearlystopping (class in graphnet.training.callbacks)": [[123, "graphnet.training.callbacks.GraphnetEarlyStopping", false]], "graphnetfilereader (class in graphnet.data.readers.graphnet_file_reader)": [[49, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader", false]], "graphnetwriter (class in graphnet.data.writers.graphnet_writer)": [[62, "graphnet.data.writers.graphnet_writer.GraphNeTWriter", false]], "group_by() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.group_by", false]], "group_pulses_to_dom() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.group_pulses_to_dom", false]], "group_pulses_to_pmt() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.group_pulses_to_pmt", false]], "h5extractor (class in graphnet.data.extractors.liquido.h5_extractor)": [[41, "graphnet.data.extractors.liquido.h5_extractor.H5Extractor", false]], "h5hitextractor (class in graphnet.data.extractors.liquido.h5_extractor)": [[41, "graphnet.data.extractors.liquido.h5_extractor.H5HitExtractor", false]], "h5truthextractor (class in graphnet.data.extractors.liquido.h5_extractor)": [[41, "graphnet.data.extractors.liquido.h5_extractor.H5TruthExtractor", false]], "handlers (graphnet.utilities.logging.logger property)": [[141, "graphnet.utilities.logging.Logger.handlers", false]], "has_extension() (in module graphnet.utilities.filesys)": [[139, "graphnet.utilities.filesys.has_extension", false]], "has_icecube_package() (in module graphnet.utilities.imports)": [[140, "graphnet.utilities.imports.has_icecube_package", false]], "has_jammy_flows_package() (in module graphnet.utilities.imports)": [[140, "graphnet.utilities.imports.has_jammy_flows_package", false]], "has_torch_package() (in module graphnet.utilities.imports)": [[140, "graphnet.utilities.imports.has_torch_package", false]], "i3_file (graphnet.data.dataclasses.i3fileset attribute)": [[6, "graphnet.data.dataclasses.I3FileSet.i3_file", false]], "i3_files (graphnet.data.dataclasses.settings attribute)": [[6, "graphnet.data.dataclasses.Settings.i3_files", false]], "i3extractor (class in graphnet.data.extractors.icecube.i3extractor)": [[21, "graphnet.data.extractors.icecube.i3extractor.I3Extractor", false]], "i3featureextractor (class in graphnet.data.extractors.icecube.i3featureextractor)": [[22, "graphnet.data.extractors.icecube.i3featureextractor.I3FeatureExtractor", false]], "i3featureextractoricecube86 (class in graphnet.data.extractors.icecube.i3featureextractor)": [[22, "graphnet.data.extractors.icecube.i3featureextractor.I3FeatureExtractorIceCube86", false]], "i3featureextractoricecubedeepcore (class in graphnet.data.extractors.icecube.i3featureextractor)": [[22, "graphnet.data.extractors.icecube.i3featureextractor.I3FeatureExtractorIceCubeDeepCore", false]], "i3featureextractoricecubeupgrade (class in graphnet.data.extractors.icecube.i3featureextractor)": [[22, "graphnet.data.extractors.icecube.i3featureextractor.I3FeatureExtractorIceCubeUpgrade", false]], "i3fileset (class in graphnet.data.dataclasses)": [[6, "graphnet.data.dataclasses.I3FileSet", false]], "i3filter (class in graphnet.data.extractors.icecube.utilities.i3_filters)": [[36, "graphnet.data.extractors.icecube.utilities.i3_filters.I3Filter", false]], "i3filtermask (class in graphnet.data.extractors.icecube.utilities.i3_filters)": [[36, "graphnet.data.extractors.icecube.utilities.i3_filters.I3FilterMask", false]], "i3galacticplanehybridrecoextractor (class in graphnet.data.extractors.icecube.i3hybridrecoextractor)": [[24, "graphnet.data.extractors.icecube.i3hybridrecoextractor.I3GalacticPlaneHybridRecoExtractor", false]], "i3genericextractor (class in graphnet.data.extractors.icecube.i3genericextractor)": [[23, "graphnet.data.extractors.icecube.i3genericextractor.I3GenericExtractor", false]], "i3inferencemodule (class in graphnet.deployment.icecube.inference_module)": [[76, "graphnet.deployment.icecube.inference_module.I3InferenceModule", false]], "i3ntmuonlabelextractor (class in graphnet.data.extractors.icecube.i3ntmuonlabelsextractor)": [[25, "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor.I3NTMuonLabelExtractor", false]], "i3particleextractor (class in graphnet.data.extractors.icecube.i3particleextractor)": [[26, "graphnet.data.extractors.icecube.i3particleextractor.I3ParticleExtractor", false]], "i3pisaextractor (class in graphnet.data.extractors.icecube.i3pisaextractor)": [[27, "graphnet.data.extractors.icecube.i3pisaextractor.I3PISAExtractor", false]], "i3pulsecleanermodule (class in graphnet.deployment.icecube.cleaning_module)": [[74, "graphnet.deployment.icecube.cleaning_module.I3PulseCleanerModule", false]], "i3pulsenoisetruthflagicecubeupgrade (class in graphnet.data.extractors.icecube.i3featureextractor)": [[22, "graphnet.data.extractors.icecube.i3featureextractor.I3PulseNoiseTruthFlagIceCubeUpgrade", false]], "i3quesoextractor (class in graphnet.data.extractors.icecube.i3quesoextractor)": [[28, "graphnet.data.extractors.icecube.i3quesoextractor.I3QUESOExtractor", false]], "i3reader (class in graphnet.data.readers.i3reader)": [[50, "graphnet.data.readers.i3reader.I3Reader", false]], "i3retroextractor (class in graphnet.data.extractors.icecube.i3retroextractor)": [[29, "graphnet.data.extractors.icecube.i3retroextractor.I3RetroExtractor", false]], "i3splinempeicextractor (class in graphnet.data.extractors.icecube.i3splinempeextractor)": [[30, "graphnet.data.extractors.icecube.i3splinempeextractor.I3SplineMPEICExtractor", false]], "i3toparquetconverter (class in graphnet.data.pre_configured.dataconverters)": [[47, "graphnet.data.pre_configured.dataconverters.I3ToParquetConverter", false]], "i3tosqliteconverter (class in graphnet.data.pre_configured.dataconverters)": [[47, "graphnet.data.pre_configured.dataconverters.I3ToSQLiteConverter", false]], "i3truthextractor (class in graphnet.data.extractors.icecube.i3truthextractor)": [[31, "graphnet.data.extractors.icecube.i3truthextractor.I3TruthExtractor", false]], "i3tumextractor (class in graphnet.data.extractors.icecube.i3tumextractor)": [[32, "graphnet.data.extractors.icecube.i3tumextractor.I3TUMExtractor", false]], "ice_transparency() (in module graphnet.models.graphs.utils)": [[108, "graphnet.models.graphs.utils.ice_transparency", false]], "icecube86 (class in graphnet.models.detector.icecube)": [[87, "graphnet.models.detector.icecube.IceCube86", false]], "icecube86 (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.ICECUBE86", false]], "icecube86 (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.ICECUBE86", false]], "icecube86prometheus (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.IceCube86Prometheus", false]], "icecubedeepcore (class in graphnet.models.detector.icecube)": [[87, "graphnet.models.detector.icecube.IceCubeDeepCore", false]], "icecubedeepcore8 (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.IceCubeDeepCore8", false]], "icecubegen2 (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.IceCubeGen2", false]], "icecubekaggle (class in graphnet.models.detector.icecube)": [[87, "graphnet.models.detector.icecube.IceCubeKaggle", false]], "icecubeupgrade (class in graphnet.models.detector.icecube)": [[87, "graphnet.models.detector.icecube.IceCubeUpgrade", false]], "icecubeupgrade7 (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.IceCubeUpgrade7", false]], "icedemo81 (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.IceDemo81", false]], "icemixnodes (class in graphnet.models.graphs.nodes.nodes)": [[107, "graphnet.models.graphs.nodes.nodes.IceMixNodes", false]], "identify_indices() (in module graphnet.models.graphs.utils)": [[108, "graphnet.models.graphs.utils.identify_indices", false]], "identitytask (class in graphnet.models.task.task)": [[118, "graphnet.models.task.task.IdentityTask", false]], "index_column (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.index_column", false]], "inelasticityreconstruction (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.InelasticityReconstruction", false]], "inference() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.inference", false]], "inference() (graphnet.models.task.task.task method)": [[118, "graphnet.models.task.task.Task.inference", false]], "info() (graphnet.utilities.logging.logger method)": [[141, "graphnet.utilities.logging.Logger.info", false]], "init_global_index() (in module graphnet.data.dataconverter)": [[7, "graphnet.data.dataconverter.init_global_index", false]], "init_predict_tqdm() (graphnet.training.callbacks.progressbar method)": [[123, "graphnet.training.callbacks.ProgressBar.init_predict_tqdm", false]], "init_test_tqdm() (graphnet.training.callbacks.progressbar method)": [[123, "graphnet.training.callbacks.ProgressBar.init_test_tqdm", false]], "init_train_tqdm() (graphnet.training.callbacks.progressbar method)": [[123, "graphnet.training.callbacks.ProgressBar.init_train_tqdm", false]], "init_validation_tqdm() (graphnet.training.callbacks.progressbar method)": [[123, "graphnet.training.callbacks.ProgressBar.init_validation_tqdm", false]], "is_boost_class() (in module graphnet.data.extractors.icecube.utilities.types)": [[37, "graphnet.data.extractors.icecube.utilities.types.is_boost_class", false]], "is_boost_enum() (in module graphnet.data.extractors.icecube.utilities.types)": [[37, "graphnet.data.extractors.icecube.utilities.types.is_boost_enum", false]], "is_gcd_file() (in module graphnet.utilities.filesys)": [[139, "graphnet.utilities.filesys.is_gcd_file", false]], "is_graphnet_class() (in module graphnet.utilities.config.parsing)": [[135, "graphnet.utilities.config.parsing.is_graphnet_class", false]], "is_graphnet_module() (in module graphnet.utilities.config.parsing)": [[135, "graphnet.utilities.config.parsing.is_graphnet_module", false]], "is_i3_file() (in module graphnet.utilities.filesys)": [[139, "graphnet.utilities.filesys.is_i3_file", false]], "is_icecube_class() (in module graphnet.data.extractors.icecube.utilities.types)": [[37, "graphnet.data.extractors.icecube.utilities.types.is_icecube_class", false]], "is_method() (in module graphnet.data.extractors.icecube.utilities.types)": [[37, "graphnet.data.extractors.icecube.utilities.types.is_method", false]], "is_type() (in module graphnet.data.extractors.icecube.utilities.types)": [[37, "graphnet.data.extractors.icecube.utilities.types.is_type", false]], "iseecube (class in graphnet.models.transformer.iseecube)": [[120, "graphnet.models.transformer.iseecube.ISeeCube", false]], "kaggle (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.KAGGLE", false]], "kaggle (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.KAGGLE", false]], "key (graphnet.training.labels.label property)": [[124, "graphnet.training.labels.Label.key", false]], "knn_graph_batch() (in module graphnet.models.utils)": [[121, "graphnet.models.utils.knn_graph_batch", false]], "knnedges (class in graphnet.models.graphs.edges.edges)": [[102, "graphnet.models.graphs.edges.edges.KNNEdges", false]], "knngraph (class in graphnet.models.graphs.graphs)": [[105, "graphnet.models.graphs.graphs.KNNGraph", false]], "label (class in graphnet.training.labels)": [[124, "graphnet.training.labels.Label", false]], "labels (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.labels", false]], "learnedtask (class in graphnet.models.task.task)": [[118, "graphnet.models.task.task.LearnedTask", false]], "lenmatchbatchsampler (class in graphnet.data.dataset.samplers)": [[14, "graphnet.data.dataset.samplers.LenMatchBatchSampler", false]], "lex_sort() (in module graphnet.models.graphs.utils)": [[108, "graphnet.models.graphs.utils.lex_sort", false]], "liquido (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.LIQUIDO", false]], "liquido (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.LIQUIDO", false]], "liquido_v1 (class in graphnet.models.detector.liquido)": [[88, "graphnet.models.detector.liquido.LiquidO_v1", false]], "liquidoreader (class in graphnet.data.readers.liquido_reader)": [[52, "graphnet.data.readers.liquido_reader.LiquidOReader", false]], "list_all_submodules() (in module graphnet.utilities.config.parsing)": [[135, "graphnet.utilities.config.parsing.list_all_submodules", false]], "load() (graphnet.models.model.model class method)": [[109, "graphnet.models.model.Model.load", false]], "load() (graphnet.utilities.config.base_config.baseconfig class method)": [[131, "graphnet.utilities.config.base_config.BaseConfig.load", false]], "load_module() (in module graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.load_module", false]], "load_state_dict() (graphnet.models.model.model method)": [[109, "graphnet.models.model.Model.load_state_dict", false]], "load_state_dict() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[113, "graphnet.models.standard_averaged_model.StandardAveragedModel.load_state_dict", false]], "log_cmk() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[125, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk", false]], "log_cmk_approx() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[125, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk_approx", false]], "log_cmk_exact() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[125, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk_exact", false]], "logcmk (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.LogCMK", false]], "logcoshloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.LogCoshLoss", false]], "logger (class in graphnet.utilities.logging)": [[141, "graphnet.utilities.logging.Logger", false]], "loss_weight_column (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_column", false]], "loss_weight_default_value (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_default_value", false]], "loss_weight_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_table", false]], "lossfunction (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.LossFunction", false]], "make_dataloader() (in module graphnet.training.utils)": [[126, "graphnet.training.utils.make_dataloader", false]], "make_train_validation_dataloader() (in module graphnet.training.utils)": [[126, "graphnet.training.utils.make_train_validation_dataloader", false]], "merge_files() (graphnet.data.dataconverter.dataconverter method)": [[7, "graphnet.data.dataconverter.DataConverter.merge_files", false]], "merge_files() (graphnet.data.writers.graphnet_writer.graphnetwriter method)": [[62, "graphnet.data.writers.graphnet_writer.GraphNeTWriter.merge_files", false]], "merge_files() (graphnet.data.writers.parquet_writer.parquetwriter method)": [[63, "graphnet.data.writers.parquet_writer.ParquetWriter.merge_files", false]], "merge_files() (graphnet.data.writers.sqlite_writer.sqlitewriter method)": [[64, "graphnet.data.writers.sqlite_writer.SQLiteWriter.merge_files", false]], "message() (graphnet.models.components.layers.edgeconvtito method)": [[83, "graphnet.models.components.layers.EdgeConvTito.message", false]], "min_pool() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.min_pool", false]], "min_pool_x() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.min_pool_x", false]], "minkowskiknnedges (class in graphnet.models.graphs.edges.minkowski)": [[103, "graphnet.models.graphs.edges.minkowski.MinkowskiKNNEdges", false]], "mlp (class in graphnet.models.components.layers)": [[83, "graphnet.models.components.layers.Mlp", false]], "model (class in graphnet.models.model)": [[109, "graphnet.models.model.Model", false]], "model_computed_fields (graphnet.utilities.config.base_config.baseconfig attribute)": [[131, "graphnet.utilities.config.base_config.BaseConfig.model_computed_fields", false]], "model_computed_fields (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.model_computed_fields", false]], "model_computed_fields (graphnet.utilities.config.model_config.modelconfig attribute)": [[134, "graphnet.utilities.config.model_config.ModelConfig.model_computed_fields", false]], "model_computed_fields (graphnet.utilities.config.training_config.trainingconfig attribute)": [[136, "graphnet.utilities.config.training_config.TrainingConfig.model_computed_fields", false]], "model_config (graphnet.utilities.config.base_config.baseconfig attribute)": [[131, "graphnet.utilities.config.base_config.BaseConfig.model_config", false]], "model_config (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.model_config", false]], "model_config (graphnet.utilities.config.model_config.modelconfig attribute)": [[134, "graphnet.utilities.config.model_config.ModelConfig.model_config", false]], "model_config (graphnet.utilities.config.training_config.trainingconfig attribute)": [[136, "graphnet.utilities.config.training_config.TrainingConfig.model_config", false]], "model_fields (graphnet.utilities.config.base_config.baseconfig attribute)": [[131, "graphnet.utilities.config.base_config.BaseConfig.model_fields", false]], "model_fields (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.model_fields", false]], "model_fields (graphnet.utilities.config.model_config.modelconfig attribute)": [[134, "graphnet.utilities.config.model_config.ModelConfig.model_fields", false]], "model_fields (graphnet.utilities.config.training_config.trainingconfig attribute)": [[136, "graphnet.utilities.config.training_config.TrainingConfig.model_fields", false]], "modelconfig (class in graphnet.utilities.config.model_config)": [[134, "graphnet.utilities.config.model_config.ModelConfig", false]], "modelconfigsaverabc (class in graphnet.utilities.config.model_config)": [[134, "graphnet.utilities.config.model_config.ModelConfigSaverABC", false]], "modelconfigsavermeta (class in graphnet.utilities.config.model_config)": [[134, "graphnet.utilities.config.model_config.ModelConfigSaverMeta", false]], "module": [[1, "module-graphnet", false], [2, "module-graphnet.constants", false], [3, "module-graphnet.data", false], [4, "module-graphnet.data.constants", false], [5, "module-graphnet.data.curated_datamodule", false], [6, "module-graphnet.data.dataclasses", false], [7, "module-graphnet.data.dataconverter", false], [8, "module-graphnet.data.dataloader", false], [9, "module-graphnet.data.datamodule", false], [10, "module-graphnet.data.dataset", false], [11, "module-graphnet.data.dataset.dataset", false], [12, "module-graphnet.data.dataset.parquet", false], [13, "module-graphnet.data.dataset.parquet.parquet_dataset", false], [14, "module-graphnet.data.dataset.samplers", false], [15, "module-graphnet.data.dataset.sqlite", false], [16, "module-graphnet.data.dataset.sqlite.sqlite_dataset", false], [17, "module-graphnet.data.extractors", false], [18, "module-graphnet.data.extractors.combine_extractors", false], [19, "module-graphnet.data.extractors.extractor", false], [20, "module-graphnet.data.extractors.icecube", false], [21, "module-graphnet.data.extractors.icecube.i3extractor", false], [22, "module-graphnet.data.extractors.icecube.i3featureextractor", false], [23, "module-graphnet.data.extractors.icecube.i3genericextractor", false], [24, "module-graphnet.data.extractors.icecube.i3hybridrecoextractor", false], [25, "module-graphnet.data.extractors.icecube.i3ntmuonlabelsextractor", false], [26, "module-graphnet.data.extractors.icecube.i3particleextractor", false], [27, "module-graphnet.data.extractors.icecube.i3pisaextractor", false], [28, "module-graphnet.data.extractors.icecube.i3quesoextractor", false], [29, "module-graphnet.data.extractors.icecube.i3retroextractor", false], [30, "module-graphnet.data.extractors.icecube.i3splinempeextractor", false], [31, "module-graphnet.data.extractors.icecube.i3truthextractor", false], [32, "module-graphnet.data.extractors.icecube.i3tumextractor", false], [33, "module-graphnet.data.extractors.icecube.utilities", false], [34, "module-graphnet.data.extractors.icecube.utilities.collections", false], [35, "module-graphnet.data.extractors.icecube.utilities.frames", false], [36, "module-graphnet.data.extractors.icecube.utilities.i3_filters", false], [37, "module-graphnet.data.extractors.icecube.utilities.types", false], [38, "module-graphnet.data.extractors.internal", false], [39, "module-graphnet.data.extractors.internal.parquet_extractor", false], [40, "module-graphnet.data.extractors.liquido", false], [41, "module-graphnet.data.extractors.liquido.h5_extractor", false], [42, "module-graphnet.data.extractors.prometheus", false], [43, "module-graphnet.data.extractors.prometheus.prometheus_extractor", false], [44, "module-graphnet.data.parquet", false], [45, "module-graphnet.data.parquet.deprecated_methods", false], [46, "module-graphnet.data.pre_configured", false], [47, "module-graphnet.data.pre_configured.dataconverters", false], [48, "module-graphnet.data.readers", false], [49, "module-graphnet.data.readers.graphnet_file_reader", false], [50, "module-graphnet.data.readers.i3reader", false], [51, "module-graphnet.data.readers.internal_parquet_reader", false], [52, "module-graphnet.data.readers.liquido_reader", false], [53, "module-graphnet.data.readers.prometheus_reader", false], [54, "module-graphnet.data.sqlite", false], [55, "module-graphnet.data.sqlite.deprecated_methods", false], [56, "module-graphnet.data.utilities", false], [57, "module-graphnet.data.utilities.parquet_to_sqlite", false], [58, "module-graphnet.data.utilities.random", false], [59, "module-graphnet.data.utilities.sqlite_utilities", false], [60, "module-graphnet.data.utilities.string_selection_resolver", false], [61, "module-graphnet.data.writers", false], [62, "module-graphnet.data.writers.graphnet_writer", false], [63, "module-graphnet.data.writers.parquet_writer", false], [64, "module-graphnet.data.writers.sqlite_writer", false], [65, "module-graphnet.datasets", false], [66, "module-graphnet.datasets.prometheus_datasets", false], [67, "module-graphnet.datasets.test_dataset", false], [68, "module-graphnet.deployment", false], [69, "module-graphnet.deployment.deployer", false], [70, "module-graphnet.deployment.deployment_module", false], [74, "module-graphnet.deployment.icecube.cleaning_module", false], [76, "module-graphnet.deployment.icecube.inference_module", false], [77, "module-graphnet.exceptions", false], [78, "module-graphnet.exceptions.exceptions", false], [79, "module-graphnet.models", false], [80, "module-graphnet.models.coarsening", false], [81, "module-graphnet.models.components", false], [82, "module-graphnet.models.components.embedding", false], [83, "module-graphnet.models.components.layers", false], [84, "module-graphnet.models.components.pool", false], [85, "module-graphnet.models.detector", false], [86, "module-graphnet.models.detector.detector", false], [87, "module-graphnet.models.detector.icecube", false], [88, "module-graphnet.models.detector.liquido", false], [89, "module-graphnet.models.detector.prometheus", false], [90, "module-graphnet.models.easy_model", false], [91, "module-graphnet.models.gnn", false], [92, "module-graphnet.models.gnn.RNN_tito", false], [93, "module-graphnet.models.gnn.convnet", false], [94, "module-graphnet.models.gnn.dynedge", false], [95, "module-graphnet.models.gnn.dynedge_jinst", false], [96, "module-graphnet.models.gnn.dynedge_kaggle_tito", false], [97, "module-graphnet.models.gnn.gnn", false], [98, "module-graphnet.models.gnn.icemix", false], [99, "module-graphnet.models.gnn.particlenet", false], [100, "module-graphnet.models.graphs", false], [101, "module-graphnet.models.graphs.edges", false], [102, "module-graphnet.models.graphs.edges.edges", false], [103, "module-graphnet.models.graphs.edges.minkowski", false], [104, "module-graphnet.models.graphs.graph_definition", false], [105, "module-graphnet.models.graphs.graphs", false], [106, "module-graphnet.models.graphs.nodes", false], [107, "module-graphnet.models.graphs.nodes.nodes", false], [108, "module-graphnet.models.graphs.utils", false], [109, "module-graphnet.models.model", false], [110, "module-graphnet.models.normalizing_flow", false], [111, "module-graphnet.models.rnn", false], [112, "module-graphnet.models.rnn.node_rnn", false], [113, "module-graphnet.models.standard_averaged_model", false], [114, "module-graphnet.models.standard_model", false], [115, "module-graphnet.models.task", false], [116, "module-graphnet.models.task.classification", false], [117, "module-graphnet.models.task.reconstruction", false], [118, "module-graphnet.models.task.task", false], [119, "module-graphnet.models.transformer", false], [120, "module-graphnet.models.transformer.iseecube", false], [121, "module-graphnet.models.utils", false], [122, "module-graphnet.training", false], [123, "module-graphnet.training.callbacks", false], [124, "module-graphnet.training.labels", false], [125, "module-graphnet.training.loss_functions", false], [126, "module-graphnet.training.utils", false], [127, "module-graphnet.training.weight_fitting", false], [128, "module-graphnet.utilities", false], [129, "module-graphnet.utilities.argparse", false], [130, "module-graphnet.utilities.config", false], [131, "module-graphnet.utilities.config.base_config", false], [132, "module-graphnet.utilities.config.configurable", false], [133, "module-graphnet.utilities.config.dataset_config", false], [134, "module-graphnet.utilities.config.model_config", false], [135, "module-graphnet.utilities.config.parsing", false], [136, "module-graphnet.utilities.config.training_config", false], [137, "module-graphnet.utilities.decorators", false], [138, "module-graphnet.utilities.deprecation_tools", false], [139, "module-graphnet.utilities.filesys", false], [140, "module-graphnet.utilities.imports", false], [141, "module-graphnet.utilities.logging", false], [142, "module-graphnet.utilities.maths", false]], "modules (graphnet.data.dataclasses.settings attribute)": [[6, "graphnet.data.dataclasses.Settings.modules", false]], "mseloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.MSELoss", false]], "multiclassclassificationtask (class in graphnet.models.task.classification)": [[116, "graphnet.models.task.classification.MulticlassClassificationTask", false]], "name (graphnet.data.extractors.extractor.extractor property)": [[19, "graphnet.data.extractors.extractor.Extractor.name", false]], "nb_inputs (graphnet.models.gnn.gnn.gnn property)": [[97, "graphnet.models.gnn.gnn.GNN.nb_inputs", false]], "nb_inputs (graphnet.models.task.classification.binaryclassificationtask attribute)": [[116, "graphnet.models.task.classification.BinaryClassificationTask.nb_inputs", false]], "nb_inputs (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[116, "graphnet.models.task.classification.BinaryClassificationTaskLogits.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.AzimuthReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[117, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[117, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.EnergyReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[117, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[117, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.energytcreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.EnergyTCReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.InelasticityReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.PositionReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.timereconstruction attribute)": [[117, "graphnet.models.task.reconstruction.TimeReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.VertexReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[117, "graphnet.models.task.reconstruction.ZenithReconstruction.nb_inputs", false]], "nb_inputs (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[117, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.nb_inputs", false]], "nb_inputs (graphnet.models.task.task.identitytask property)": [[118, "graphnet.models.task.task.IdentityTask.nb_inputs", false]], "nb_inputs (graphnet.models.task.task.learnedtask property)": [[118, "graphnet.models.task.task.LearnedTask.nb_inputs", false]], "nb_inputs (graphnet.models.task.task.standardlearnedtask property)": [[118, "graphnet.models.task.task.StandardLearnedTask.nb_inputs", false]], "nb_inputs (graphnet.models.task.task.task property)": [[118, "graphnet.models.task.task.Task.nb_inputs", false]], "nb_inputs() (graphnet.models.task.task.standardflowtask method)": [[118, "graphnet.models.task.task.StandardFlowTask.nb_inputs", false]], "nb_outputs (graphnet.models.gnn.gnn.gnn property)": [[97, "graphnet.models.gnn.gnn.GNN.nb_outputs", false]], "nb_outputs (graphnet.models.graphs.nodes.nodes.nodedefinition property)": [[107, "graphnet.models.graphs.nodes.nodes.NodeDefinition.nb_outputs", false]], "nb_repeats_allowed (graphnet.utilities.logging.repeatfilter attribute)": [[141, "graphnet.utilities.logging.RepeatFilter.nb_repeats_allowed", false]], "no_weight_decay() (graphnet.models.gnn.icemix.deepice method)": [[98, "graphnet.models.gnn.icemix.DeepIce.no_weight_decay", false]], "node_rnn (class in graphnet.models.rnn.node_rnn)": [[112, "graphnet.models.rnn.node_rnn.Node_RNN", false]], "node_truth (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.node_truth", false]], "node_truth_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.node_truth_table", false]], "nodeasdomtimeseries (class in graphnet.models.graphs.nodes.nodes)": [[107, "graphnet.models.graphs.nodes.nodes.NodeAsDOMTimeSeries", false]], "nodedefinition (class in graphnet.models.graphs.nodes.nodes)": [[107, "graphnet.models.graphs.nodes.nodes.NodeDefinition", false]], "nodesaspulses (class in graphnet.models.graphs.nodes.nodes)": [[107, "graphnet.models.graphs.nodes.nodes.NodesAsPulses", false]], "normalizingflow (class in graphnet.models.normalizing_flow)": [[110, "graphnet.models.normalizing_flow.NormalizingFlow", false]], "nullspliti3filter (class in graphnet.data.extractors.icecube.utilities.i3_filters)": [[36, "graphnet.data.extractors.icecube.utilities.i3_filters.NullSplitI3Filter", false]], "num_samples (graphnet.data.dataset.samplers.randomchunksampler property)": [[14, "graphnet.data.dataset.samplers.RandomChunkSampler.num_samples", false]], "on_fit_end() (graphnet.training.callbacks.graphnetearlystopping method)": [[123, "graphnet.training.callbacks.GraphnetEarlyStopping.on_fit_end", false]], "on_train_end() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[113, "graphnet.models.standard_averaged_model.StandardAveragedModel.on_train_end", false]], "on_train_epoch_end() (graphnet.training.callbacks.graphnetearlystopping method)": [[123, "graphnet.training.callbacks.GraphnetEarlyStopping.on_train_epoch_end", false]], "on_train_epoch_end() (graphnet.training.callbacks.progressbar method)": [[123, "graphnet.training.callbacks.ProgressBar.on_train_epoch_end", false]], "on_train_epoch_start() (graphnet.training.callbacks.progressbar method)": [[123, "graphnet.training.callbacks.ProgressBar.on_train_epoch_start", false]], "on_validation_end() (graphnet.training.callbacks.graphnetearlystopping method)": [[123, "graphnet.training.callbacks.GraphnetEarlyStopping.on_validation_end", false]], "optimizer_step() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[113, "graphnet.models.standard_averaged_model.StandardAveragedModel.optimizer_step", false]], "options (class in graphnet.utilities.argparse)": [[129, "graphnet.utilities.argparse.Options", false]], "orca150 (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.ORCA150", false]], "orca150superdense (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.ORCA150SuperDense", false]], "output_folder (graphnet.data.dataclasses.settings attribute)": [[6, "graphnet.data.dataclasses.Settings.output_folder", false]], "pairwise_shuffle() (in module graphnet.data.utilities.random)": [[58, "graphnet.data.utilities.random.pairwise_shuffle", false]], "parquetdataconverter (class in graphnet.data.parquet.deprecated_methods)": [[45, "graphnet.data.parquet.deprecated_methods.ParquetDataConverter", false]], "parquetdataset (class in graphnet.data.dataset.parquet.parquet_dataset)": [[13, "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset", false]], "parquetextractor (class in graphnet.data.extractors.internal.parquet_extractor)": [[39, "graphnet.data.extractors.internal.parquet_extractor.ParquetExtractor", false]], "parquetreader (class in graphnet.data.readers.internal_parquet_reader)": [[51, "graphnet.data.readers.internal_parquet_reader.ParquetReader", false]], "parquettosqliteconverter (class in graphnet.data.pre_configured.dataconverters)": [[47, "graphnet.data.pre_configured.dataconverters.ParquetToSQLiteConverter", false]], "parquetwriter (class in graphnet.data.writers.parquet_writer)": [[63, "graphnet.data.writers.parquet_writer.ParquetWriter", false]], "parse_graph_definition() (in module graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.parse_graph_definition", false]], "parse_labels() (in module graphnet.data.dataset.dataset)": [[11, "graphnet.data.dataset.dataset.parse_labels", false]], "particlenet (class in graphnet.models.gnn.particlenet)": [[99, "graphnet.models.gnn.particlenet.ParticleNeT", false]], "path (graphnet.data.dataset.dataset.dataset property)": [[11, "graphnet.data.dataset.dataset.Dataset.path", false]], "path (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.path", false]], "percentileclusters (class in graphnet.models.graphs.nodes.nodes)": [[107, "graphnet.models.graphs.nodes.nodes.PercentileClusters", false]], "piecewiselinearlr (class in graphnet.training.callbacks)": [[123, "graphnet.training.callbacks.PiecewiseLinearLR", false]], "ponesmall (class in graphnet.datasets.prometheus_datasets)": [[66, "graphnet.datasets.prometheus_datasets.PONESmall", false]], "ponetriangle (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.PONETriangle", false]], "pop_default() (graphnet.utilities.argparse.options method)": [[129, "graphnet.utilities.argparse.Options.pop_default", false]], "positionreconstruction (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.PositionReconstruction", false]], "predict() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.predict", false]], "predict_as_dataframe() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.predict_as_dataframe", false]], "prediction_labels (graphnet.models.easy_model.easysyntax property)": [[90, "graphnet.models.easy_model.EasySyntax.prediction_labels", false]], "prepare_data() (graphnet.data.curated_datamodule.curateddataset method)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.prepare_data", false]], "prepare_data() (graphnet.data.curated_datamodule.erdahosteddataset method)": [[5, "graphnet.data.curated_datamodule.ERDAHostedDataset.prepare_data", false]], "prepare_data() (graphnet.data.datamodule.graphnetdatamodule method)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.prepare_data", false]], "progressbar (class in graphnet.training.callbacks)": [[123, "graphnet.training.callbacks.ProgressBar", false]], "prometheus (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.Prometheus", false]], "prometheus (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.PROMETHEUS", false]], "prometheus (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.PROMETHEUS", false]], "prometheusextractor (class in graphnet.data.extractors.prometheus.prometheus_extractor)": [[43, "graphnet.data.extractors.prometheus.prometheus_extractor.PrometheusExtractor", false]], "prometheusfeatureextractor (class in graphnet.data.extractors.prometheus.prometheus_extractor)": [[43, "graphnet.data.extractors.prometheus.prometheus_extractor.PrometheusFeatureExtractor", false]], "prometheusreader (class in graphnet.data.readers.prometheus_reader)": [[53, "graphnet.data.readers.prometheus_reader.PrometheusReader", false]], "prometheustruthextractor (class in graphnet.data.extractors.prometheus.prometheus_extractor)": [[43, "graphnet.data.extractors.prometheus.prometheus_extractor.PrometheusTruthExtractor", false]], "publicprometheusdataset (class in graphnet.datasets.prometheus_datasets)": [[66, "graphnet.datasets.prometheus_datasets.PublicPrometheusDataset", false]], "pulse_truth (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.pulse_truth", false]], "pulsemaps (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.pulsemaps", false]], "pulsemaps (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.pulsemaps", false]], "query_database() (in module graphnet.data.utilities.sqlite_utilities)": [[59, "graphnet.data.utilities.sqlite_utilities.query_database", false]], "query_table() (graphnet.data.dataset.dataset.dataset method)": [[11, "graphnet.data.dataset.dataset.Dataset.query_table", false]], "query_table() (graphnet.data.dataset.parquet.parquet_dataset.parquetdataset method)": [[13, "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset.query_table", false]], "query_table() (graphnet.data.dataset.sqlite.sqlite_dataset.sqlitedataset method)": [[16, "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset.query_table", false]], "radialedges (class in graphnet.models.graphs.edges.edges)": [[102, "graphnet.models.graphs.edges.edges.RadialEdges", false]], "randomchunksampler (class in graphnet.data.dataset.samplers)": [[14, "graphnet.data.dataset.samplers.RandomChunkSampler", false]], "reduce_options (graphnet.models.coarsening.coarsening attribute)": [[80, "graphnet.models.coarsening.Coarsening.reduce_options", false]], "rename_state_dict_entries() (in module graphnet.utilities.deprecation_tools)": [[138, "graphnet.utilities.deprecation_tools.rename_state_dict_entries", false]], "repeatfilter (class in graphnet.utilities.logging)": [[141, "graphnet.utilities.logging.RepeatFilter", false]], "requires_icecube() (in module graphnet.utilities.imports)": [[140, "graphnet.utilities.imports.requires_icecube", false]], "reset_parameters() (graphnet.models.components.layers.edgeconvtito method)": [[83, "graphnet.models.components.layers.EdgeConvTito.reset_parameters", false]], "resolve() (graphnet.data.utilities.string_selection_resolver.stringselectionresolver method)": [[60, "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver.resolve", false]], "rmseloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.RMSELoss", false]], "rmsevonmisesfisher3dloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.RMSEVonMisesFisher3DLoss", false]], "rnn_tito (class in graphnet.models.gnn.rnn_tito)": [[92, "graphnet.models.gnn.RNN_tito.RNN_TITO", false]], "run() (graphnet.deployment.deployer.deployer method)": [[69, "graphnet.deployment.deployer.Deployer.run", false]], "run_sql_code() (in module graphnet.data.utilities.sqlite_utilities)": [[59, "graphnet.data.utilities.sqlite_utilities.run_sql_code", false]], "save() (graphnet.models.model.model method)": [[109, "graphnet.models.model.Model.save", false]], "save_config() (graphnet.utilities.config.configurable.configurable method)": [[132, "graphnet.utilities.config.configurable.Configurable.save_config", false]], "save_dataset_config() (in module graphnet.utilities.config.dataset_config)": [[133, "graphnet.utilities.config.dataset_config.save_dataset_config", false]], "save_model_config() (in module graphnet.utilities.config.model_config)": [[134, "graphnet.utilities.config.model_config.save_model_config", false]], "save_results() (in module graphnet.training.utils)": [[126, "graphnet.training.utils.save_results", false]], "save_selection() (in module graphnet.training.utils)": [[126, "graphnet.training.utils.save_selection", false]], "save_state_dict() (graphnet.models.model.model method)": [[109, "graphnet.models.model.Model.save_state_dict", false]], "save_to_sql() (in module graphnet.data.utilities.sqlite_utilities)": [[59, "graphnet.data.utilities.sqlite_utilities.save_to_sql", false]], "seed (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.seed", false]], "selection (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.selection", false]], "sensor_id_column (graphnet.models.detector.icecube.icecube86 attribute)": [[87, "graphnet.models.detector.icecube.IceCube86.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.icecube.icecubekaggle attribute)": [[87, "graphnet.models.detector.icecube.IceCubeKaggle.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.icecube.icecubeupgrade attribute)": [[87, "graphnet.models.detector.icecube.IceCubeUpgrade.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.liquido.liquido_v1 attribute)": [[88, "graphnet.models.detector.liquido.LiquidO_v1.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.arca115 attribute)": [[89, "graphnet.models.detector.prometheus.ARCA115.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.baikalgvd8 attribute)": [[89, "graphnet.models.detector.prometheus.BaikalGVD8.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icecube86prometheus attribute)": [[89, "graphnet.models.detector.prometheus.IceCube86Prometheus.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icecubedeepcore8 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeDeepCore8.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icecubegen2 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeGen2.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icecubeupgrade7 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeUpgrade7.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.icedemo81 attribute)": [[89, "graphnet.models.detector.prometheus.IceDemo81.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.orca150 attribute)": [[89, "graphnet.models.detector.prometheus.ORCA150.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.orca150superdense attribute)": [[89, "graphnet.models.detector.prometheus.ORCA150SuperDense.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.ponetriangle attribute)": [[89, "graphnet.models.detector.prometheus.PONETriangle.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.trident1211 attribute)": [[89, "graphnet.models.detector.prometheus.TRIDENT1211.sensor_id_column", false]], "sensor_id_column (graphnet.models.detector.prometheus.waterdemo81 attribute)": [[89, "graphnet.models.detector.prometheus.WaterDemo81.sensor_id_column", false]], "sensor_index_name (graphnet.models.detector.detector.detector property)": [[86, "graphnet.models.detector.detector.Detector.sensor_index_name", false]], "sensor_position_names (graphnet.models.detector.detector.detector property)": [[86, "graphnet.models.detector.detector.Detector.sensor_position_names", false]], "serialise() (in module graphnet.data.extractors.icecube.utilities.collections)": [[34, "graphnet.data.extractors.icecube.utilities.collections.serialise", false]], "set_extractors() (graphnet.data.readers.graphnet_file_reader.graphnetfilereader method)": [[49, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.set_extractors", false]], "set_gcd() (graphnet.data.extractors.icecube.i3extractor.i3extractor method)": [[21, "graphnet.data.extractors.icecube.i3extractor.I3Extractor.set_gcd", false]], "set_number_of_inputs() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[107, "graphnet.models.graphs.nodes.nodes.NodeDefinition.set_number_of_inputs", false]], "set_output_feature_names() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[107, "graphnet.models.graphs.nodes.nodes.NodeDefinition.set_output_feature_names", false]], "set_verbose_print_recursively() (graphnet.models.model.model method)": [[109, "graphnet.models.model.Model.set_verbose_print_recursively", false]], "setlevel() (graphnet.utilities.logging.logger method)": [[141, "graphnet.utilities.logging.Logger.setLevel", false]], "settings (class in graphnet.data.dataclasses)": [[6, "graphnet.data.dataclasses.Settings", false]], "setup() (graphnet.data.datamodule.graphnetdatamodule method)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.setup", false]], "setup() (graphnet.training.callbacks.graphnetearlystopping method)": [[123, "graphnet.training.callbacks.GraphnetEarlyStopping.setup", false]], "shared_step() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.shared_step", false]], "shared_step() (graphnet.models.normalizing_flow.normalizingflow method)": [[110, "graphnet.models.normalizing_flow.NormalizingFlow.shared_step", false]], "shared_step() (graphnet.models.standard_model.standardmodel method)": [[114, "graphnet.models.standard_model.StandardModel.shared_step", false]], "sinusoidalposemb (class in graphnet.models.components.embedding)": [[82, "graphnet.models.components.embedding.SinusoidalPosEmb", false]], "spacetimeencoder (class in graphnet.models.components.embedding)": [[82, "graphnet.models.components.embedding.SpacetimeEncoder", false]], "sqlitedataconverter (class in graphnet.data.sqlite.deprecated_methods)": [[55, "graphnet.data.sqlite.deprecated_methods.SQLiteDataConverter", false]], "sqlitedataset (class in graphnet.data.dataset.sqlite.sqlite_dataset)": [[16, "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset", false]], "sqlitewriter (class in graphnet.data.writers.sqlite_writer)": [[64, "graphnet.data.writers.sqlite_writer.SQLiteWriter", false]], "standard_arguments (graphnet.utilities.argparse.argumentparser attribute)": [[129, "graphnet.utilities.argparse.ArgumentParser.standard_arguments", false]], "standardaveragedmodel (class in graphnet.models.standard_averaged_model)": [[113, "graphnet.models.standard_averaged_model.StandardAveragedModel", false]], "standardflowtask (class in graphnet.models.task.task)": [[118, "graphnet.models.task.task.StandardFlowTask", false]], "standardlearnedtask (class in graphnet.models.task.task)": [[118, "graphnet.models.task.task.StandardLearnedTask", false]], "standardmodel (class in graphnet.models.standard_model)": [[114, "graphnet.models.standard_model.StandardModel", false]], "std_pool() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.std_pool", false]], "std_pool_x() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.std_pool_x", false]], "stream_handlers (graphnet.utilities.logging.logger property)": [[141, "graphnet.utilities.logging.Logger.stream_handlers", false]], "string_id_column (graphnet.models.detector.icecube.icecube86 attribute)": [[87, "graphnet.models.detector.icecube.IceCube86.string_id_column", false]], "string_id_column (graphnet.models.detector.icecube.icecubekaggle attribute)": [[87, "graphnet.models.detector.icecube.IceCubeKaggle.string_id_column", false]], "string_id_column (graphnet.models.detector.icecube.icecubeupgrade attribute)": [[87, "graphnet.models.detector.icecube.IceCubeUpgrade.string_id_column", false]], "string_id_column (graphnet.models.detector.liquido.liquido_v1 attribute)": [[88, "graphnet.models.detector.liquido.LiquidO_v1.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.arca115 attribute)": [[89, "graphnet.models.detector.prometheus.ARCA115.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.baikalgvd8 attribute)": [[89, "graphnet.models.detector.prometheus.BaikalGVD8.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icecube86prometheus attribute)": [[89, "graphnet.models.detector.prometheus.IceCube86Prometheus.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icecubedeepcore8 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeDeepCore8.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icecubegen2 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeGen2.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icecubeupgrade7 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeUpgrade7.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.icedemo81 attribute)": [[89, "graphnet.models.detector.prometheus.IceDemo81.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.orca150 attribute)": [[89, "graphnet.models.detector.prometheus.ORCA150.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.orca150superdense attribute)": [[89, "graphnet.models.detector.prometheus.ORCA150SuperDense.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.ponetriangle attribute)": [[89, "graphnet.models.detector.prometheus.PONETriangle.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.trident1211 attribute)": [[89, "graphnet.models.detector.prometheus.TRIDENT1211.string_id_column", false]], "string_id_column (graphnet.models.detector.prometheus.waterdemo81 attribute)": [[89, "graphnet.models.detector.prometheus.WaterDemo81.string_id_column", false]], "string_index_name (graphnet.models.detector.detector.detector property)": [[86, "graphnet.models.detector.detector.Detector.string_index_name", false]], "string_selection (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.string_selection", false]], "stringselectionresolver (class in graphnet.data.utilities.string_selection_resolver)": [[60, "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver", false]], "sum_pool() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.sum_pool", false]], "sum_pool_and_distribute() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.sum_pool_and_distribute", false]], "sum_pool_x() (in module graphnet.models.components.pool)": [[84, "graphnet.models.components.pool.sum_pool_x", false]], "target (graphnet.utilities.config.training_config.trainingconfig attribute)": [[136, "graphnet.utilities.config.training_config.TrainingConfig.target", false]], "target_labels (graphnet.models.easy_model.easysyntax property)": [[90, "graphnet.models.easy_model.EasySyntax.target_labels", false]], "task (class in graphnet.models.task.task)": [[118, "graphnet.models.task.task.Task", false]], "teardown() (graphnet.data.datamodule.graphnetdatamodule method)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.teardown", false]], "test_dataloader (graphnet.data.datamodule.graphnetdatamodule property)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.test_dataloader", false]], "testdataset (class in graphnet.datasets.test_dataset)": [[67, "graphnet.datasets.test_dataset.TestDataset", false]], "timereconstruction (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.TimeReconstruction", false]], "track (class in graphnet.training.labels)": [[124, "graphnet.training.labels.Track", false]], "train() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.train", false]], "train_dataloader (graphnet.data.datamodule.graphnetdatamodule property)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.train_dataloader", false]], "train_eval() (graphnet.models.task.task.task method)": [[118, "graphnet.models.task.task.Task.train_eval", false]], "training_step() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.training_step", false]], "training_step() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[113, "graphnet.models.standard_averaged_model.StandardAveragedModel.training_step", false]], "trainingconfig (class in graphnet.utilities.config.training_config)": [[136, "graphnet.utilities.config.training_config.TrainingConfig", false]], "transpose_list_of_dicts() (in module graphnet.data.extractors.icecube.utilities.collections)": [[34, "graphnet.data.extractors.icecube.utilities.collections.transpose_list_of_dicts", false]], "traverse_and_apply() (in module graphnet.utilities.config.parsing)": [[135, "graphnet.utilities.config.parsing.traverse_and_apply", false]], "trident1211 (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.TRIDENT1211", false]], "tridentsmall (class in graphnet.datasets.prometheus_datasets)": [[66, "graphnet.datasets.prometheus_datasets.TRIDENTSmall", false]], "truth (class in graphnet.data.constants)": [[4, "graphnet.data.constants.TRUTH", false]], "truth (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.truth", false]], "truth_table (graphnet.data.curated_datamodule.curateddataset property)": [[5, "graphnet.data.curated_datamodule.CuratedDataset.truth_table", false]], "truth_table (graphnet.data.dataset.dataset.dataset property)": [[11, "graphnet.data.dataset.dataset.Dataset.truth_table", false]], "truth_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[133, "graphnet.utilities.config.dataset_config.DatasetConfig.truth_table", false]], "unbatch_edge_index() (in module graphnet.models.coarsening)": [[80, "graphnet.models.coarsening.unbatch_edge_index", false]], "uniform (class in graphnet.training.weight_fitting)": [[127, "graphnet.training.weight_fitting.Uniform", false]], "upgrade (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.UPGRADE", false]], "upgrade (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.UPGRADE", false]], "val_dataloader (graphnet.data.datamodule.graphnetdatamodule property)": [[9, "graphnet.data.datamodule.GraphNeTDataModule.val_dataloader", false]], "validate_files() (graphnet.data.readers.graphnet_file_reader.graphnetfilereader method)": [[49, "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader.validate_files", false]], "validate_tasks() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.validate_tasks", false]], "validate_tasks() (graphnet.models.normalizing_flow.normalizingflow method)": [[110, "graphnet.models.normalizing_flow.NormalizingFlow.validate_tasks", false]], "validate_tasks() (graphnet.models.standard_model.standardmodel method)": [[114, "graphnet.models.standard_model.StandardModel.validate_tasks", false]], "validation_step() (graphnet.models.easy_model.easysyntax method)": [[90, "graphnet.models.easy_model.EasySyntax.validation_step", false]], "validation_step() (graphnet.models.standard_averaged_model.standardaveragedmodel method)": [[113, "graphnet.models.standard_averaged_model.StandardAveragedModel.validation_step", false]], "verbose_print (graphnet.models.model.model attribute)": [[109, "graphnet.models.model.Model.verbose_print", false]], "vertexreconstruction (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.VertexReconstruction", false]], "vonmisesfisher2dloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.VonMisesFisher2DLoss", false]], "vonmisesfisher3dloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.VonMisesFisher3DLoss", false]], "vonmisesfisherloss (class in graphnet.training.loss_functions)": [[125, "graphnet.training.loss_functions.VonMisesFisherLoss", false]], "warning() (graphnet.utilities.logging.logger method)": [[141, "graphnet.utilities.logging.Logger.warning", false]], "warning_once() (graphnet.utilities.logging.logger method)": [[141, "graphnet.utilities.logging.Logger.warning_once", false]], "waterdemo81 (class in graphnet.models.detector.prometheus)": [[89, "graphnet.models.detector.prometheus.WaterDemo81", false]], "weightfitter (class in graphnet.training.weight_fitting)": [[127, "graphnet.training.weight_fitting.WeightFitter", false]], "with_standard_arguments() (graphnet.utilities.argparse.argumentparser method)": [[129, "graphnet.utilities.argparse.ArgumentParser.with_standard_arguments", false]], "xyz (graphnet.models.detector.icecube.icecube86 attribute)": [[87, "graphnet.models.detector.icecube.IceCube86.xyz", false]], "xyz (graphnet.models.detector.icecube.icecubekaggle attribute)": [[87, "graphnet.models.detector.icecube.IceCubeKaggle.xyz", false]], "xyz (graphnet.models.detector.icecube.icecubeupgrade attribute)": [[87, "graphnet.models.detector.icecube.IceCubeUpgrade.xyz", false]], "xyz (graphnet.models.detector.liquido.liquido_v1 attribute)": [[88, "graphnet.models.detector.liquido.LiquidO_v1.xyz", false]], "xyz (graphnet.models.detector.prometheus.arca115 attribute)": [[89, "graphnet.models.detector.prometheus.ARCA115.xyz", false]], "xyz (graphnet.models.detector.prometheus.baikalgvd8 attribute)": [[89, "graphnet.models.detector.prometheus.BaikalGVD8.xyz", false]], "xyz (graphnet.models.detector.prometheus.icecube86prometheus attribute)": [[89, "graphnet.models.detector.prometheus.IceCube86Prometheus.xyz", false]], "xyz (graphnet.models.detector.prometheus.icecubedeepcore8 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeDeepCore8.xyz", false]], "xyz (graphnet.models.detector.prometheus.icecubegen2 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeGen2.xyz", false]], "xyz (graphnet.models.detector.prometheus.icecubeupgrade7 attribute)": [[89, "graphnet.models.detector.prometheus.IceCubeUpgrade7.xyz", false]], "xyz (graphnet.models.detector.prometheus.icedemo81 attribute)": [[89, "graphnet.models.detector.prometheus.IceDemo81.xyz", false]], "xyz (graphnet.models.detector.prometheus.orca150 attribute)": [[89, "graphnet.models.detector.prometheus.ORCA150.xyz", false]], "xyz (graphnet.models.detector.prometheus.orca150superdense attribute)": [[89, "graphnet.models.detector.prometheus.ORCA150SuperDense.xyz", false]], "xyz (graphnet.models.detector.prometheus.ponetriangle attribute)": [[89, "graphnet.models.detector.prometheus.PONETriangle.xyz", false]], "xyz (graphnet.models.detector.prometheus.trident1211 attribute)": [[89, "graphnet.models.detector.prometheus.TRIDENT1211.xyz", false]], "xyz (graphnet.models.detector.prometheus.waterdemo81 attribute)": [[89, "graphnet.models.detector.prometheus.WaterDemo81.xyz", false]], "zenithreconstruction (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.ZenithReconstruction", false]], "zenithreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[117, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa", false]]}, "objects": {"": [[1, 0, 0, "-", "graphnet"]], "graphnet": [[2, 0, 0, "-", "constants"], [3, 0, 0, "-", "data"], [65, 0, 0, "-", "datasets"], [68, 0, 0, "-", "deployment"], [77, 0, 0, "-", "exceptions"], [79, 0, 0, "-", "models"], [122, 0, 0, "-", "training"], [128, 0, 0, "-", "utilities"]], "graphnet.data": [[4, 0, 0, "-", "constants"], [5, 0, 0, "-", "curated_datamodule"], [6, 0, 0, "-", "dataclasses"], [7, 0, 0, "-", "dataconverter"], [8, 0, 0, "-", "dataloader"], [9, 0, 0, "-", "datamodule"], [10, 0, 0, "-", "dataset"], [17, 0, 0, "-", "extractors"], [44, 0, 0, "-", "parquet"], [46, 0, 0, "-", "pre_configured"], [48, 0, 0, "-", "readers"], [54, 0, 0, "-", "sqlite"], [56, 0, 0, "-", "utilities"], [61, 0, 0, "-", "writers"]], "graphnet.data.constants": [[4, 1, 1, "", "FEATURES"], [4, 1, 1, "", "TRUTH"]], "graphnet.data.constants.FEATURES": [[4, 2, 1, "", "DEEPCORE"], [4, 2, 1, "", "ICECUBE86"], [4, 2, 1, "", "KAGGLE"], [4, 2, 1, "", "LIQUIDO"], [4, 2, 1, "", "PROMETHEUS"], [4, 2, 1, "", "UPGRADE"]], "graphnet.data.constants.TRUTH": [[4, 2, 1, "", "DEEPCORE"], [4, 2, 1, "", "ICECUBE86"], [4, 2, 1, "", "KAGGLE"], [4, 2, 1, "", "LIQUIDO"], [4, 2, 1, "", "PROMETHEUS"], [4, 2, 1, "", "UPGRADE"]], "graphnet.data.curated_datamodule": [[5, 1, 1, "", "CuratedDataset"], [5, 1, 1, "", "ERDAHostedDataset"]], "graphnet.data.curated_datamodule.CuratedDataset": [[5, 3, 1, "", "available_backends"], [5, 3, 1, "", "citation"], [5, 3, 1, "", "comments"], [5, 3, 1, "", "creator"], [5, 3, 1, "", "dataset_dir"], [5, 4, 1, "", "description"], [5, 3, 1, "", "event_truth"], [5, 3, 1, "", "events"], [5, 3, 1, "", "experiment"], [5, 3, 1, "", "features"], [5, 4, 1, "", "prepare_data"], [5, 3, 1, "", "pulse_truth"], [5, 3, 1, "", "pulsemaps"], [5, 3, 1, "", "truth_table"]], "graphnet.data.curated_datamodule.ERDAHostedDataset": [[5, 4, 1, "", "prepare_data"]], "graphnet.data.dataclasses": [[6, 1, 1, "", "I3FileSet"], [6, 1, 1, "", "Settings"]], "graphnet.data.dataclasses.I3FileSet": [[6, 2, 1, "", "gcd_file"], [6, 2, 1, "", "i3_file"]], "graphnet.data.dataclasses.Settings": [[6, 2, 1, "", "gcd_file"], [6, 2, 1, "", "i3_files"], [6, 2, 1, "", "modules"], [6, 2, 1, "", "output_folder"]], "graphnet.data.dataconverter": [[7, 1, 1, "", "DataConverter"], [7, 5, 1, "", "init_global_index"]], "graphnet.data.dataconverter.DataConverter": [[7, 4, 1, "", "get_map_function"], [7, 4, 1, "", "merge_files"]], "graphnet.data.dataloader": [[8, 1, 1, "", "DataLoader"], [8, 5, 1, "", "collate_fn"], [8, 5, 1, "", "do_shuffle"]], "graphnet.data.dataloader.DataLoader": [[8, 4, 1, "", "from_dataset_config"]], "graphnet.data.datamodule": [[9, 1, 1, "", "GraphNeTDataModule"]], "graphnet.data.datamodule.GraphNeTDataModule": [[9, 4, 1, "", "prepare_data"], [9, 4, 1, "", "setup"], [9, 4, 1, "", "teardown"], [9, 3, 1, "", "test_dataloader"], [9, 3, 1, "", "train_dataloader"], [9, 3, 1, "", "val_dataloader"]], "graphnet.data.dataset": [[11, 0, 0, "-", "dataset"], [12, 0, 0, "-", "parquet"], [14, 0, 0, "-", "samplers"], [15, 0, 0, "-", "sqlite"]], "graphnet.data.dataset.dataset": [[11, 1, 1, "", "Dataset"], [11, 1, 1, "", "EnsembleDataset"], [11, 5, 1, "", "load_module"], [11, 5, 1, "", "parse_graph_definition"], [11, 5, 1, "", "parse_labels"]], "graphnet.data.dataset.dataset.Dataset": [[11, 4, 1, "", "add_label"], [11, 4, 1, "", "concatenate"], [11, 4, 1, "", "from_config"], [11, 3, 1, "", "path"], [11, 4, 1, "", "query_table"], [11, 3, 1, "", "truth_table"]], "graphnet.data.dataset.parquet": [[13, 0, 0, "-", "parquet_dataset"]], "graphnet.data.dataset.parquet.parquet_dataset": [[13, 1, 1, "", "ParquetDataset"]], "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset": [[13, 3, 1, "", "chunk_sizes"], [13, 4, 1, "", "query_table"]], "graphnet.data.dataset.samplers": [[14, 1, 1, "", "LenMatchBatchSampler"], [14, 1, 1, "", "RandomChunkSampler"], [14, 5, 1, "", "gather_len_matched_buckets"]], "graphnet.data.dataset.samplers.RandomChunkSampler": [[14, 3, 1, "", "chunks"], [14, 3, 1, "", "data_source"], [14, 3, 1, "", "num_samples"]], "graphnet.data.dataset.sqlite": [[16, 0, 0, "-", "sqlite_dataset"]], "graphnet.data.dataset.sqlite.sqlite_dataset": [[16, 1, 1, "", "SQLiteDataset"]], "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset": [[16, 4, 1, "", "query_table"]], "graphnet.data.extractors": [[18, 0, 0, "-", "combine_extractors"], [19, 0, 0, "-", "extractor"], [20, 0, 0, "-", "icecube"], [38, 0, 0, "-", "internal"], [40, 0, 0, "-", "liquido"], [42, 0, 0, "-", "prometheus"]], "graphnet.data.extractors.combine_extractors": [[18, 1, 1, "", "CombinedExtractor"]], "graphnet.data.extractors.extractor": [[19, 1, 1, "", "Extractor"]], "graphnet.data.extractors.extractor.Extractor": [[19, 3, 1, "", "name"]], "graphnet.data.extractors.icecube": [[21, 0, 0, "-", "i3extractor"], [22, 0, 0, "-", "i3featureextractor"], [23, 0, 0, "-", "i3genericextractor"], [24, 0, 0, "-", "i3hybridrecoextractor"], [25, 0, 0, "-", "i3ntmuonlabelsextractor"], [26, 0, 0, "-", "i3particleextractor"], [27, 0, 0, "-", "i3pisaextractor"], [28, 0, 0, "-", "i3quesoextractor"], [29, 0, 0, "-", "i3retroextractor"], [30, 0, 0, "-", "i3splinempeextractor"], [31, 0, 0, "-", "i3truthextractor"], [32, 0, 0, "-", "i3tumextractor"], [33, 0, 0, "-", "utilities"]], "graphnet.data.extractors.icecube.i3extractor": [[21, 1, 1, "", "I3Extractor"]], "graphnet.data.extractors.icecube.i3extractor.I3Extractor": [[21, 4, 1, "", "set_gcd"]], "graphnet.data.extractors.icecube.i3featureextractor": [[22, 1, 1, "", "I3FeatureExtractor"], [22, 1, 1, "", "I3FeatureExtractorIceCube86"], [22, 1, 1, "", "I3FeatureExtractorIceCubeDeepCore"], [22, 1, 1, "", "I3FeatureExtractorIceCubeUpgrade"], [22, 1, 1, "", "I3PulseNoiseTruthFlagIceCubeUpgrade"]], "graphnet.data.extractors.icecube.i3genericextractor": [[23, 1, 1, "", "I3GenericExtractor"]], "graphnet.data.extractors.icecube.i3hybridrecoextractor": [[24, 1, 1, "", "I3GalacticPlaneHybridRecoExtractor"]], "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor": [[25, 1, 1, "", "I3NTMuonLabelExtractor"]], "graphnet.data.extractors.icecube.i3particleextractor": [[26, 1, 1, "", "I3ParticleExtractor"]], "graphnet.data.extractors.icecube.i3pisaextractor": [[27, 1, 1, "", "I3PISAExtractor"]], "graphnet.data.extractors.icecube.i3quesoextractor": [[28, 1, 1, "", "I3QUESOExtractor"]], "graphnet.data.extractors.icecube.i3retroextractor": [[29, 1, 1, "", "I3RetroExtractor"]], "graphnet.data.extractors.icecube.i3splinempeextractor": [[30, 1, 1, "", "I3SplineMPEICExtractor"]], "graphnet.data.extractors.icecube.i3truthextractor": [[31, 1, 1, "", "I3TruthExtractor"]], "graphnet.data.extractors.icecube.i3tumextractor": [[32, 1, 1, "", "I3TUMExtractor"]], "graphnet.data.extractors.icecube.utilities": [[34, 0, 0, "-", "collections"], [35, 0, 0, "-", "frames"], [36, 0, 0, "-", "i3_filters"], [37, 0, 0, "-", "types"]], "graphnet.data.extractors.icecube.utilities.collections": [[34, 5, 1, "", "flatten_nested_dictionary"], [34, 5, 1, "", "serialise"], [34, 5, 1, "", "transpose_list_of_dicts"]], "graphnet.data.extractors.icecube.utilities.frames": [[35, 5, 1, "", "frame_is_montecarlo"], [35, 5, 1, "", "frame_is_noise"], [35, 5, 1, "", "get_om_keys_and_pulseseries"]], "graphnet.data.extractors.icecube.utilities.i3_filters": [[36, 1, 1, "", "I3Filter"], [36, 1, 1, "", "I3FilterMask"], [36, 1, 1, "", "NullSplitI3Filter"]], "graphnet.data.extractors.icecube.utilities.types": [[37, 5, 1, "", "break_cyclic_recursion"], [37, 5, 1, "", "cast_object_to_pure_python"], [37, 5, 1, "", "cast_pulse_series_to_pure_python"], [37, 5, 1, "", "get_member_variables"], [37, 5, 1, "", "is_boost_class"], [37, 5, 1, "", "is_boost_enum"], [37, 5, 1, "", "is_icecube_class"], [37, 5, 1, "", "is_method"], [37, 5, 1, "", "is_type"]], "graphnet.data.extractors.internal": [[39, 0, 0, "-", "parquet_extractor"]], "graphnet.data.extractors.internal.parquet_extractor": [[39, 1, 1, "", "ParquetExtractor"]], "graphnet.data.extractors.liquido": [[41, 0, 0, "-", "h5_extractor"]], "graphnet.data.extractors.liquido.h5_extractor": [[41, 1, 1, "", "H5Extractor"], [41, 1, 1, "", "H5HitExtractor"], [41, 1, 1, "", "H5TruthExtractor"]], "graphnet.data.extractors.prometheus": [[43, 0, 0, "-", "prometheus_extractor"]], "graphnet.data.extractors.prometheus.prometheus_extractor": [[43, 1, 1, "", "PrometheusExtractor"], [43, 1, 1, "", "PrometheusFeatureExtractor"], [43, 1, 1, "", "PrometheusTruthExtractor"]], "graphnet.data.parquet": [[45, 0, 0, "-", "deprecated_methods"]], "graphnet.data.parquet.deprecated_methods": [[45, 1, 1, "", "ParquetDataConverter"]], "graphnet.data.pre_configured": [[47, 0, 0, "-", "dataconverters"]], "graphnet.data.pre_configured.dataconverters": [[47, 1, 1, "", "I3ToParquetConverter"], [47, 1, 1, "", "I3ToSQLiteConverter"], [47, 1, 1, "", "ParquetToSQLiteConverter"]], "graphnet.data.readers": [[49, 0, 0, "-", "graphnet_file_reader"], [50, 0, 0, "-", "i3reader"], [51, 0, 0, "-", "internal_parquet_reader"], [52, 0, 0, "-", "liquido_reader"], [53, 0, 0, "-", "prometheus_reader"]], "graphnet.data.readers.graphnet_file_reader": [[49, 1, 1, "", "GraphNeTFileReader"]], "graphnet.data.readers.graphnet_file_reader.GraphNeTFileReader": [[49, 3, 1, "", "accepted_extractors"], [49, 3, 1, "", "accepted_file_extensions"], [49, 3, 1, "", "extracor_names"], [49, 4, 1, "", "find_files"], [49, 4, 1, "", "set_extractors"], [49, 4, 1, "", "validate_files"]], "graphnet.data.readers.i3reader": [[50, 1, 1, "", "I3Reader"]], "graphnet.data.readers.i3reader.I3Reader": [[50, 4, 1, "", "find_files"]], "graphnet.data.readers.internal_parquet_reader": [[51, 1, 1, "", "ParquetReader"]], "graphnet.data.readers.internal_parquet_reader.ParquetReader": [[51, 4, 1, "", "find_files"]], "graphnet.data.readers.liquido_reader": [[52, 1, 1, "", "LiquidOReader"]], "graphnet.data.readers.liquido_reader.LiquidOReader": [[52, 4, 1, "", "find_files"]], "graphnet.data.readers.prometheus_reader": [[53, 1, 1, "", "PrometheusReader"]], "graphnet.data.readers.prometheus_reader.PrometheusReader": [[53, 4, 1, "", "find_files"]], "graphnet.data.sqlite": [[55, 0, 0, "-", "deprecated_methods"]], "graphnet.data.sqlite.deprecated_methods": [[55, 1, 1, "", "SQLiteDataConverter"]], "graphnet.data.utilities": [[57, 0, 0, "-", "parquet_to_sqlite"], [58, 0, 0, "-", "random"], [59, 0, 0, "-", "sqlite_utilities"], [60, 0, 0, "-", "string_selection_resolver"]], "graphnet.data.utilities.random": [[58, 5, 1, "", "pairwise_shuffle"]], "graphnet.data.utilities.sqlite_utilities": [[59, 5, 1, "", "attach_index"], [59, 5, 1, "", "create_table"], [59, 5, 1, "", "create_table_and_save_to_sql"], [59, 5, 1, "", "database_exists"], [59, 5, 1, "", "database_table_exists"], [59, 5, 1, "", "get_primary_keys"], [59, 5, 1, "", "query_database"], [59, 5, 1, "", "run_sql_code"], [59, 5, 1, "", "save_to_sql"]], "graphnet.data.utilities.string_selection_resolver": [[60, 1, 1, "", "StringSelectionResolver"]], "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver": [[60, 4, 1, "", "resolve"]], "graphnet.data.writers": [[62, 0, 0, "-", "graphnet_writer"], [63, 0, 0, "-", "parquet_writer"], [64, 0, 0, "-", "sqlite_writer"]], "graphnet.data.writers.graphnet_writer": [[62, 1, 1, "", "GraphNeTWriter"]], "graphnet.data.writers.graphnet_writer.GraphNeTWriter": [[62, 3, 1, "", "expects_merged_dataframes"], [62, 3, 1, "", "file_extension"], [62, 4, 1, "", "merge_files"]], "graphnet.data.writers.parquet_writer": [[63, 1, 1, "", "ParquetWriter"]], "graphnet.data.writers.parquet_writer.ParquetWriter": [[63, 4, 1, "", "merge_files"]], "graphnet.data.writers.sqlite_writer": [[64, 1, 1, "", "SQLiteWriter"]], "graphnet.data.writers.sqlite_writer.SQLiteWriter": [[64, 4, 1, "", "merge_files"]], "graphnet.datasets": [[66, 0, 0, "-", "prometheus_datasets"], [67, 0, 0, "-", "test_dataset"]], "graphnet.datasets.prometheus_datasets": [[66, 1, 1, "", "BaikalGVDSmall"], [66, 1, 1, "", "PONESmall"], [66, 1, 1, "", "PublicPrometheusDataset"], [66, 1, 1, "", "TRIDENTSmall"]], "graphnet.datasets.test_dataset": [[67, 1, 1, "", "TestDataset"]], "graphnet.deployment": [[69, 0, 0, "-", "deployer"], [70, 0, 0, "-", "deployment_module"]], "graphnet.deployment.deployer": [[69, 1, 1, "", "Deployer"]], "graphnet.deployment.deployer.Deployer": [[69, 4, 1, "", "run"]], "graphnet.deployment.deployment_module": [[70, 1, 1, "", "DeploymentModule"]], "graphnet.deployment.icecube": [[74, 0, 0, "-", "cleaning_module"], [76, 0, 0, "-", "inference_module"]], "graphnet.deployment.icecube.cleaning_module": [[74, 1, 1, "", "I3PulseCleanerModule"]], "graphnet.deployment.icecube.inference_module": [[76, 1, 1, "", "I3InferenceModule"]], "graphnet.exceptions": [[78, 0, 0, "-", "exceptions"]], "graphnet.exceptions.exceptions": [[78, 6, 1, "", "ColumnMissingException"]], "graphnet.models": [[80, 0, 0, "-", "coarsening"], [81, 0, 0, "-", "components"], [85, 0, 0, "-", "detector"], [90, 0, 0, "-", "easy_model"], [91, 0, 0, "-", "gnn"], [100, 0, 0, "-", "graphs"], [109, 0, 0, "-", "model"], [110, 0, 0, "-", "normalizing_flow"], [111, 0, 0, "-", "rnn"], [113, 0, 0, "-", "standard_averaged_model"], [114, 0, 0, "-", "standard_model"], [115, 0, 0, "-", "task"], [119, 0, 0, "-", "transformer"], [121, 0, 0, "-", "utils"]], "graphnet.models.coarsening": [[80, 1, 1, "", "AttributeCoarsening"], [80, 1, 1, "", "Coarsening"], [80, 1, 1, "", "CustomDOMCoarsening"], [80, 1, 1, "", "DOMAndTimeWindowCoarsening"], [80, 1, 1, "", "DOMCoarsening"], [80, 5, 1, "", "unbatch_edge_index"]], "graphnet.models.coarsening.Coarsening": [[80, 4, 1, "", "forward"], [80, 2, 1, "", "reduce_options"]], "graphnet.models.components": [[82, 0, 0, "-", "embedding"], [83, 0, 0, "-", "layers"], [84, 0, 0, "-", "pool"]], "graphnet.models.components.embedding": [[82, 1, 1, "", "FourierEncoder"], [82, 1, 1, "", "SinusoidalPosEmb"], [82, 1, 1, "", "SpacetimeEncoder"]], "graphnet.models.components.embedding.FourierEncoder": [[82, 4, 1, "", "forward"]], "graphnet.models.components.embedding.SinusoidalPosEmb": [[82, 4, 1, "", "forward"]], "graphnet.models.components.embedding.SpacetimeEncoder": [[82, 4, 1, "", "forward"]], "graphnet.models.components.layers": [[83, 1, 1, "", "Attention_rel"], [83, 1, 1, "", "Block"], [83, 1, 1, "", "Block_rel"], [83, 1, 1, "", "DropPath"], [83, 1, 1, "", "DynEdgeConv"], [83, 1, 1, "", "DynTrans"], [83, 1, 1, "", "EdgeConvTito"], [83, 1, 1, "", "Mlp"]], "graphnet.models.components.layers.Attention_rel": [[83, 4, 1, "", "forward"]], "graphnet.models.components.layers.Block": [[83, 4, 1, "", "forward"]], "graphnet.models.components.layers.Block_rel": [[83, 4, 1, "", "forward"]], "graphnet.models.components.layers.DropPath": [[83, 4, 1, "", "extra_repr"], [83, 4, 1, "", "forward"]], "graphnet.models.components.layers.DynEdgeConv": [[83, 4, 1, "", "forward"]], "graphnet.models.components.layers.DynTrans": [[83, 4, 1, "", "forward"]], "graphnet.models.components.layers.EdgeConvTito": [[83, 4, 1, "", "forward"], [83, 4, 1, "", "message"], [83, 4, 1, "", "reset_parameters"]], "graphnet.models.components.layers.Mlp": [[83, 4, 1, "", "forward"]], "graphnet.models.components.pool": [[84, 5, 1, "", "group_by"], [84, 5, 1, "", "group_pulses_to_dom"], [84, 5, 1, "", "group_pulses_to_pmt"], [84, 5, 1, "", "min_pool"], [84, 5, 1, "", "min_pool_x"], [84, 5, 1, "", "std_pool"], [84, 5, 1, "", "std_pool_x"], [84, 5, 1, "", "sum_pool"], [84, 5, 1, "", "sum_pool_and_distribute"], [84, 5, 1, "", "sum_pool_x"]], "graphnet.models.detector": [[86, 0, 0, "-", "detector"], [87, 0, 0, "-", "icecube"], [88, 0, 0, "-", "liquido"], [89, 0, 0, "-", "prometheus"]], "graphnet.models.detector.detector": [[86, 1, 1, "", "Detector"]], "graphnet.models.detector.detector.Detector": [[86, 4, 1, "", "feature_map"], [86, 4, 1, "", "forward"], [86, 3, 1, "", "geometry_table"], [86, 3, 1, "", "sensor_index_name"], [86, 3, 1, "", "sensor_position_names"], [86, 3, 1, "", "string_index_name"]], "graphnet.models.detector.icecube": [[87, 1, 1, "", "IceCube86"], [87, 1, 1, "", "IceCubeDeepCore"], [87, 1, 1, "", "IceCubeKaggle"], [87, 1, 1, "", "IceCubeUpgrade"]], "graphnet.models.detector.icecube.IceCube86": [[87, 4, 1, "", "feature_map"], [87, 2, 1, "", "geometry_table_path"], [87, 2, 1, "", "sensor_id_column"], [87, 2, 1, "", "string_id_column"], [87, 2, 1, "", "xyz"]], "graphnet.models.detector.icecube.IceCubeDeepCore": [[87, 4, 1, "", "feature_map"]], "graphnet.models.detector.icecube.IceCubeKaggle": [[87, 4, 1, "", "feature_map"], [87, 2, 1, "", "geometry_table_path"], [87, 2, 1, "", "sensor_id_column"], [87, 2, 1, "", "string_id_column"], [87, 2, 1, "", "xyz"]], "graphnet.models.detector.icecube.IceCubeUpgrade": [[87, 4, 1, "", "feature_map"], [87, 2, 1, "", "geometry_table_path"], [87, 2, 1, "", "sensor_id_column"], [87, 2, 1, "", "string_id_column"], [87, 2, 1, "", "xyz"]], "graphnet.models.detector.liquido": [[88, 1, 1, "", "LiquidO_v1"]], "graphnet.models.detector.liquido.LiquidO_v1": [[88, 4, 1, "", "feature_map"], [88, 2, 1, "", "geometry_table_path"], [88, 2, 1, "", "sensor_id_column"], [88, 2, 1, "", "string_id_column"], [88, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus": [[89, 1, 1, "", "ARCA115"], [89, 1, 1, "", "BaikalGVD8"], [89, 1, 1, "", "IceCube86Prometheus"], [89, 1, 1, "", "IceCubeDeepCore8"], [89, 1, 1, "", "IceCubeGen2"], [89, 1, 1, "", "IceCubeUpgrade7"], [89, 1, 1, "", "IceDemo81"], [89, 1, 1, "", "ORCA150"], [89, 1, 1, "", "ORCA150SuperDense"], [89, 1, 1, "", "PONETriangle"], [89, 1, 1, "", "Prometheus"], [89, 1, 1, "", "TRIDENT1211"], [89, 1, 1, "", "WaterDemo81"]], "graphnet.models.detector.prometheus.ARCA115": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.BaikalGVD8": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceCube86Prometheus": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceCubeDeepCore8": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceCubeGen2": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceCubeUpgrade7": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.IceDemo81": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.ORCA150": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.ORCA150SuperDense": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.PONETriangle": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.TRIDENT1211": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.detector.prometheus.WaterDemo81": [[89, 4, 1, "", "feature_map"], [89, 2, 1, "", "geometry_table_path"], [89, 2, 1, "", "sensor_id_column"], [89, 2, 1, "", "string_id_column"], [89, 2, 1, "", "xyz"]], "graphnet.models.easy_model": [[90, 1, 1, "", "EasySyntax"]], "graphnet.models.easy_model.EasySyntax": [[90, 4, 1, "", "compute_loss"], [90, 4, 1, "", "configure_optimizers"], [90, 4, 1, "", "fit"], [90, 4, 1, "", "forward"], [90, 4, 1, "", "inference"], [90, 4, 1, "", "predict"], [90, 4, 1, "", "predict_as_dataframe"], [90, 3, 1, "", "prediction_labels"], [90, 4, 1, "", "shared_step"], [90, 3, 1, "", "target_labels"], [90, 4, 1, "", "train"], [90, 4, 1, "", "training_step"], [90, 4, 1, "", "validate_tasks"], [90, 4, 1, "", "validation_step"]], "graphnet.models.gnn": [[92, 0, 0, "-", "RNN_tito"], [93, 0, 0, "-", "convnet"], [94, 0, 0, "-", "dynedge"], [95, 0, 0, "-", "dynedge_jinst"], [96, 0, 0, "-", "dynedge_kaggle_tito"], [97, 0, 0, "-", "gnn"], [98, 0, 0, "-", "icemix"], [99, 0, 0, "-", "particlenet"]], "graphnet.models.gnn.RNN_tito": [[92, 1, 1, "", "RNN_TITO"]], "graphnet.models.gnn.RNN_tito.RNN_TITO": [[92, 4, 1, "", "forward"]], "graphnet.models.gnn.convnet": [[93, 1, 1, "", "ConvNet"]], "graphnet.models.gnn.convnet.ConvNet": [[93, 4, 1, "", "forward"]], "graphnet.models.gnn.dynedge": [[94, 1, 1, "", "DynEdge"]], "graphnet.models.gnn.dynedge.DynEdge": [[94, 4, 1, "", "forward"]], "graphnet.models.gnn.dynedge_jinst": [[95, 1, 1, "", "DynEdgeJINST"]], "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST": [[95, 4, 1, "", "forward"]], "graphnet.models.gnn.dynedge_kaggle_tito": [[96, 1, 1, "", "DynEdgeTITO"]], "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO": [[96, 4, 1, "", "forward"]], "graphnet.models.gnn.gnn": [[97, 1, 1, "", "GNN"]], "graphnet.models.gnn.gnn.GNN": [[97, 4, 1, "", "forward"], [97, 3, 1, "", "nb_inputs"], [97, 3, 1, "", "nb_outputs"]], "graphnet.models.gnn.icemix": [[98, 1, 1, "", "DeepIce"]], "graphnet.models.gnn.icemix.DeepIce": [[98, 4, 1, "", "forward"], [98, 4, 1, "", "no_weight_decay"]], "graphnet.models.gnn.particlenet": [[99, 1, 1, "", "ParticleNeT"]], "graphnet.models.gnn.particlenet.ParticleNeT": [[99, 4, 1, "", "forward"]], "graphnet.models.graphs": [[101, 0, 0, "-", "edges"], [104, 0, 0, "-", "graph_definition"], [105, 0, 0, "-", "graphs"], [106, 0, 0, "-", "nodes"], [108, 0, 0, "-", "utils"]], "graphnet.models.graphs.edges": [[102, 0, 0, "-", "edges"], [103, 0, 0, "-", "minkowski"]], "graphnet.models.graphs.edges.edges": [[102, 1, 1, "", "EdgeDefinition"], [102, 1, 1, "", "EuclideanEdges"], [102, 1, 1, "", "KNNEdges"], [102, 1, 1, "", "RadialEdges"]], "graphnet.models.graphs.edges.edges.EdgeDefinition": [[102, 4, 1, "", "forward"]], "graphnet.models.graphs.edges.minkowski": [[103, 1, 1, "", "MinkowskiKNNEdges"], [103, 5, 1, "", "compute_minkowski_distance_mat"]], "graphnet.models.graphs.graph_definition": [[104, 1, 1, "", "GraphDefinition"]], "graphnet.models.graphs.graph_definition.GraphDefinition": [[104, 4, 1, "", "forward"]], "graphnet.models.graphs.graphs": [[105, 1, 1, "", "EdgelessGraph"], [105, 1, 1, "", "KNNGraph"]], "graphnet.models.graphs.nodes": [[107, 0, 0, "-", "nodes"]], "graphnet.models.graphs.nodes.nodes": [[107, 1, 1, "", "IceMixNodes"], [107, 1, 1, "", "NodeAsDOMTimeSeries"], [107, 1, 1, "", "NodeDefinition"], [107, 1, 1, "", "NodesAsPulses"], [107, 1, 1, "", "PercentileClusters"]], "graphnet.models.graphs.nodes.nodes.NodeDefinition": [[107, 4, 1, "", "forward"], [107, 3, 1, "", "nb_outputs"], [107, 4, 1, "", "set_number_of_inputs"], [107, 4, 1, "", "set_output_feature_names"]], "graphnet.models.graphs.utils": [[108, 5, 1, "", "cluster_summarize_with_percentiles"], [108, 5, 1, "", "gather_cluster_sequence"], [108, 5, 1, "", "ice_transparency"], [108, 5, 1, "", "identify_indices"], [108, 5, 1, "", "lex_sort"]], "graphnet.models.model": [[109, 1, 1, "", "Model"]], "graphnet.models.model.Model": [[109, 4, 1, "", "extra_repr"], [109, 4, 1, "", "extra_repr_recursive"], [109, 4, 1, "", "from_config"], [109, 4, 1, "", "load"], [109, 4, 1, "", "load_state_dict"], [109, 4, 1, "", "save"], [109, 4, 1, "", "save_state_dict"], [109, 4, 1, "", "set_verbose_print_recursively"], [109, 2, 1, "", "verbose_print"]], "graphnet.models.normalizing_flow": [[110, 1, 1, "", "NormalizingFlow"]], "graphnet.models.normalizing_flow.NormalizingFlow": [[110, 4, 1, "", "forward"], [110, 4, 1, "", "shared_step"], [110, 4, 1, "", "validate_tasks"]], "graphnet.models.rnn": [[112, 0, 0, "-", "node_rnn"]], "graphnet.models.rnn.node_rnn": [[112, 1, 1, "", "Node_RNN"]], "graphnet.models.rnn.node_rnn.Node_RNN": [[112, 4, 1, "", "clean_up_data_object"], [112, 4, 1, "", "forward"]], "graphnet.models.standard_averaged_model": [[113, 1, 1, "", "StandardAveragedModel"]], "graphnet.models.standard_averaged_model.StandardAveragedModel": [[113, 4, 1, "", "load_state_dict"], [113, 4, 1, "", "on_train_end"], [113, 4, 1, "", "optimizer_step"], [113, 4, 1, "", "training_step"], [113, 4, 1, "", "validation_step"]], "graphnet.models.standard_model": [[114, 1, 1, "", "StandardModel"]], "graphnet.models.standard_model.StandardModel": [[114, 4, 1, "", "compute_loss"], [114, 4, 1, "", "forward"], [114, 4, 1, "", "shared_step"], [114, 4, 1, "", "validate_tasks"]], "graphnet.models.task": [[116, 0, 0, "-", "classification"], [117, 0, 0, "-", "reconstruction"], [118, 0, 0, "-", "task"]], "graphnet.models.task.classification": [[116, 1, 1, "", "BinaryClassificationTask"], [116, 1, 1, "", "BinaryClassificationTaskLogits"], [116, 1, 1, "", "MulticlassClassificationTask"]], "graphnet.models.task.classification.BinaryClassificationTask": [[116, 2, 1, "", "default_prediction_labels"], [116, 2, 1, "", "default_target_labels"], [116, 2, 1, "", "nb_inputs"]], "graphnet.models.task.classification.BinaryClassificationTaskLogits": [[116, 2, 1, "", "default_prediction_labels"], [116, 2, 1, "", "default_target_labels"], [116, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction": [[117, 1, 1, "", "AzimuthReconstruction"], [117, 1, 1, "", "AzimuthReconstructionWithKappa"], [117, 1, 1, "", "DirectionReconstructionWithKappa"], [117, 1, 1, "", "EnergyReconstruction"], [117, 1, 1, "", "EnergyReconstructionWithPower"], [117, 1, 1, "", "EnergyReconstructionWithUncertainty"], [117, 1, 1, "", "EnergyTCReconstruction"], [117, 1, 1, "", "InelasticityReconstruction"], [117, 1, 1, "", "PositionReconstruction"], [117, 1, 1, "", "TimeReconstruction"], [117, 1, 1, "", "VertexReconstruction"], [117, 1, 1, "", "ZenithReconstruction"], [117, 1, 1, "", "ZenithReconstructionWithKappa"]], "graphnet.models.task.reconstruction.AzimuthReconstruction": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstruction": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstructionWithPower": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyTCReconstruction": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.InelasticityReconstruction": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.PositionReconstruction": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.TimeReconstruction": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.VertexReconstruction": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.ZenithReconstruction": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa": [[117, 2, 1, "", "default_prediction_labels"], [117, 2, 1, "", "default_target_labels"], [117, 2, 1, "", "nb_inputs"]], "graphnet.models.task.task": [[118, 1, 1, "", "IdentityTask"], [118, 1, 1, "", "LearnedTask"], [118, 1, 1, "", "StandardFlowTask"], [118, 1, 1, "", "StandardLearnedTask"], [118, 1, 1, "", "Task"]], "graphnet.models.task.task.IdentityTask": [[118, 3, 1, "", "default_prediction_labels"], [118, 3, 1, "", "default_target_labels"], [118, 3, 1, "", "nb_inputs"]], "graphnet.models.task.task.LearnedTask": [[118, 4, 1, "", "compute_loss"], [118, 4, 1, "", "forward"], [118, 3, 1, "", "nb_inputs"]], "graphnet.models.task.task.StandardFlowTask": [[118, 3, 1, "", "default_prediction_labels"], [118, 4, 1, "", "forward"], [118, 4, 1, "", "nb_inputs"]], "graphnet.models.task.task.StandardLearnedTask": [[118, 4, 1, "", "compute_loss"], [118, 3, 1, "", "nb_inputs"]], "graphnet.models.task.task.Task": [[118, 3, 1, "", "default_prediction_labels"], [118, 3, 1, "", "default_target_labels"], [118, 4, 1, "", "inference"], [118, 3, 1, "", "nb_inputs"], [118, 4, 1, "", "train_eval"]], "graphnet.models.transformer": [[120, 0, 0, "-", "iseecube"]], "graphnet.models.transformer.iseecube": [[120, 1, 1, "", "ISeeCube"]], "graphnet.models.transformer.iseecube.ISeeCube": [[120, 4, 1, "", "forward"]], "graphnet.models.utils": [[121, 5, 1, "", "array_to_sequence"], [121, 5, 1, "", "calculate_distance_matrix"], [121, 5, 1, "", "calculate_xyzt_homophily"], [121, 5, 1, "", "get_fields"], [121, 5, 1, "", "knn_graph_batch"]], "graphnet.training": [[123, 0, 0, "-", "callbacks"], [124, 0, 0, "-", "labels"], [125, 0, 0, "-", "loss_functions"], [126, 0, 0, "-", "utils"], [127, 0, 0, "-", "weight_fitting"]], "graphnet.training.callbacks": [[123, 1, 1, "", "GraphnetEarlyStopping"], [123, 1, 1, "", "PiecewiseLinearLR"], [123, 1, 1, "", "ProgressBar"]], "graphnet.training.callbacks.GraphnetEarlyStopping": [[123, 4, 1, "", "on_fit_end"], [123, 4, 1, "", "on_train_epoch_end"], [123, 4, 1, "", "on_validation_end"], [123, 4, 1, "", "setup"]], "graphnet.training.callbacks.PiecewiseLinearLR": [[123, 4, 1, "", "get_lr"]], "graphnet.training.callbacks.ProgressBar": [[123, 4, 1, "", "get_metrics"], [123, 4, 1, "", "init_predict_tqdm"], [123, 4, 1, "", "init_test_tqdm"], [123, 4, 1, "", "init_train_tqdm"], [123, 4, 1, "", "init_validation_tqdm"], [123, 4, 1, "", "on_train_epoch_end"], [123, 4, 1, "", "on_train_epoch_start"]], "graphnet.training.labels": [[124, 1, 1, "", "Direction"], [124, 1, 1, "", "Label"], [124, 1, 1, "", "Track"]], "graphnet.training.labels.Label": [[124, 3, 1, "", "key"]], "graphnet.training.loss_functions": [[125, 1, 1, "", "BinaryCrossEntropyLoss"], [125, 1, 1, "", "CrossEntropyLoss"], [125, 1, 1, "", "EnsembleLoss"], [125, 1, 1, "", "EuclideanDistanceLoss"], [125, 1, 1, "", "LogCMK"], [125, 1, 1, "", "LogCoshLoss"], [125, 1, 1, "", "LossFunction"], [125, 1, 1, "", "MSELoss"], [125, 1, 1, "", "RMSELoss"], [125, 1, 1, "", "RMSEVonMisesFisher3DLoss"], [125, 1, 1, "", "VonMisesFisher2DLoss"], [125, 1, 1, "", "VonMisesFisher3DLoss"], [125, 1, 1, "", "VonMisesFisherLoss"]], "graphnet.training.loss_functions.LogCMK": [[125, 4, 1, "", "backward"], [125, 4, 1, "", "forward"]], "graphnet.training.loss_functions.LossFunction": [[125, 4, 1, "", "forward"]], "graphnet.training.loss_functions.VonMisesFisherLoss": [[125, 4, 1, "", "log_cmk"], [125, 4, 1, "", "log_cmk_approx"], [125, 4, 1, "", "log_cmk_exact"]], "graphnet.training.utils": [[126, 5, 1, "", "collate_fn"], [126, 1, 1, "", "collator_sequence_buckleting"], [126, 5, 1, "", "get_predictions"], [126, 5, 1, "", "make_dataloader"], [126, 5, 1, "", "make_train_validation_dataloader"], [126, 5, 1, "", "save_results"], [126, 5, 1, "", "save_selection"]], "graphnet.training.weight_fitting": [[127, 1, 1, "", "BjoernLow"], [127, 1, 1, "", "Uniform"], [127, 1, 1, "", "WeightFitter"]], "graphnet.training.weight_fitting.WeightFitter": [[127, 4, 1, "", "fit"]], "graphnet.utilities": [[129, 0, 0, "-", "argparse"], [130, 0, 0, "-", "config"], [137, 0, 0, "-", "decorators"], [138, 0, 0, "-", "deprecation_tools"], [139, 0, 0, "-", "filesys"], [140, 0, 0, "-", "imports"], [141, 0, 0, "-", "logging"], [142, 0, 0, "-", "maths"]], "graphnet.utilities.argparse": [[129, 1, 1, "", "ArgumentParser"], [129, 1, 1, "", "Options"]], "graphnet.utilities.argparse.ArgumentParser": [[129, 2, 1, "", "standard_arguments"], [129, 4, 1, "", "with_standard_arguments"]], "graphnet.utilities.argparse.Options": [[129, 4, 1, "", "contains"], [129, 4, 1, "", "pop_default"]], "graphnet.utilities.config": [[131, 0, 0, "-", "base_config"], [132, 0, 0, "-", "configurable"], [133, 0, 0, "-", "dataset_config"], [134, 0, 0, "-", "model_config"], [135, 0, 0, "-", "parsing"], [136, 0, 0, "-", "training_config"]], "graphnet.utilities.config.base_config": [[131, 1, 1, "", "BaseConfig"], [131, 5, 1, "", "get_all_argument_values"]], "graphnet.utilities.config.base_config.BaseConfig": [[131, 4, 1, "", "as_dict"], [131, 4, 1, "", "dump"], [131, 4, 1, "", "load"], [131, 2, 1, "", "model_computed_fields"], [131, 2, 1, "", "model_config"], [131, 2, 1, "", "model_fields"]], "graphnet.utilities.config.configurable": [[132, 1, 1, "", "Configurable"]], "graphnet.utilities.config.configurable.Configurable": [[132, 3, 1, "", "config"], [132, 4, 1, "", "from_config"], [132, 4, 1, "", "save_config"]], "graphnet.utilities.config.dataset_config": [[133, 1, 1, "", "DatasetConfig"], [133, 1, 1, "", "DatasetConfigSaverABCMeta"], [133, 1, 1, "", "DatasetConfigSaverMeta"], [133, 5, 1, "", "save_dataset_config"]], "graphnet.utilities.config.dataset_config.DatasetConfig": [[133, 4, 1, "", "as_dict"], [133, 2, 1, "", "features"], [133, 2, 1, "", "graph_definition"], [133, 2, 1, "", "index_column"], [133, 2, 1, "", "labels"], [133, 2, 1, "", "loss_weight_column"], [133, 2, 1, "", "loss_weight_default_value"], [133, 2, 1, "", "loss_weight_table"], [133, 2, 1, "", "model_computed_fields"], [133, 2, 1, "", "model_config"], [133, 2, 1, "", "model_fields"], [133, 2, 1, "", "node_truth"], [133, 2, 1, "", "node_truth_table"], [133, 2, 1, "", "path"], [133, 2, 1, "", "pulsemaps"], [133, 2, 1, "", "seed"], [133, 2, 1, "", "selection"], [133, 2, 1, "", "string_selection"], [133, 2, 1, "", "truth"], [133, 2, 1, "", "truth_table"]], "graphnet.utilities.config.model_config": [[134, 1, 1, "", "ModelConfig"], [134, 1, 1, "", "ModelConfigSaverABC"], [134, 1, 1, "", "ModelConfigSaverMeta"], [134, 5, 1, "", "save_model_config"]], "graphnet.utilities.config.model_config.ModelConfig": [[134, 2, 1, "", "arguments"], [134, 4, 1, "", "as_dict"], [134, 2, 1, "", "class_name"], [134, 2, 1, "", "model_computed_fields"], [134, 2, 1, "", "model_config"], [134, 2, 1, "", "model_fields"]], "graphnet.utilities.config.parsing": [[135, 5, 1, "", "get_all_grapnet_classes"], [135, 5, 1, "", "get_graphnet_classes"], [135, 5, 1, "", "is_graphnet_class"], [135, 5, 1, "", "is_graphnet_module"], [135, 5, 1, "", "list_all_submodules"], [135, 5, 1, "", "traverse_and_apply"]], "graphnet.utilities.config.training_config": [[136, 1, 1, "", "TrainingConfig"]], "graphnet.utilities.config.training_config.TrainingConfig": [[136, 2, 1, "", "dataloader"], [136, 2, 1, "", "early_stopping_patience"], [136, 2, 1, "", "fit"], [136, 2, 1, "", "model_computed_fields"], [136, 2, 1, "", "model_config"], [136, 2, 1, "", "model_fields"], [136, 2, 1, "", "target"]], "graphnet.utilities.deprecation_tools": [[138, 5, 1, "", "rename_state_dict_entries"]], "graphnet.utilities.filesys": [[139, 5, 1, "", "find_i3_files"], [139, 5, 1, "", "has_extension"], [139, 5, 1, "", "is_gcd_file"], [139, 5, 1, "", "is_i3_file"]], "graphnet.utilities.imports": [[140, 5, 1, "", "has_icecube_package"], [140, 5, 1, "", "has_jammy_flows_package"], [140, 5, 1, "", "has_torch_package"], [140, 5, 1, "", "requires_icecube"]], "graphnet.utilities.logging": [[141, 1, 1, "", "Logger"], [141, 1, 1, "", "RepeatFilter"]], "graphnet.utilities.logging.Logger": [[141, 4, 1, "", "critical"], [141, 4, 1, "", "debug"], [141, 4, 1, "", "error"], [141, 3, 1, "", "file_handlers"], [141, 3, 1, "", "handlers"], [141, 4, 1, "", "info"], [141, 4, 1, "", "setLevel"], [141, 3, 1, "", "stream_handlers"], [141, 4, 1, "", "warning"], [141, 4, 1, "", "warning_once"]], "graphnet.utilities.logging.RepeatFilter": [[141, 4, 1, "", "filter"], [141, 2, 1, "", "nb_repeats_allowed"]], "graphnet.utilities.maths": [[142, 5, 1, "", "eps_like"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "property", "Python property"], "4": ["py", "method", "Python method"], "5": ["py", "function", "Python function"], "6": ["py", "exception", "Python exception"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:property", "4": "py:method", "5": "py:function", "6": "py:exception"}, "terms": {"": [0, 7, 8, 9, 11, 13, 16, 34, 45, 47, 49, 52, 53, 55, 62, 64, 69, 82, 86, 90, 93, 94, 99, 104, 110, 118, 121, 123, 127, 129, 133, 134, 141, 142, 145, 146, 147, 148, 150, 151, 152], "0": [9, 11, 13, 16, 45, 47, 50, 55, 60, 74, 80, 83, 84, 92, 93, 94, 96, 99, 102, 103, 105, 108, 112, 118, 121, 124, 125, 126, 133, 146, 147, 149, 150, 152], "000": 146, "001": [147, 152], "01": [147, 152], "0221": 147, "02_data": 147, "03042": 95, "03762": 82, "04616": 125, "04_ensemble_dataset": 147, "05": 125, "06": 144, "06166": 102, "08570": 99, "0e04": 150, "0e4": 150, "1": [0, 7, 9, 11, 13, 14, 19, 34, 45, 47, 55, 60, 63, 66, 69, 80, 83, 84, 92, 94, 96, 98, 99, 102, 103, 105, 108, 112, 116, 117, 118, 121, 123, 124, 125, 126, 127, 133, 145, 146, 147, 148, 149, 151, 152], "10": [9, 66, 87, 88, 89, 107, 108, 129, 146, 147, 150, 152], "100": 146, "1000": [118, 146, 147], "10000": [11, 13, 16, 60, 82], "1088": 147, "11": [147, 149], "12": [60, 98, 120, 133, 146, 147], "120": 147, "128": [82, 93, 94, 96, 99, 129, 146, 147, 152], "13": 60, "14": [60, 133, 146, 147], "1536": 120, "15674": 82, "16": [14, 60, 82, 92, 99, 120, 133, 146, 147, 152], "17": [14, 147], "1706": 82, "1748": 147, "1809": 102, "1812": 125, "1902": 99, "192": 98, "196": 120, "1e6": 118, "2": [9, 34, 45, 55, 83, 84, 92, 94, 96, 99, 102, 105, 108, 112, 117, 121, 125, 133, 146, 147, 149, 152], "20": [11, 13, 16, 60, 141, 147, 149, 150, 152], "200": [146, 150], "200000": 63, "2018": 144, "2019": 125, "2020": [0, 148, 151], "2023": 14, "21": [144, 146, 147], "2209": 95, "2310": 82, "256": [94, 96, 99, 120], "26": 146, "2d": 125, "2nd": [14, 82, 98], "3": [84, 92, 93, 96, 103, 108, 112, 117, 120, 121, 125, 144, 147, 149, 150], "30": 150, "300": [146, 150], "32": [14, 82, 98, 120], "336": [94, 96], "384": [82, 98, 120], "39": [0, 148, 151], "3d": [117, 125], "4": [14, 83, 95, 98, 117, 147, 150, 152], "40": 150, "400": 64, "42": 9, "5": [11, 13, 16, 60, 92, 112, 125, 129, 145, 146, 147, 149, 150, 152], "50": [107, 108, 129, 150], "500": [108, 150], "50000": [60, 133, 146, 147], "5001": 146, "59": 149, "6": [82, 84, 98, 120], "64": [92, 99], "7": [74, 84], "700": 125, "768": 107, "8": [83, 84, 92, 94, 96, 105, 112, 125, 126, 144, 146, 147, 149, 152], "80": [147, 152], "86": [22, 87], "890778": [0, 148, 151], "9": 9, "90": [107, 108], "A": [5, 7, 9, 11, 14, 36, 49, 50, 51, 52, 53, 59, 64, 66, 67, 69, 70, 74, 84, 90, 104, 105, 108, 109, 110, 114, 116, 118, 121, 125, 127, 131, 133, 134, 136, 145, 146, 147, 150, 152], "AND": [14, 125], "AS": [14, 125], "As": [94, 99, 152], "BE": [14, 125], "BUT": [14, 125], "But": 152, "By": [0, 45, 47, 50, 55, 118, 146, 147, 148, 151, 152], "FOR": [14, 125], "For": [14, 37, 107, 123, 146, 147, 152], "IN": [14, 125], "If": [5, 11, 13, 14, 21, 23, 36, 64, 66, 67, 82, 83, 94, 98, 99, 104, 107, 108, 109, 118, 123, 125, 127, 144, 145, 147, 152], "In": [45, 47, 49, 50, 55, 62, 133, 134, 145, 147, 149], "It": [1, 5, 34, 59, 74, 82, 108, 116, 118, 144, 146, 147, 152], "NO": [14, 125], "NOT": [14, 59, 125, 147], "No": [0, 147, 148, 151], "OF": [14, 125], "ONE": 66, "OR": [14, 125], "On": 5, "One": 147, "Or": 146, "Such": 59, "THE": [14, 125], "TO": [14, 125], "That": [11, 13, 16, 94, 99, 117, 124, 147, 152], "The": [0, 7, 9, 11, 13, 14, 16, 18, 34, 37, 45, 47, 55, 59, 62, 63, 64, 69, 70, 74, 76, 80, 82, 83, 84, 92, 94, 96, 98, 99, 102, 104, 108, 110, 112, 116, 117, 118, 120, 121, 123, 124, 125, 138, 145, 146, 148, 150, 151], "Then": [5, 144], "There": [147, 152], "These": [0, 49, 62, 64, 104, 144, 146, 147, 148, 150, 151, 152], "To": [146, 147, 149, 150, 152], "WITH": [14, 125], "Will": [5, 66, 67, 69, 74, 76, 102, 145], "With": [147, 150, 152], "_": 147, "__": [34, 37, 147], "_____________________": [14, 125], "__call__": [19, 21, 49, 70, 145, 146, 147, 150], "__fields__": [131, 133, 134, 136], "__init__": [133, 134, 145, 146, 147, 152], "_accepted_extractor": [145, 150], "_accepted_file_extens": [145, 150], "_and_": [94, 99], "_column_nam": 145, "_construct_edg": 102, "_definition_": 147, "_extractor": [145, 150], "_extractor_nam": [145, 150], "_file_extens": 145, "_file_hash": 5, "_fit_weight": 127, "_forward": 152, "_indic": [11, 13], "_layer": 152, "_lrschedul": 123, "_may_": [11, 13], "_merge_datafram": 145, "_pred": 118, "_save_fil": 145, "_sensor_tim": 150, "_sensor_xyz": 150, "_tabl": 145, "_task": [90, 110, 114], "_verify_column": 145, "_x_": 147, "a__b": 34, "ab": [60, 99, 125, 133, 146, 147], "abc": [7, 11, 19, 49, 62, 69, 109, 124, 127, 132, 133, 134], "abcmeta": [133, 134], "abil": 146, "abl": [34, 107, 110, 145, 147, 149, 150, 152], "about": [109, 131, 133, 134, 136, 146, 147, 150], "abov": [14, 125, 127, 146, 147, 150, 152], "absopt": 107, "absorpt": 108, "abstract": [1, 5, 11, 62, 86, 97, 104, 118, 132, 147], "abstractmethod": 146, "acceler": 1, "accept": [49, 144, 152], "accepted_extractor": [49, 145], "accepted_file_extens": [49, 145], "access": [124, 146], "accompani": [45, 47, 50, 55, 147], "accord": [80, 84, 102, 104, 105, 108, 125], "achiev": 149, "achitectur": 152, "across": [1, 2, 11, 13, 16, 37, 56, 69, 84, 90, 114, 125, 128, 129, 130, 141, 150], "act": [118, 125, 147, 152], "action": [14, 125], "activ": [83, 90, 92, 94, 99, 107, 112, 118, 144], "activation_lay": [94, 99], "actual": [147, 152], "ad": [7, 11, 13, 16, 22, 45, 47, 55, 82, 94, 98, 104, 107, 108], "adam": [110, 147, 152], "adapt": [147, 152], "add": [11, 83, 94, 99, 129, 138, 144, 147, 150], "add_batchnorm_lay": 99, "add_count": [107, 108], "add_global_variables_after_pool": [94, 147, 152], "add_ice_properti": 107, "add_inactive_sensor": 104, "add_label": [11, 146, 147], "add_norm_lay": 94, "add_to_databas": 127, "addit": [49, 62, 80, 83, 90, 125, 127, 145, 147, 152], "additional_attribut": [90, 126, 147, 152], "address": 152, "adher": [144, 152], "adjac": 86, "adjust": 152, "advanc": [1, 84], "after": [9, 83, 92, 94, 96, 99, 123, 129, 133, 146, 147, 152], "again": [147, 152], "against": 5, "aggr": 83, "aggreg": [83, 84], "agnost": [0, 148, 151, 152], "agreement": [0, 144, 148, 151], "ai": 147, "aim": [0, 1, 144, 147, 148, 151], "algorithm": 26, "all": [1, 5, 11, 13, 14, 16, 18, 19, 21, 23, 36, 59, 64, 66, 67, 74, 82, 83, 84, 86, 94, 97, 99, 103, 104, 109, 118, 125, 127, 131, 132, 133, 134, 135, 136, 141, 144, 145, 146, 147, 150, 152], "allow": [0, 5, 39, 68, 79, 84, 123, 131, 136, 146, 147, 148, 151, 152], "along": [108, 147, 152], "alongsid": [147, 152], "alreadi": 59, "also": [7, 11, 13, 16, 60, 92, 133, 145, 146, 147, 150, 152], "alter": 104, "altern": [94, 125, 144], "alwai": 126, "amount": 92, "an": [0, 14, 19, 37, 45, 47, 50, 55, 60, 104, 105, 112, 113, 125, 139, 141, 144, 145, 147, 148, 149, 150, 151, 152], "anaconda": 149, "analys": [68, 147], "analysi": 69, "angl": [117, 124, 147, 152], "ani": [6, 7, 8, 9, 11, 13, 14, 16, 34, 35, 36, 37, 49, 51, 52, 53, 62, 64, 74, 80, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 118, 120, 121, 123, 125, 127, 129, 131, 132, 133, 134, 135, 136, 141, 146, 147, 152], "annot": [133, 134, 136], "anoth": [14, 133, 134, 146, 147], "anyth": 144, "api": [1, 145, 147], "appear": [69, 146, 147], "append": 104, "appli": [7, 11, 13, 16, 45, 47, 48, 49, 55, 69, 83, 84, 90, 92, 93, 94, 95, 96, 97, 98, 99, 108, 110, 112, 114, 116, 118, 120, 125, 135, 145, 146, 147], "applic": [34, 146, 147, 152], "appropri": [59, 118, 147], "approx": 125, "approxim": 64, "ar": [0, 1, 4, 5, 11, 13, 14, 16, 21, 23, 36, 37, 49, 60, 62, 63, 64, 69, 74, 83, 84, 92, 94, 96, 99, 100, 101, 102, 104, 105, 106, 107, 108, 112, 116, 125, 127, 133, 134, 144, 145, 146, 147, 148, 150, 151, 152], "arbitrari": [0, 148, 151], "arca": 89, "arca115": [85, 89], "architectur": [1, 93, 94, 95, 96, 98, 99, 110, 112, 120, 147, 152], "archiv": 126, "area": 1, "arg": [11, 13, 16, 18, 36, 80, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 109, 110, 112, 113, 114, 116, 117, 118, 120, 125, 129, 131, 141, 145, 150], "argpars": 128, "argument": [5, 9, 14, 63, 66, 67, 98, 110, 123, 127, 129, 131, 133, 134, 136, 146, 147, 150, 152], "argumentpars": [128, 129], "aris": [14, 125], "arrai": [19, 31, 34, 107, 108, 121, 145, 146, 147, 150], "array_to_sequ": [79, 121], "arriv": 146, "art": [0, 148, 151], "articl": 147, "artifact": [147, 152], "arxiv": [82, 99, 102, 125], "as_dict": [131, 133, 134, 147, 152], "assert": [145, 146], "assertionerror": 145, "assign": [7, 11, 13, 16, 80, 84, 105, 144, 145], "associ": [14, 74, 76, 104, 108, 117, 125, 145, 146, 147, 150, 152], "assort": 142, "assum": [5, 74, 82, 86, 104, 108, 118, 121], "atmospher": 146, "attach": 59, "attach_index": [56, 59], "attempt": [21, 147], "attent": [82, 83, 98, 120], "attention_rel": [81, 83], "attn_drop": 83, "attn_head_dim": 83, "attn_mask": 83, "attribut": [5, 11, 13, 16, 80, 118, 146, 147, 152], "attributecoarsen": [79, 80], "author": [14, 93, 95, 125], "auto": 118, "autom": 144, "automat": [23, 63, 82, 104, 125, 144, 145, 147, 150], "automatic_log_bin": 127, "auxiliari": [4, 82, 147, 152], "avail": [5, 7, 23, 66, 67, 116, 117, 118, 140, 145, 146, 147, 149, 150, 152], "available_backend": 5, "available_t": 145, "averag": [84, 113, 125], "avg": 80, "avg_pool": 80, "avg_pool_x": 80, "avoid": [13, 141, 144], "awai": [1, 147], "azimiuth": 124, "azimuth": [4, 117, 124], "azimuth_kappa": 117, "azimuth_kei": 124, "azimuth_pr": 117, "azimuthreconstruct": [115, 117], "azimuthreconstructionwithkappa": [115, 117], "b": [34, 80, 84, 121, 147, 150, 152], "backbon": [110, 147], "backend": [5, 12, 15, 61, 63, 66, 67, 150], "backward": [108, 125], "baikal": 66, "baikalgvd8": [85, 89], "baikalgvdsmal": [65, 66], "bar": 123, "base": [0, 4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 36, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 55, 60, 62, 63, 64, 66, 67, 69, 70, 74, 76, 78, 80, 82, 83, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 109, 110, 112, 113, 114, 116, 117, 118, 120, 123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 136, 140, 141, 145, 146, 147, 148, 151, 152], "base_config": 130, "baseclass": 69, "baseconfig": [130, 131, 132, 133, 134, 136], "basemodel": [131, 133, 134], "basi": 152, "basic": [1, 147], "batch": [0, 8, 13, 14, 63, 80, 83, 84, 90, 99, 110, 112, 114, 121, 126, 129, 146, 148, 151], "batch_idx": [90, 110, 113, 114, 121], "batch_siz": [8, 9, 14, 121, 126, 146, 147, 152], "batch_split": 126, "batchsampl": 14, "becaus": [58, 147, 152], "been": [5, 74, 125, 144, 152], "befor": [11, 13, 94, 103, 112, 118, 123], "behavior": 145, "behaviour": 123, "behind": [147, 152], "being": [21, 74, 82, 116, 118, 146, 147, 152], "beitv2": 83, "belong": 121, "below": [5, 60, 107, 127, 144, 145, 147, 148, 150, 151, 152], "benchmark": 5, "besid": 146, "bessel": 125, "best": [0, 123, 144, 148, 151], "better": 144, "between": [39, 66, 82, 90, 100, 101, 102, 103, 106, 110, 114, 118, 121, 123, 125, 127, 133, 134, 147, 152], "bia": [83, 120], "bias": [147, 152], "big": [147, 152], "biject": 145, "bin": [14, 127], "binari": [114, 116, 125, 152], "binaryclassificationtask": [115, 116, 147, 152], "binaryclassificationtasklogit": [115, 116], "binarycrossentropyloss": [122, 125], "bjoernlow": [122, 127], "black": 144, "blob": [14, 104, 125, 147], "block": [0, 1, 81, 83, 99, 147, 148, 151], "block_rel": [81, 83], "boilerpl": 152, "bool": [8, 14, 35, 36, 37, 59, 60, 62, 74, 82, 83, 90, 92, 94, 96, 98, 99, 104, 107, 108, 109, 114, 120, 123, 125, 126, 127, 129, 135, 138, 139, 140, 141], "boost": 37, "border": 31, "both": [0, 23, 110, 114, 118, 147, 148, 150, 151, 152], "bottleneck": 14, "boundari": 31, "box": [145, 147, 152], "branch": 144, "break_cyclic_recurs": [33, 37], "broken": [45, 47, 50, 55], "bucket": [14, 120, 126], "bucket_width": 14, "bug": [144, 147], "build": [0, 1, 79, 86, 102, 103, 107, 108, 109, 110, 131, 133, 134, 147, 148, 151, 152], "built": [0, 79, 104, 110, 146, 147, 148, 150, 151, 152], "c": [14, 21, 34, 84, 103, 125, 147], "c_": 125, "cach": 13, "cache_s": 13, "calcul": [74, 82, 90, 102, 105, 107, 110, 114, 121, 124, 125, 146, 147, 152], "calculate_distance_matrix": [79, 121], "calculate_xyzt_homophili": [79, 121], "calibr": [35, 37], "call": [7, 14, 23, 37, 82, 84, 118, 123, 127, 141, 145, 147, 150, 152], "callabl": [8, 11, 37, 83, 84, 86, 87, 88, 89, 104, 113, 118, 126, 127, 131, 133, 134, 135, 140, 150], "callback": [90, 122, 147, 152], "can": [0, 1, 5, 9, 11, 13, 14, 16, 19, 23, 26, 74, 82, 84, 104, 110, 127, 129, 131, 133, 134, 144, 145, 146, 147, 148, 150, 151, 152], "cannot": [37, 112, 127, 131, 136], "cap": 127, "capabl": [0, 114, 148, 151], "captur": [147, 152], "care": 146, "carlo": 35, "cascad": 117, "case": [11, 13, 16, 23, 45, 47, 50, 55, 74, 84, 108, 118, 145, 146, 147, 149, 152], "cast": [23, 37], "cast_object_to_pure_python": [33, 37], "cast_pulse_series_to_pure_python": [33, 37], "caus": 147, "caveat": [147, 152], "cc": 124, "cd": 149, "center": 102, "centr": 102, "central": [147, 149], "certain": 147, "cfg": 11, "cframe": 21, "chain": [0, 1, 68, 79, 90, 110, 114, 125, 148, 149, 151], "chang": [125, 144, 147, 152], "charg": [4, 14, 82, 92, 107, 108, 112, 125, 146, 147, 152], "charge_column": 107, "check": [8, 35, 36, 37, 49, 59, 107, 129, 139, 140, 144, 150], "checkpoint": 147, "checkpointing_bas": 147, "chenli2049": 120, "cherenkov": [107, 108, 147, 150, 152], "choic": [146, 147, 152], "choos": [147, 152], "chosen": [102, 108, 141, 146], "chunk": [13, 14, 145], "chunk_siz": 13, "chunks_per_seg": 14, "citat": 5, "cite": 5, "ckpt": [147, 152], "ckpt_path": 90, "claim": [14, 125], "clash": 141, "class": [4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 36, 37, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 55, 60, 62, 63, 64, 66, 67, 69, 70, 74, 76, 80, 82, 83, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 109, 110, 112, 113, 114, 116, 117, 118, 120, 123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 135, 136, 141, 144, 145, 146], "class_nam": [11, 36, 49, 51, 52, 53, 62, 134, 141, 146, 147, 152], "classif": [1, 114, 115, 118, 125, 147, 152], "classifi": [116, 146, 147, 152], "classmethod": [8, 11, 109, 125, 131, 132, 147, 152], "classvar": [131, 133, 134, 136], "clean": [74, 144, 149], "clean_up_data_object": 112, "cleaning_modul": 73, "cleanup": 9, "clear": [141, 146], "cli": 129, "clone": 149, "close": 9, "closest": 123, "cloud": [147, 152], "cls_tocken": 98, "cluster": [80, 83, 84, 92, 94, 96, 99, 107, 108, 112], "cluster_column": 108, "cluster_index": 84, "cluster_indic": 108, "cluster_on": [107, 108], "cluster_summarize_with_percentil": [100, 108], "cnn": [147, 152], "coarsen": [79, 84], "code": [0, 31, 45, 55, 59, 104, 133, 134, 145, 146, 147, 148, 150, 151, 152], "coincid": 107, "collabor": [1, 147, 152], "collate_fn": [3, 8, 122, 126], "collator_sequence_bucklet": [122, 126], "collect": [11, 20, 33, 125, 142, 147, 152], "column": [7, 11, 13, 16, 19, 41, 43, 45, 47, 55, 59, 63, 64, 70, 76, 78, 82, 86, 90, 92, 102, 104, 105, 107, 108, 112, 116, 117, 118, 121, 125, 127, 145, 146, 147, 150, 152], "column_nam": [41, 145], "column_offset": 108, "columnmissingexcept": [11, 13, 77, 78], "com": [14, 98, 104, 110, 120, 125, 147, 149], "combin": [18, 34, 47, 92, 114, 125, 133, 152], "combine_extractor": 17, "combinedextractor": [17, 18], "come": [5, 90, 118, 145, 146, 147, 152], "command": 129, "comment": 5, "commit": 144, "common": [0, 1, 125, 133, 134, 137, 140, 146, 147, 148, 151], "compar": [147, 152], "comparison": [26, 125], "compat": [49, 60, 90, 110, 114, 118, 145, 146, 147, 152], "competit": [82, 83, 87, 96, 98], "complet": [0, 14, 79, 147, 148, 149, 151, 152], "complex": [0, 79, 147, 148, 151], "compon": [0, 1, 79, 90, 109, 110, 114, 147, 148, 151, 152], "compos": [147, 152], "composit": 141, "comprehens": 147, "compress": [5, 146], "compris": [0, 148, 151], "comput": [70, 83, 90, 103, 114, 118, 121, 125, 131, 133, 134, 136, 146, 147], "compute_loss": [90, 114, 118], "compute_minkowski_distance_mat": [101, 103], "computedfieldinfo": [131, 133, 134, 136], "con": [147, 152], "concatdataset": 11, "concaten": [11, 34, 94], "concept": 144, "conceptu": [145, 147], "concret": 147, "condit": [14, 110, 118, 125], "condition_on": 110, "confid": 147, "config": [8, 60, 123, 125, 128, 129, 146, 147, 152], "config_dir": [147, 152], "configdict": [131, 133, 134, 136], "configur": [0, 1, 9, 11, 46, 47, 70, 79, 90, 109, 130, 131, 133, 134, 136, 141, 145, 147, 148, 151, 152], "configure_optim": 90, "conflict": 147, "conform": [131, 133, 134, 136], "conjunct": [19, 118], "conn": 147, "connect": [0, 9, 14, 102, 103, 104, 107, 125, 146, 147, 148, 151], "consequ": 109, "consid": [74, 92, 146, 147, 150], "consist": [82, 129, 141, 144, 147, 152], "consortium": [0, 148, 151], "constant": [1, 3, 118, 143, 146, 147, 152], "constitut": [63, 146], "constraint": [90, 147], "construct": [5, 8, 9, 11, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 36, 39, 41, 43, 49, 51, 52, 53, 60, 62, 63, 64, 66, 67, 70, 80, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 112, 113, 114, 116, 117, 118, 120, 123, 124, 125, 126, 127, 129, 132, 133, 134, 141, 145, 146, 147, 152], "constructor": [145, 146, 147], "consult": 152, "consum": 147, "consumpt": 146, "conta": 14, "contain": [0, 5, 6, 7, 11, 13, 14, 16, 17, 18, 21, 34, 35, 38, 39, 40, 43, 45, 47, 49, 50, 51, 55, 59, 62, 63, 64, 65, 66, 69, 70, 74, 76, 78, 90, 94, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110, 114, 118, 121, 125, 127, 129, 145, 146, 147, 148, 150, 151, 152], "containeris": 1, "content": [145, 152], "context": 67, "continu": [0, 125, 147, 148, 151], "contract": [14, 125], "contribut": [0, 125, 147, 148, 151], "contributor": 144, "conveni": [1, 144, 147, 152], "convent": [45, 47, 50, 55], "convers": [7, 38, 39, 43, 45, 55, 107, 146, 147, 150], "convert": [0, 1, 3, 5, 7, 13, 21, 34, 36, 45, 46, 47, 55, 57, 63, 65, 121, 145, 146, 147, 148, 149, 150, 151], "converteddataset": 5, "convnet": [91, 147], "convolut": [83, 93, 94, 95, 96, 99], "coo": 146, "coordin": [31, 86, 103, 107, 108, 121, 147], "copi": [14, 125, 146], "copyright": [14, 125], "core": 97, "correct": 125, "correpond": 58, "correspond": [11, 13, 16, 34, 37, 58, 94, 99, 104, 108, 127, 131, 133, 134, 136, 139, 146, 147, 150, 152], "cosh": 125, "could": [144, 147, 152], "counterpart": 146, "cover": 60, "cpu": [7, 14, 45, 47, 55, 70], "creat": [5, 9, 14, 59, 104, 105, 107, 131, 132, 136, 144, 146, 152], "create_t": [56, 59], "create_table_and_save_to_sql": [56, 59], "creator": 5, "critic": [141, 147, 150], "cross": 125, "crossentropyloss": [122, 125], "csv": [126, 133, 146, 147, 150, 152], "ctx": 125, "cuda": 149, "curat": 5, "curated_datamodul": 3, "curateddataset": [3, 5, 66, 67], "curi": [0, 148, 151], "current": [60, 112, 123, 144, 147], "curv": 127, "custom": [11, 49, 77, 104, 123, 152], "custom_label_funct": 104, "customdomcoarsen": [79, 80], "customis": 123, "cut": 126, "d": [34, 103, 104, 107, 121, 144, 150], "damag": [14, 125], "data": [0, 1, 66, 67, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 107, 110, 112, 113, 114, 118, 120, 121, 124, 126, 129, 131, 133, 136, 140, 143, 146, 147, 148, 151, 152], "data_path": 104, "data_sourc": 14, "databas": [5, 16, 59, 64, 127, 146, 147], "database_exist": [56, 59], "database_indic": 126, "database_nam": 64, "database_path": [59, 127], "database_table_exist": [56, 59], "dataclass": [3, 35], "dataconfig": [133, 146], "dataconvert": [3, 46, 62, 63, 64, 147, 150], "dataformat": [61, 64], "datafram": [59, 60, 62, 86, 90, 126, 127, 145, 147, 150, 152], "dataload": [3, 5, 9, 13, 66, 67, 90, 104, 126, 136, 146, 147, 152], "datamodul": [3, 5], "datarepresent": 110, "dataset": [1, 3, 5, 8, 9, 25, 60, 63, 78, 92, 104, 112, 129, 133, 143, 150, 152], "dataset_1": [146, 147], "dataset_2": [146, 147], "dataset_3": [146, 147], "dataset_arg": 9, "dataset_config": [130, 147, 152], "dataset_config_path": [147, 152], "dataset_dir": 5, "dataset_refer": 9, "datasetconfig": [8, 11, 60, 130, 133, 146, 152], "datasetconfigsav": 133, "datasetconfigsaverabcmeta": [130, 133], "datasetconfigsavermeta": [130, 133], "db": [64, 126, 127, 146, 147], "db_count_norm": 127, "ddp": [147, 152], "de": 34, "deactiv": [90, 118], "deal": [14, 125], "debug": [141, 147], "decai": 98, "decor": [128, 140], "dedic": 144, "deem": 37, "deep": [0, 5, 62, 64, 83, 96, 98, 145, 147, 148, 149, 150, 151, 152], "deepcopi": 138, "deepcor": [4, 22, 87], "deepic": [91, 98], "def": [145, 146, 147, 150, 152], "default": [5, 7, 9, 11, 13, 14, 16, 21, 23, 31, 34, 43, 45, 47, 50, 55, 59, 63, 64, 66, 67, 69, 70, 74, 76, 82, 83, 84, 92, 93, 94, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 112, 118, 120, 121, 123, 124, 125, 127, 129, 131, 133, 139, 146, 147], "default_prediction_label": [116, 117, 118, 152], "default_target_label": [116, 117, 118, 152], "default_typ": 59, "defin": [5, 11, 13, 16, 60, 66, 67, 70, 74, 76, 84, 100, 101, 102, 104, 106, 108, 110, 126, 131, 133, 134, 136, 146, 147, 150, 152], "definit": [102, 104, 105, 107, 109, 118, 144, 147, 152], "deleg": 141, "deliv": 90, "demo_ic": 89, "demo_wat": 89, "denot": [19, 123, 124, 145, 150], "dens": 84, "depend": [0, 82, 145, 146, 147, 148, 151, 152], "deploi": [0, 1, 68, 70, 147, 148, 149, 151], "deploy": [0, 1, 104, 143, 147, 148, 150, 151, 152], "deployment_modul": 68, "deploymentmodul": [68, 69, 70, 76], "deprec": [44, 45, 54, 55, 138], "deprecated_method": [44, 54, 71], "deprecation_tool": 128, "depth": [83, 98, 108, 120], "depth_rel": 98, "describ": [5, 144, 147], "descript": [5, 109, 129], "design": [1, 147, 150], "desir": [127, 139], "detail": [1, 5, 92, 109, 110, 118, 123, 146, 147, 149, 150, 152], "detector": [0, 1, 31, 79, 104, 105, 107, 146, 147, 148, 151, 152], "detector_respons": 147, "determin": [69, 92], "develop": [0, 1, 144, 146, 147, 148, 149, 150, 151, 152], "deviat": [104, 105, 108], "devic": 70, "df": [59, 145], "dfg": [0, 148, 151], "dict": [5, 8, 9, 11, 13, 16, 23, 34, 37, 59, 70, 86, 87, 88, 89, 90, 98, 104, 105, 107, 109, 110, 113, 123, 126, 129, 131, 133, 134, 135, 136, 138, 145, 146, 147, 150], "dictionari": [11, 13, 16, 19, 34, 35, 37, 49, 59, 104, 105, 109, 131, 133, 134, 136, 145, 150], "did": 14, "differ": [0, 11, 13, 16, 19, 21, 39, 40, 41, 43, 49, 50, 51, 105, 126, 144, 145, 146, 147, 148, 150, 151, 152], "difficult": 146, "diffier": [147, 152], "digit": 82, "dim": [82, 83], "dimenion": [94, 96, 99], "dimens": [82, 83, 87, 88, 89, 92, 93, 94, 96, 98, 99, 108, 112, 118, 120, 121, 125, 150, 152], "dimension": [82, 83, 146, 152], "dir": 139, "dir_with_fil": [145, 150], "dir_x_pr": 117, "dir_y_pr": 117, "dir_z_pr": 117, "direct": [96, 98, 108, 116, 117, 118, 122, 124, 146, 150], "direction_kappa": 117, "directionreconstructionwithkappa": [115, 117, 147, 152], "directli": [0, 94, 99, 145, 147, 148, 150, 151, 152], "directori": [5, 7, 45, 47, 49, 50, 51, 52, 53, 55, 62, 63, 66, 67, 123, 139, 145, 147, 152], "dirti": 147, "discard_empty_ev": 74, "disconnect": 146, "discuss": 144, "disk": [145, 146, 147], "distanc": [102, 103, 105, 121], "distribut": [14, 84, 94, 110, 117, 125, 127, 149, 152], "distribution_strategi": 90, "ditto": 125, "diverg": 125, "divid": [69, 118], "dk": 5, "dl": [147, 152], "dnn": [25, 32], "do": [0, 14, 70, 74, 125, 133, 134, 144, 146, 147, 148, 151, 152], "do_shuffl": [3, 8], "doc": 147, "docformatt": 144, "docker": 1, "docstr": 144, "document": [14, 110, 125, 150, 152], "doe": [37, 116, 118, 134, 145, 146, 147, 152], "doesn": 59, "dom": [8, 11, 13, 16, 80, 84, 92, 107, 108, 112, 126, 147, 152], "dom_i": [4, 87, 107], "dom_numb": 4, "dom_tim": [4, 107], "dom_typ": 4, "dom_x": [4, 87, 107], "dom_z": [4, 87, 107], "domain": [0, 1, 3, 68, 147, 148, 151], "domandtimewindowcoarsen": [79, 80], "domcoarsen": [79, 80], "don": [123, 145], "done": [23, 84, 141, 144, 145, 147, 150], "dot": 83, "download": [5, 66, 67, 149], "download_dir": [5, 66, 67], "downsid": 146, "draw": 14, "drawn": [100, 101, 105, 106, 147, 152], "drhb": [14, 98], "drop": [14, 83, 93], "drop_last": 14, "drop_path": 83, "drop_prob": 83, "dropout": [83, 92, 99, 112], "dropout_prob": 83, "dropout_ratio": 93, "dropout_readout": 99, "droppath": [81, 83], "dtype": [11, 13, 16, 104, 105, 142, 146, 147, 152], "due": [146, 147, 152], "dummy_pid": [146, 147], "dump": [131, 133, 134, 145, 146, 147], "duplciat": 123, "duplic": 107, "dure": [83, 98, 104, 118, 123, 150], "dynam": [23, 83, 94, 95, 96, 99, 147, 152], "dynedg": [74, 76, 91, 95, 96, 98, 99, 147, 152], "dynedge_arg": 98, "dynedge_jinst": 91, "dynedge_kaggle_tito": 91, "dynedge_layer_s": [94, 99, 147, 152], "dynedgeconv": [81, 83, 94, 99], "dynedgejinst": [91, 95], "dynedgetito": [91, 92, 96], "dyntran": [81, 83, 92, 96], "dyntrans1": 83, "dyntrans_layer_s": [92, 96], "e": [1, 5, 8, 9, 11, 13, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 34, 37, 39, 43, 59, 60, 64, 70, 74, 76, 80, 82, 83, 84, 86, 87, 88, 89, 93, 97, 102, 104, 105, 107, 108, 109, 110, 113, 114, 116, 117, 118, 121, 123, 124, 125, 127, 131, 141, 144, 145, 146, 147, 149, 152], "each": [5, 14, 23, 34, 37, 58, 59, 63, 64, 69, 70, 80, 82, 83, 84, 87, 88, 89, 92, 94, 96, 99, 102, 104, 105, 107, 108, 112, 116, 118, 121, 123, 125, 126, 139, 145, 146, 147, 150, 152], "earli": [123, 129], "early_stopping_pati": [90, 136], "earlystop": 123, "easi": [0, 145, 146, 147, 148, 151, 152], "easili": [1, 147, 152], "easy_model": 79, "easysyntax": [79, 90, 110, 114], "ed": 125, "edg": [83, 84, 94, 95, 96, 99, 100, 104, 105, 106, 107, 121, 146, 147, 152], "edge_attr": [146, 147], "edge_definit": 104, "edge_index": [80, 83, 121, 146, 147], "edgeconv": 83, "edgeconvtito": [81, 83], "edgedefinit": [100, 101, 102, 103, 104, 105, 106, 147, 152], "edgelessgraph": [100, 105], "effect": [123, 144, 147, 152], "effici": 14, "effort": [144, 146, 150], "either": [0, 5, 9, 11, 16, 21, 66, 67, 125, 145, 147, 148, 151], "elast": 4, "element": [11, 13, 19, 34, 37, 90, 110, 114, 121, 126, 135, 145, 147, 150], "elementwis": 125, "elimin": 74, "els": [74, 124, 145, 150], "ema": 113, "embed": [81, 92, 98, 112, 116, 118, 120], "embedding_dim": [92, 112], "empti": 74, "en": 147, "enabl": [0, 3, 90, 148, 151], "encod": [82, 124], "encount": 147, "encourag": [144, 147], "end": [0, 1, 14, 123, 147, 148, 151], "energi": [4, 117, 118, 127, 146, 147, 150], "energy_cascad": [4, 117], "energy_cascade_pr": 117, "energy_pr": 117, "energy_reco": 76, "energy_sigma": 117, "energy_track": [4, 117], "energy_track_pr": 117, "energyreconstruct": [115, 117, 147, 152], "energyreconstructionwithpow": [115, 117], "energyreconstructionwithuncertainti": [115, 117, 147], "energytcreconstruct": [115, 117], "engin": [0, 148, 151], "enough": 109, "ensemble_dataset": [146, 147], "ensembledataset": [10, 11, 133, 146, 147], "ensembleloss": [122, 125], "ensur": [37, 58, 125, 141, 144, 152], "entir": [11, 13, 109, 145, 147, 152], "entiti": [147, 152], "entri": [74, 76, 94, 99, 121, 129, 150], "entropi": 125, "enum": 37, "env": 149, "environ": [50, 149], "ep": [142, 147, 152], "epoch": [113, 123, 129], "eps_lik": [128, 142], "equival": [37, 147, 152], "erda": [5, 66], "erdahost": 67, "erdahosteddataset": [3, 5, 66, 67], "error": [125, 141, 144, 145, 147], "especi": 74, "establish": 152, "etc": [0, 14, 125, 141, 146, 147, 148, 150, 151], "euclidean": [102, 144], "euclideandistanceloss": [122, 125], "euclideanedg": [101, 102], "european": [0, 148, 151], "eval": [109, 149], "evalu": [5, 110, 118], "even": 58, "event": [0, 1, 5, 7, 9, 11, 13, 14, 16, 18, 28, 43, 45, 47, 55, 59, 60, 63, 64, 66, 67, 74, 82, 84, 92, 104, 107, 108, 114, 118, 120, 121, 124, 125, 126, 127, 133, 145, 147, 148, 150, 151, 152], "event_no": [7, 11, 13, 16, 45, 47, 55, 59, 60, 63, 64, 127, 133, 146, 147, 152], "event_truth": 5, "events_per_batch": 63, "everi": [99, 110, 145, 147, 150], "everyth": [147, 152], "everytim": 144, "exact": [95, 125, 152], "exactli": [125, 141, 146], "exampl": [7, 14, 34, 60, 80, 84, 108, 110, 121, 125, 133, 134, 145, 146, 149], "example_energy_reconstruction_model": [129, 147, 152], "exce": 127, "exceed": 64, "except": [1, 143, 145], "exclud": 23, "exclude_kei": 23, "excluding_valu": 121, "execut": 59, "exist": [0, 11, 13, 16, 59, 79, 110, 124, 133, 146, 147, 148, 151, 152], "exist_ok": [147, 152], "expand": [0, 147, 148, 151], "expans": 98, "expect": [59, 60, 62, 74, 76, 104, 107, 146, 147, 152], "expects_merged_datafram": 62, "experi": [0, 1, 5, 6, 7, 48, 49, 70, 122, 145, 147, 148, 151], "experiment": 152, "expert": 1, "explain": 147, "explicitli": [126, 131, 136], "exponenti": 125, "export": [145, 146, 147, 150, 152], "expos": 1, "express": [14, 109, 125], "extend": [0, 1, 145, 146, 148, 151], "extens": [1, 5, 49, 62, 139], "extern": [146, 147], "extra": [83, 152], "extra_repr": [83, 109], "extra_repr_recurs": 109, "extracor_nam": 49, "extract": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 35, 39, 41, 42, 43, 58, 74, 76, 118, 121, 145, 147, 150], "extractor": [3, 7, 45, 47, 48, 49, 55, 74, 76], "extractor_nam": [18, 19, 21, 23, 26, 39, 41, 43, 145, 150], "f": [84, 145, 147, 152], "f1": 84, "f2": 84, "f_absorpt": 108, "f_scatter": 108, "factor": [83, 108, 123, 125, 147, 152], "fail": 18, "fals": [14, 36, 74, 82, 83, 94, 98, 99, 104, 109, 120, 123, 125, 127, 133, 147, 152], "fanci": 147, "fashion": 1, "fast": [0, 146, 147, 148, 151], "faster": [0, 145, 146, 148, 151], "favorit": 149, "favourit": 147, "fbeezabg5a": 5, "fc": 84, "featur": [1, 3, 4, 5, 11, 13, 16, 22, 64, 66, 67, 74, 76, 82, 83, 84, 86, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 112, 116, 120, 121, 126, 133, 144, 146, 147, 150, 152], "feature_idx": 108, "feature_map": [86, 87, 88, 89, 150], "feature_nam": 108, "features_subset": [83, 92, 94, 96, 99, 112, 147, 152], "feedforward": 83, "feel": 147, "fetch": 129, "few": [0, 79, 144, 145, 146, 147, 148, 151, 152], "fiber_id": 88, "field": [110, 121, 124, 131, 133, 134, 136, 138, 145, 146, 147, 150], "fieldinfo": [131, 133, 134, 136], "figur": 0, "file": [0, 1, 3, 5, 7, 11, 13, 14, 16, 19, 21, 34, 36, 39, 40, 41, 42, 43, 45, 47, 49, 50, 51, 52, 53, 55, 57, 58, 62, 63, 64, 69, 70, 74, 76, 104, 109, 123, 125, 126, 129, 130, 131, 132, 133, 134, 139, 141, 145, 146, 147, 148, 149, 150, 151, 152], "file_extens": 62, "file_handl": 141, "file_path": [126, 145, 150], "file_read": [7, 145, 150], "filehandl": 141, "filenam": 139, "fileread": [19, 49], "files_list": 58, "filesi": 128, "fill": [5, 14], "filter": [36, 45, 47, 50, 55, 141, 150], "filter_ani": 36, "filter_nam": 36, "filtermask": 36, "final": [0, 7, 84, 123, 133, 146, 147, 148, 151], "find": [21, 103, 139, 146, 147, 150, 152], "find_fil": [49, 50, 51, 52, 53, 145], "find_i3_fil": [128, 139], "first": [82, 92, 103, 112, 123, 126, 144, 147, 150], "fisher": 125, "fit": [9, 14, 90, 125, 127, 136, 147, 152], "fit_weight": 127, "five": 146, "fix": [60, 147], "flag": [22, 74], "flake8": 144, "flatten": 34, "flatten_nested_dictionari": [33, 34], "flexibil": 152, "flexibl": 60, "float": [11, 13, 16, 74, 83, 90, 92, 93, 99, 102, 103, 104, 105, 107, 108, 112, 118, 123, 125, 126, 127, 133, 146], "float32": [11, 13, 16, 104, 105], "float64": 125, "flow": [110, 118, 152], "flow_lay": [110, 118], "flowchart": [0, 148, 151], "fly": [146, 147], "fn": [11, 37, 131, 135], "fn_kwarg": 135, "folder": [45, 47, 50, 51, 52, 53, 55, 69, 145], "folk": 147, "follow": [14, 90, 94, 99, 110, 114, 125, 127, 144, 145, 146, 147], "fork": 144, "form": [0, 19, 79, 116, 131, 136, 145, 146, 148, 151, 152], "format": [0, 1, 3, 5, 7, 11, 34, 38, 39, 49, 51, 62, 63, 64, 82, 109, 112, 133, 144, 145, 146, 147, 148, 149, 150, 151, 152], "forward": [80, 82, 83, 86, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 104, 107, 110, 112, 114, 118, 120, 125, 152], "found": [37, 45, 47, 50, 55, 63, 108, 125, 146, 147], "four": 82, "fourier": 82, "fourierencod": [81, 82, 98, 120], "fraction": [93, 112, 126], "frame": [21, 23, 33, 36, 37, 76], "frame_is_montecarlo": [33, 35], "frame_is_nois": [33, 35], "framework": [0, 147, 148, 151], "free": [0, 14, 125, 147, 148, 151], "freeli": 147, "frequenc": 82, "friendli": [0, 62, 64, 145, 147, 148, 149, 151], "from": [0, 1, 5, 7, 8, 9, 11, 13, 14, 16, 19, 20, 21, 23, 25, 26, 28, 34, 35, 36, 37, 39, 41, 42, 43, 49, 50, 52, 53, 57, 62, 64, 66, 67, 82, 84, 96, 98, 102, 104, 107, 108, 109, 110, 113, 116, 117, 118, 121, 123, 124, 125, 131, 132, 133, 134, 136, 141, 144, 145, 146, 147, 148, 150, 151, 152], "from_config": [11, 109, 132, 133, 134, 146, 147, 152], "from_dataset_config": [8, 147, 152], "full": [63, 147, 152], "fulli": [145, 147, 152], "func": 147, "function": [0, 7, 8, 11, 14, 21, 37, 39, 43, 58, 59, 74, 76, 80, 83, 84, 87, 88, 89, 94, 99, 104, 108, 109, 110, 118, 121, 125, 126, 128, 133, 134, 135, 138, 139, 140, 142, 146, 148, 150, 151, 152], "fund": [0, 148, 151], "furnish": [14, 125], "further": 74, "furthermor": 112, "g": [1, 5, 11, 13, 16, 18, 19, 21, 31, 34, 37, 59, 60, 64, 74, 76, 84, 104, 107, 108, 118, 121, 125, 127, 141, 144, 146, 147, 149, 152], "galatict": 24, "gamma_1": 83, "gamma_2": 83, "gather": [14, 108], "gather_cluster_sequ": [100, 108], "gather_len_matched_bucket": [10, 14], "gcd": [21, 35, 45, 47, 50, 55, 58, 74, 76, 139], "gcd_dict": [35, 37], "gcd_file": [6, 21, 74, 76], "gcd_list": [58, 139], "gcd_rescu": [45, 47, 50, 55, 139], "gcd_shuffl": 58, "gelu": 83, "gener": [0, 5, 9, 11, 13, 14, 16, 23, 36, 49, 62, 66, 69, 74, 76, 82, 100, 101, 104, 105, 106, 116, 125, 127, 146, 147, 148, 150, 151, 152], "geometr": 147, "geometri": [66, 86, 104, 152], "geometry_t": [86, 87, 88, 89, 150], "geometry_table_path": [87, 88, 89, 150], "germani": [0, 148, 151], "get": [19, 35, 59, 86, 123, 126, 147, 152], "get_all_argument_valu": [130, 131], "get_all_grapnet_class": [130, 135], "get_field": [79, 121], "get_graphnet_class": [130, 135], "get_lr": 123, "get_map_funct": 7, "get_member_vari": [33, 37], "get_metr": 123, "get_om_keys_and_pulseseri": [33, 35], "get_predict": [122, 126], "get_primary_kei": [56, 59], "getting_start": 104, "gev": 66, "gframe": 21, "gggt": [110, 118], "git": 149, "github": [14, 98, 104, 110, 118, 120, 125, 147, 149], "given": [5, 11, 14, 16, 21, 64, 66, 67, 82, 84, 102, 118, 125, 127, 129, 146, 150], "glob": 145, "global": [2, 4, 92, 94, 96, 99, 109, 147], "global_index": 7, "global_pooling_schem": [92, 94, 96, 99, 147, 152], "gnn": [1, 79, 104, 110, 112, 120, 147, 152], "go": [14, 144, 147], "googl": 144, "got": 145, "gpu": [90, 129, 147, 149, 152], "grab": 118, "grad_output": 125, "gradient_clip_v": 90, "grant": [0, 14, 125, 148, 151], "graph": [0, 1, 8, 11, 13, 16, 79, 83, 84, 86, 112, 121, 124, 126, 144, 146, 147, 148, 151, 152], "graph_definit": [5, 11, 13, 16, 66, 67, 100, 110, 126, 133, 146, 147, 152], "graph_definiton": 146, "graphdefinit": [5, 11, 13, 16, 66, 67, 100, 101, 104, 105, 106, 110, 126, 144, 146, 147], "graphnet": [0, 1, 143, 144, 145, 146, 148, 149, 150, 151, 152], "graphnet_file_read": [48, 145, 150], "graphnet_model": 123, "graphnet_writ": 61, "graphnetdatamodul": [3, 5, 9], "graphnetearlystop": [122, 123], "graphnetfileread": [7, 48, 49, 50, 51, 52, 53, 145], "graphnetfilesavemethod": [62, 64], "graphnetwrit": [7, 61, 62, 63, 64, 145], "grapnet": [135, 147], "greatli": [147, 152], "group": [0, 14, 84, 147, 148, 151], "group_bi": [81, 84], "group_pulses_to_dom": [81, 84], "group_pulses_to_pmt": [81, 84], "groupbi": 84, "guarante": [147, 152], "guid": 144, "guidelin": 144, "gvd": [66, 89], "gz": 5, "h5": [41, 52, 145], "h5_extractor": 40, "h5extractor": [7, 40, 41, 49, 145], "h5hitextractor": [40, 41, 145], "h5py": 145, "h5truthextractor": [40, 41, 145], "ha": [0, 5, 37, 59, 74, 93, 108, 125, 139, 145, 146, 147, 148, 149, 150, 151, 152], "had": 150, "hadron": 117, "hand": [23, 146, 147], "handi": 58, "handl": [23, 125, 129, 138, 141, 145, 146, 147], "handler": 141, "happen": [127, 146, 150], "hard": [31, 107], "has_extens": [128, 139], "has_icecube_packag": [128, 140], "has_jammy_flows_packag": [128, 140], "has_torch_packag": [128, 140], "have": [1, 5, 13, 23, 45, 47, 50, 55, 59, 60, 64, 84, 98, 104, 108, 118, 144, 146, 147, 150, 152], "head": [83, 92, 96, 98, 118, 120, 152], "head_dim": 83, "head_siz": 98, "heavi": 145, "help": [74, 76, 129, 144, 146, 147, 150, 152], "here": [104, 144, 146, 147, 149, 150, 152], "herebi": [14, 125], "hidden": [82, 83, 92, 94, 95, 99, 112], "hidden_dim": [98, 120], "hidden_featur": 83, "hidden_s": [112, 116, 117, 118, 147, 152], "high": [0, 147, 148, 151], "higher": 146, "highest_protocol": 145, "hint": 144, "hit": [8, 126, 146, 147, 150], "hitdata": 41, "hlc": 107, "hlc_name": 107, "hold": [104, 145, 150, 152], "holder": [14, 125], "home": [87, 88, 89, 129, 145, 150], "homophili": 121, "hook": 144, "horizon": [0, 148, 151], "host": [5, 66, 150], "how": [5, 14, 100, 101, 106, 145, 147, 152], "howev": [45, 47, 50, 55, 146, 147], "html": [110, 118, 147], "http": [5, 14, 98, 99, 102, 104, 110, 118, 120, 125, 144, 147, 149], "human": 147, "hybrid": 24, "hyperparamet": [134, 147, 152], "i": [0, 1, 5, 9, 11, 13, 14, 16, 18, 19, 21, 23, 34, 35, 36, 37, 39, 41, 43, 45, 47, 50, 55, 58, 59, 60, 63, 64, 69, 74, 76, 80, 82, 83, 84, 93, 94, 98, 99, 102, 104, 105, 107, 108, 110, 112, 114, 117, 118, 121, 123, 124, 125, 126, 127, 129, 131, 134, 135, 136, 138, 139, 140, 141, 144, 145, 146, 147, 148, 149, 150, 151, 152], "i3": [1, 21, 35, 36, 37, 45, 47, 50, 55, 58, 69, 74, 76, 139, 147, 149], "i3_fil": [6, 21], "i3_filt": [33, 45, 47, 50, 55], "i3_list": [58, 139], "i3_shuffl": 58, "i3calibr": 35, "i3deploy": [6, 73], "i3extractor": [7, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 45, 47, 49, 55], "i3featureextractor": [4, 20, 74, 76], "i3featureextractoricecube86": [20, 22], "i3featureextractoricecubedeepcor": [20, 22], "i3featureextractoricecubeupgrad": [20, 22], "i3fileset": [3, 6, 49, 50], "i3filt": [33, 36, 45, 47, 50, 55], "i3filtermask": [33, 36], "i3fram": [20, 23, 35, 37, 74, 76], "i3galacticplanehybridrecoextractor": [20, 24], "i3genericextractor": 20, "i3hybridrecoextractor": 20, "i3inferencemodul": [73, 74, 76], "i3mctre": 31, "i3modul": [1, 68, 70], "i3ntmuonlabelextractor": [20, 25], "i3ntmuonlabelsextractor": 20, "i3particl": 26, "i3particleextractor": 20, "i3pisaextractor": 20, "i3pulsecleanermodul": [73, 74], "i3pulsenoisetruthflagicecubeupgrad": [20, 22], "i3quesoextractor": 20, "i3read": [45, 47, 48, 55], "i3retroextractor": 20, "i3splinempeextractor": 20, "i3splinempeicextractor": [20, 30], "i3toparquetconvert": [45, 46, 47], "i3tosqliteconvert": [46, 47, 55], "i3truthextractor": [4, 20], "i3tumextractor": 20, "ic": [96, 98, 107], "ice_arg": 107, "ice_transpar": [100, 108], "icecub": [1, 14, 17, 45, 47, 50, 55, 68, 83, 85, 96, 98, 107, 108, 140, 147, 152], "icecube86": [4, 85, 87, 89], "icecube86prometheu": [85, 89], "icecube_deepcor": 89, "icecube_gen2": 89, "icecube_upgrad": [87, 89], "icecubedeepcor": [85, 87], "icecubedeepcore8": [85, 89], "icecubegen2": [85, 89], "icecubekaggl": [85, 87], "icecubeupgrad": [85, 87], "icecubeupgrade7": [85, 89], "icedemo81": [85, 89], "icemix": 91, "icemixnod": [106, 107], "icetrai": [35, 37, 45, 47, 50, 55, 70, 140, 149], "icetray_verbos": [45, 47, 50, 55], "id": [5, 7, 9, 13, 45, 47, 55, 64, 86, 104, 126, 145, 146, 147, 150], "id_column": 107, "ideal": 152, "ident": [84, 118], "identifi": [7, 11, 13, 16, 31, 107, 108, 121, 133, 134, 150], "identify_indic": [100, 108], "identitytask": [115, 116, 118], "ie": 92, "ignor": [11, 13, 16, 37, 63], "illustr": [0, 144, 145, 148, 151], "imag": [0, 1, 144, 147, 148, 151, 152], "impact": 98, "implement": [1, 5, 14, 19, 21, 49, 62, 70, 83, 92, 93, 94, 95, 96, 98, 99, 102, 112, 120, 125, 144, 145, 147, 152], "impli": [14, 125], "import": [0, 5, 59, 79, 128, 145, 146, 147, 148, 150, 151, 152], "impos": [11, 13, 90], "improv": [0, 1, 129, 147, 148, 151, 152], "in_featur": 83, "inaccur": 108, "inact": 104, "includ": [1, 5, 13, 14, 66, 67, 83, 90, 107, 125, 131, 144, 146, 147, 150, 152], "include_dynedg": 98, "incompat": 147, "incomplet": 14, "incorpor": 82, "increas": [0, 123, 148, 151], "indent": 109, "independ": [69, 145], "index": [1, 7, 11, 13, 16, 37, 59, 63, 84, 86, 92, 103, 108, 112, 123, 146, 147, 152], "index_column": [7, 11, 13, 16, 45, 47, 55, 59, 60, 63, 64, 126, 127, 133, 146, 147], "indic": [14, 60, 78, 84, 92, 103, 108, 112, 118, 123, 125, 129, 144, 147, 152], "indicesfor": 35, "indici": [11, 13, 16, 35, 60, 125], "individu": [0, 11, 13, 16, 84, 94, 121, 146, 148, 151, 152], "industri": [0, 3, 148, 151], "inelast": [4, 117], "inelasticity_pr": 117, "inelasticityreconstruct": [115, 117], "inf": 121, "infer": [0, 1, 64, 68, 70, 74, 76, 90, 118, 147, 148, 151], "inference_modul": 73, "info": [141, 147], "inform": [5, 11, 13, 16, 18, 19, 21, 23, 31, 39, 41, 43, 66, 67, 104, 107, 108, 109, 145, 146, 147, 150, 152], "ingest": [0, 1, 3, 85, 148, 151], "inherit": [5, 19, 21, 37, 49, 62, 86, 107, 125, 141, 145, 146, 147, 152], "init_fn": [133, 134], "init_global_index": [3, 7], "init_predict_tqdm": 123, "init_test_tqdm": 123, "init_train_tqdm": 123, "init_validation_tqdm": 123, "init_valu": 83, "initi": [7, 36, 50, 64, 69, 83, 92, 98, 103], "initial_st": 43, "initialis": [134, 147, 152], "injection_azimuth": [4, 146, 147], "injection_bjorkeni": [4, 146, 147], "injection_bjorkenx": [4, 146, 147], "injection_column_depth": [4, 146, 147], "injection_energi": [4, 146, 147], "injection_interaction_typ": [4, 146, 147], "injection_position_i": [4, 146, 147], "injection_position_x": [4, 146, 147], "injection_position_z": [4, 146, 147], "injection_typ": [4, 146, 147], "injection_zenith": [4, 146, 147, 152], "innov": [0, 148, 151], "input": [5, 7, 11, 13, 16, 45, 47, 49, 50, 55, 62, 66, 67, 69, 74, 76, 82, 83, 87, 92, 93, 94, 95, 96, 97, 98, 99, 104, 105, 107, 110, 112, 116, 118, 120, 121, 131, 136, 138, 145, 146, 147, 150, 152], "input_dim": [83, 152], "input_dir": [145, 150], "input_featur": [86, 104], "input_feature_nam": [86, 104, 105, 107], "input_fil": [49, 69], "ins": 86, "insid": 146, "inspect": [147, 152], "inspir": 99, "instal": [144, 147], "instanc": [11, 19, 21, 31, 37, 39, 41, 43, 45, 47, 50, 55, 104, 109, 124, 126, 132, 134, 145, 146, 147, 152], "instanti": [7, 9, 134, 145, 146, 150], "instead": [21, 45, 47, 50, 55, 110, 125, 147, 152], "int": [5, 7, 8, 9, 11, 13, 14, 16, 25, 28, 36, 45, 47, 49, 50, 51, 52, 53, 55, 60, 62, 63, 64, 69, 82, 83, 84, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 118, 120, 121, 123, 125, 126, 127, 129, 133, 136, 141, 145, 152], "integ": [59, 92, 94, 95, 99, 125, 146, 147], "integer_primary_kei": 59, "integr": 152, "intend": [92, 112, 147], "interact": [117, 124, 146, 147], "interaction_kei": 124, "interaction_tim": [4, 117], "interaction_time_pr": 117, "interaction_typ": [4, 124], "interchang": [147, 152], "interfac": [0, 133, 134, 147, 148, 149, 150, 151], "interim": [7, 61, 62, 63, 64, 145], "intermedi": [0, 1, 3, 7, 11, 93, 147, 148, 151], "intern": [17, 47, 51], "internal_parquet_read": 48, "interpol": [108, 123], "interpret": 116, "interv": [82, 147, 152], "intract": 146, "introduc": 147, "introduct": [110, 118], "intuit": [141, 152], "invers": 118, "invert": 118, "involv": 60, "io": [110, 118, 144, 147], "iop": 147, "iopscienc": 147, "is_boost_class": [33, 37], "is_boost_enum": [33, 37], "is_gcd_fil": [128, 139], "is_graphnet_class": [130, 135], "is_graphnet_modul": [130, 135], "is_i3_fil": [128, 139], "is_icecube_class": [33, 37], "is_method": [33, 37], "is_typ": [33, 37], "iseecub": 119, "isinst": 145, "isn": 37, "isol": 105, "issu": [147, 152], "iter": 11, "its": [37, 112, 146, 147, 152], "itself": [37, 118, 145, 147, 152], "iv": 125, "jammy_flow": [110, 118, 140], "job": 150, "join": [145, 147], "json": [34, 133, 146, 147], "just": [5, 84, 145, 146, 147, 152], "k": [83, 92, 94, 96, 99, 102, 105, 112, 121, 125], "kaggl": [4, 82, 83, 87, 96, 98], "kappa": [117, 125], "kappa_switch": 125, "karg": [109, 113], "keep": [19, 21, 39, 41, 43, 107, 145], "kei": [11, 23, 34, 35, 37, 59, 64, 83, 84, 107, 124, 133, 134, 145, 146, 147, 150], "kept": 36, "key_padding_mask": 83, "keyword": [123, 131, 136], "kind": [14, 125, 150], "km3net": [147, 152], "knn_graph_batch": [79, 121], "knnedg": [101, 102], "knngraph": [100, 105, 146, 147, 152], "know": 150, "known": 84, "kv": 83, "kwarg": [7, 8, 11, 13, 16, 36, 49, 51, 52, 53, 62, 80, 83, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 109, 110, 112, 113, 114, 116, 117, 118, 120, 123, 125, 127, 131, 133, 134, 141], "l": [108, 121], "label": [11, 13, 16, 25, 28, 90, 93, 104, 114, 118, 122, 126, 133], "lai": 147, "lambda": [109, 147, 152], "land": 147, "larg": [0, 92, 125, 146, 148, 151], "larger": 145, "largest": 108, "last": [14, 94, 99, 112, 116, 117, 118, 123, 126, 152], "last_epoch": 123, "lastli": 150, "latent": [82, 92, 94, 96, 98, 99, 110, 112, 116, 117, 118, 120, 152], "latest": 147, "layer": [0, 81, 84, 92, 93, 94, 95, 96, 98, 99, 110, 112, 116, 117, 118, 148, 151], "layer_s": 83, "layer_size_scal": 95, "layernorm": 83, "ldot": [80, 84], "lead": [146, 147], "learn": [0, 1, 5, 62, 64, 74, 76, 110, 114, 116, 118, 123, 145, 147, 148, 149, 150, 151, 152], "learnabl": [83, 91, 92, 93, 94, 95, 96, 97, 98, 99, 112, 118, 120, 152], "learnedtask": [115, 118], "least": [13, 144, 146, 147], "leav": 123, "len": [11, 13, 108, 145, 146], "length": [11, 13, 14, 37, 107, 108, 121, 123], "lenmatchbatchsampl": [10, 14], "less": [8, 126, 147, 152], "let": [147, 150, 152], "level": [0, 5, 11, 13, 16, 18, 31, 36, 43, 45, 47, 49, 50, 51, 52, 53, 55, 59, 62, 63, 66, 67, 80, 84, 98, 114, 141, 146, 147, 148, 150, 151], "leverag": 1, "lex_sort": [100, 108], "liabil": [14, 125], "liabl": [14, 125], "lib": [87, 88, 89, 129], "licens": [14, 125], "lift": 145, "light": 103, "lightn": [9, 123, 147, 152], "lightningdatamodul": 9, "lightningmodul": [82, 83, 109, 123, 141, 147, 152], "like": [14, 19, 37, 84, 103, 110, 118, 121, 125, 142, 144, 146, 147, 149, 152], "limit": [14, 107, 125], "line": [123, 129, 145, 146, 150], "linear": [94, 99, 152], "linearli": 123, "liquid": 88, "liquido": [4, 17, 52, 85, 145], "liquido_read": 48, "liquido_v1": [85, 88], "liquidoread": [48, 52, 145], "list": [5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 23, 31, 34, 36, 37, 41, 43, 45, 47, 49, 50, 51, 52, 53, 55, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 74, 76, 80, 83, 84, 86, 90, 92, 94, 96, 99, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 118, 121, 123, 125, 126, 127, 133, 135, 136, 139, 141, 145, 146, 150], "list_all_submodul": [130, 135], "ljvmiranda921": 144, "load": [0, 8, 11, 58, 70, 109, 113, 131, 133, 146, 147, 148, 150, 151], "load_from_checkpoint": [147, 152], "load_modul": [10, 11, 109], "load_state_dict": [109, 113, 147, 152], "loaded_model": [147, 152], "local": [80, 87, 88, 89, 107, 129, 147, 149, 152], "lock": 13, "log": [0, 117, 122, 123, 125, 128, 146, 147, 148, 151, 152], "log10": [118, 127, 147, 152], "log_cmk": 125, "log_cmk_approx": 125, "log_cmk_exact": 125, "log_every_n_step": [90, 147, 152], "log_fold": [36, 49, 51, 52, 53, 62, 141], "log_model": [147, 152], "logcmk": [122, 125], "logcoshloss": [122, 125, 147, 152], "logger": [7, 9, 11, 14, 19, 36, 49, 51, 52, 53, 60, 62, 69, 70, 90, 102, 109, 124, 127, 128, 141, 147, 152], "loggeradapt": 141, "logic": 146, "logit": [116, 125, 152], "logrecord": 141, "long": 146, "longev": [0, 148, 151], "longtensor": [80, 84, 121], "look": [23, 146, 147], "lookup": 135, "loop": [147, 152], "loss": [11, 13, 16, 90, 104, 110, 114, 118, 123, 125, 129, 147, 152], "loss_factor": 125, "loss_funct": [118, 122, 147, 152], "loss_weight": [104, 118, 147, 152], "loss_weight_column": [11, 13, 16, 104, 126, 133], "loss_weight_default_valu": [11, 13, 16, 104, 133], "loss_weight_t": [11, 13, 16, 126, 133], "lossfunct": [118, 122, 125, 147], "lot": 144, "lower": [0, 147, 148, 151], "lr": [147, 152], "m": [103, 108, 125], "machin": 1, "made": [147, 152], "magnitud": [0, 148, 151], "mai": [49, 60, 70, 107, 118, 146, 147, 149, 152], "main": [1, 14, 91, 104, 144, 147], "mainli": 37, "major": [114, 118], "make": [0, 7, 107, 127, 133, 134, 144, 145, 146, 147, 148, 150, 151, 152], "make_dataload": [122, 126], "make_train_validation_dataload": [122, 126], "makedir": [147, 152], "manag": [0, 122, 145, 147, 148, 151], "mandatori": 82, "mangl": 37, "mani": [64, 145, 147, 152], "manipul": [34, 100, 101, 106], "map": [7, 11, 13, 16, 22, 23, 59, 87, 88, 89, 104, 105, 118, 131, 133, 134, 136, 147, 150, 152], "mari": [0, 148, 151], "martin": 93, "mask": [14, 104, 121], "masked_entri": 121, "master": 125, "match": [14, 49, 104, 127, 139, 142, 145], "math": [83, 128], "mathbb": 84, "mathbf": [80, 84], "matic": 118, "matric": 83, "matrix": [84, 102, 103, 121, 125, 146], "max": [80, 83, 94, 96, 99, 125, 127, 129, 147, 152], "max_activ": 107, "max_epoch": [90, 147, 152], "max_pool": [80, 84], "max_pool_x": [80, 84], "max_puls": 107, "max_rel_po": 120, "max_table_s": 64, "max_weight": 127, "maximum": [64, 84, 107, 108, 118, 120, 129], "mc": [23, 59], "mc_truth": [19, 43, 146, 147], "mctree": [31, 35], "md": [104, 147], "mean": [0, 11, 13, 16, 79, 94, 96, 99, 108, 125, 134, 145, 146, 147, 148, 151, 152], "meaning": 82, "meant": [145, 147, 152], "measur": [107, 108, 121, 147, 150], "mechan": 83, "meet": 118, "member": [21, 23, 37, 49, 107, 133, 134, 141, 145, 150], "memori": [13, 146], "mention": 147, "merchant": [14, 125], "merg": [7, 14, 62, 63, 64, 125, 145, 146, 150], "merge_fil": [7, 62, 63, 64, 145, 150], "merged_database_nam": 64, "messag": [83, 123, 141, 147], "messagepass": 83, "metaclass": [133, 134], "metadata": [131, 133, 134, 136], "metaproject": 149, "meter": 147, "meth": 147, "method": [5, 7, 9, 11, 13, 14, 16, 19, 21, 33, 34, 35, 37, 44, 45, 49, 54, 55, 62, 63, 64, 66, 67, 70, 83, 84, 86, 108, 117, 125, 127, 145, 147, 152], "metric": [92, 94, 96, 99, 103, 112, 123, 147, 152], "might": [146, 147, 152], "mileston": [123, 147, 152], "million": [64, 66], "min": [80, 84, 94, 96, 99, 127, 147, 152], "min_pool": [80, 81, 84], "min_pool_x": [80, 81, 84], "mind": 147, "minh": 93, "mini": 126, "minim": [90, 110, 146, 147, 150, 152], "minimum": [107, 118], "minkowski": 101, "minkowskiknnedg": [101, 103], "minu": 125, "mise": 125, "miss": 78, "mit": [14, 125], "mix": 18, "ml": [0, 1, 148, 151], "mlp": [81, 82, 83, 94, 98, 99, 120, 152], "mlp_dim": [82, 120], "mlp_ratio": [83, 98], "mode": [90, 118], "model": [0, 1, 5, 68, 70, 74, 76, 122, 123, 125, 126, 129, 131, 133, 134, 136, 143, 145, 146, 148, 149, 150, 151], "model_computed_field": [131, 133, 134, 136], "model_config": [70, 74, 76, 130, 131, 133, 136, 147, 152], "model_config_path": [147, 152], "model_field": [131, 133, 134, 136], "model_nam": [74, 76], "modelconfig": [70, 74, 76, 109, 130, 133, 134], "modelconfigsav": 134, "modelconfigsaverabc": [130, 134], "modelconfigsavermeta": [130, 134], "modif": [147, 152], "modifi": [14, 125, 147, 152], "modul": [0, 1, 3, 10, 12, 15, 17, 20, 33, 38, 40, 42, 44, 46, 48, 54, 56, 61, 65, 68, 71, 73, 77, 79, 81, 85, 91, 100, 101, 106, 111, 115, 119, 122, 128, 130, 143, 145, 147, 148, 151, 152], "modular": [0, 79, 145, 147, 148, 151, 152], "moduletyp": 135, "mont": 35, "more": [1, 11, 13, 14, 58, 59, 92, 109, 133, 134, 141, 146, 147, 152], "most": [0, 1, 60, 103, 118, 145, 148, 150, 151, 152], "mryab": 125, "mseloss": [122, 125], "msg": 141, "mulitpli": 125, "multi": [83, 94, 99, 114], "multiclassclassificationtask": [115, 116, 147], "multiheadattent": [14, 83], "multiindex": 150, "multipl": [11, 13, 16, 18, 82, 108, 123, 125, 133, 141, 152], "multipli": [83, 123], "multiprocess": [7, 14, 45, 47, 55, 145], "multiprocessing_context": [13, 14], "muon": [25, 146, 152], "must": [13, 18, 49, 50, 59, 62, 80, 123, 125, 127, 144, 145, 146, 147, 150], "my": [146, 147, 150], "my_custom_label": [146, 147], "my_databas": 64, "my_fil": [145, 150], "my_geometry_t": 150, "my_outdir": [145, 150], "my_tabl": 150, "mycustomlabel": [146, 147], "mydetector": 150, "myexperi": 150, "myextractor": 150, "mygraphnetmodel": 152, "mymodel": 152, "mypi": 144, "mypicklewrit": 145, "myread": 150, "n": [14, 19, 80, 84, 103, 121, 125, 146, 147, 150], "n_1": 84, "n_b": 84, "n_cluster": 108, "n_event": [145, 150], "n_featur": [82, 98, 120], "n_freq": 82, "n_head": [83, 92, 96], "n_pmt": 108, "n_puls": [107, 150], "n_rel": 98, "n_worker": 69, "name": [4, 5, 7, 8, 11, 13, 16, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 39, 41, 43, 45, 47, 49, 51, 52, 53, 55, 59, 62, 63, 64, 70, 74, 76, 86, 104, 105, 107, 110, 112, 118, 121, 124, 127, 129, 131, 133, 134, 135, 136, 141, 144, 145, 146, 147, 150, 152], "namespac": [4, 109, 133, 134], "nan": 108, "narg": 129, "nb_dom": 121, "nb_file": 7, "nb_input": [92, 93, 94, 95, 96, 97, 99, 112, 116, 117, 118, 147, 152], "nb_intermedi": 93, "nb_nearest_neighbour": [102, 103, 105, 146, 147, 152], "nb_neighbor": 83, "nb_neighbour": [92, 94, 96, 99, 112, 147, 152], "nb_output": [93, 95, 97, 107, 116, 117, 118, 147, 152], "nb_repeats_allow": 141, "ndarrai": [11, 13, 31, 104, 108, 127, 145], "nearest": [92, 94, 96, 99, 102, 103, 105, 112, 121, 147, 152], "nearli": 152, "necessari": [0, 9, 34, 144, 148, 151], "need": [0, 5, 9, 34, 64, 79, 82, 109, 112, 125, 138, 145, 146, 147, 148, 149, 150, 151, 152], "negat": 84, "neighbour": [83, 92, 94, 96, 99, 102, 103, 105, 112, 121, 147, 152], "nest": 34, "nester": 34, "network": [1, 83, 93, 111, 152], "neural": [1, 111, 152], "neutrino": [0, 1, 21, 43, 50, 83, 96, 98, 108, 120, 146, 147, 148, 150, 151, 152], "new": [0, 1, 18, 83, 107, 131, 136, 144, 145, 147, 148, 151, 152], "new_features_nam": 107, "new_phras": 138, "nfdi": [0, 148, 151], "nn": [0, 79, 83, 102, 105, 148, 151, 152], "no_weight_decai": 98, "node": [11, 13, 16, 80, 84, 92, 93, 94, 96, 99, 100, 101, 102, 104, 105, 112, 121, 146, 147, 152], "node_definit": [104, 105, 146, 147, 152], "node_feature_nam": [107, 146, 147, 152], "node_level": 126, "node_rnn": [92, 111], "node_truth": [11, 13, 16, 126, 133], "node_truth_t": [11, 13, 16, 126, 133, 147], "nodeasdomtimeseri": [106, 107], "nodedefinit": [104, 105, 106, 107, 147, 152], "nodesaspuls": [104, 106, 107, 146, 147, 152], "nodetimernn": 112, "nois": [22, 35, 74, 147], "non": [9, 34, 37, 59, 92, 118, 125, 147], "none": [5, 7, 8, 9, 11, 13, 14, 16, 21, 23, 31, 35, 36, 37, 45, 47, 49, 50, 51, 52, 53, 55, 59, 60, 62, 63, 64, 66, 67, 69, 70, 76, 83, 84, 90, 92, 94, 96, 98, 99, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 118, 123, 125, 126, 127, 129, 131, 132, 133, 135, 139, 141, 145, 146, 147, 150, 152], "nonetyp": 133, "noninfring": [14, 125], "norm_lay": 83, "normal": [83, 94, 99, 108, 110, 118, 150], "normalizing_flow": 79, "normalizingflow": [79, 110, 118], "northeren": 25, "note": [11, 13, 16, 50, 63, 64, 108, 134, 147], "notebook": 144, "notic": [14, 64, 121, 125], "notimplementederror": 145, "now": [147, 150, 152], "np": [127, 145], "null": [36, 59, 146, 147, 152], "nullspliti3filt": [33, 36, 45, 47, 50, 55], "num": 129, "num_class": 125, "num_edg": 146, "num_edge_featur": 146, "num_featur": 146, "num_head": [83, 120], "num_lay": [112, 120], "num_nod": 146, "num_puls": 107, "num_register_token": 120, "num_row": [104, 146], "num_sampl": 14, "num_work": [7, 8, 9, 14, 47, 63, 126, 145, 146, 147, 150, 152], "number": [0, 5, 7, 11, 13, 14, 16, 19, 45, 47, 55, 60, 63, 64, 69, 82, 83, 84, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 112, 116, 117, 118, 120, 121, 123, 126, 127, 129, 145, 146, 147, 148, 150, 151], "numer": [118, 150], "numpi": 108, "numu": 124, "numucc": 124, "o": [0, 88, 118, 145, 147, 148, 149, 151, 152], "obj": [34, 37, 135], "object": [4, 6, 11, 13, 14, 16, 23, 34, 37, 80, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 109, 110, 112, 113, 114, 116, 117, 118, 120, 121, 123, 125, 126, 129, 131, 133, 134, 136, 141, 146, 147, 152], "observ": 150, "observatori": [21, 50], "obtain": [14, 84, 125], "occur": [8, 126], "oerso": 95, "offer": 146, "offset": [107, 108], "ofintern": 38, "often": 146, "old_phras": 138, "om": [35, 37], "omit": 152, "on_fit_end": 123, "on_train_end": 113, "on_train_epoch_end": 123, "on_train_epoch_start": 123, "on_validation_end": 123, "onc": [141, 147, 149], "one": [11, 13, 21, 59, 74, 84, 133, 134, 139, 144, 145, 146, 147, 150, 152], "ones": 113, "onli": [0, 1, 11, 13, 16, 64, 79, 84, 92, 118, 127, 131, 134, 136, 140, 145, 146, 147, 148, 150, 151, 152], "open": [0, 49, 144, 145, 146, 147, 148, 149, 150, 151], "opensciencegrid": 149, "oper": [14, 80, 83, 91, 94], "oppos": 146, "optic": [37, 108], "optim": [90, 110, 113, 123, 147, 152], "optimis": [0, 1, 147, 148, 151, 152], "optimizer_class": [110, 147, 152], "optimizer_closur": 113, "optimizer_kwarg": [110, 147, 152], "optimizer_step": 113, "optimzi": 110, "option": [5, 7, 9, 11, 13, 14, 16, 21, 31, 64, 66, 67, 70, 76, 82, 83, 84, 92, 94, 96, 98, 99, 103, 104, 105, 107, 108, 109, 110, 112, 118, 123, 125, 127, 128, 129, 131, 133, 139, 145, 146, 147, 150, 152], "orca": 89, "orca150": [85, 89, 152], "orca150superdens": [85, 89], "orca_150": 89, "order": [0, 34, 49, 69, 80, 107, 121, 125, 147, 148, 151], "ordinari": 152, "ordinarili": 150, "org": [99, 102, 125, 147, 149], "orient": [0, 79, 148, 151], "origin": [14, 98, 146, 152], "ot": 125, "other": [14, 26, 59, 102, 125, 144, 146, 147, 152], "otherwis": [14, 37, 125], "our": [147, 150], "out": [5, 11, 13, 14, 94, 115, 125, 141, 144, 145, 146, 147, 150, 152], "out_featur": 83, "outdir": [7, 45, 47, 55, 145, 147, 150, 152], "outer": 34, "outlin": [150, 152], "output": [19, 64, 69, 70, 82, 83, 90, 92, 93, 94, 95, 97, 99, 104, 107, 108, 112, 116, 117, 118, 127, 133, 134, 145, 150, 152], "output_dim": [82, 152], "output_dir": [62, 63, 64, 145], "output_fil": 7, "output_file_path": 145, "output_fold": [6, 69], "outsid": [67, 144], "over": [103, 107, 145, 146], "overal": 125, "overhead": 150, "overrid": [9, 123], "overridden": 107, "overview": [0, 148, 151], "overwrit": [70, 123], "overwritten": [49, 129, 131], "own": [144, 147], "ownership": 144, "p": [35, 66, 125, 145], "p11003": 147, "packag": [0, 1, 58, 118, 135, 139, 140, 143, 144, 147, 148, 151, 152], "pad": [104, 108, 121], "padding_valu": [25, 28, 121], "pair": [21, 45, 47, 50, 55, 82], "pairwis": [103, 121], "pairwise_shuffl": [56, 58], "panda": [60, 127, 145, 147, 150, 152], "paper": 125, "paradigm": [147, 152], "parallel": [7, 45, 47, 55, 145, 150], "param": [14, 39, 41, 43], "paramet": [5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 55, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 74, 76, 80, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 118, 120, 121, 123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142], "parent": [34, 147], "parent_kei": 34, "parquet": [3, 5, 10, 39, 42, 43, 47, 51, 53, 55, 57, 63, 66, 67, 87, 88, 89, 145, 146, 147, 150], "parquet_dataset": [12, 146], "parquet_extractor": 38, "parquet_to_sqlit": 56, "parquet_writ": 61, "parquetdataconvert": [44, 45], "parquetdataset": [9, 12, 13, 145, 147], "parquetextractor": [7, 38, 39, 41, 47, 49], "parquetread": [48, 51], "parquettosqliteconvert": [46, 47], "parquetwrit": [13, 39, 47, 61, 63, 145, 146, 150], "pars": [23, 129, 130, 131, 136, 145], "parse_graph_definit": [10, 11], "parse_label": [10, 11], "part": [145, 147, 149, 150], "particl": [31, 59, 124, 146, 147, 150], "particlenet": 91, "particular": [14, 125, 144], "particularli": [146, 147, 152], "partit": 64, "partli": [0, 148, 151], "pass": [11, 16, 82, 83, 90, 92, 93, 94, 95, 96, 97, 98, 99, 104, 110, 112, 114, 118, 120, 123, 125, 127, 144, 145, 146, 147, 150, 152], "path": [5, 11, 13, 16, 21, 45, 47, 49, 50, 51, 52, 53, 55, 58, 59, 64, 69, 74, 76, 83, 104, 109, 113, 123, 126, 129, 131, 132, 133, 139, 145, 146, 147, 150, 152], "path_to_arrai": 150, "path_to_geometry_t": 150, "patienc": 129, "pd": [145, 147, 150], "pdf": [102, 110], "pdg": 124, "penal": 125, "peopl": [147, 152], "pep257": 144, "pep8": 144, "per": [11, 13, 16, 23, 59, 83, 84, 92, 112, 118, 125, 127, 146, 147], "percentil": [107, 108], "percentileclust": [106, 107], "perceptron": [83, 94, 99], "perform": [0, 9, 80, 82, 83, 84, 90, 91, 92, 94, 96, 99, 107, 110, 112, 113, 114, 116, 118, 126, 147, 148, 151, 152], "permiss": [14, 125], "permit": [14, 125], "persistent_work": [8, 126], "person": [5, 14, 125], "perturb": [104, 105], "perturbation_dict": [104, 105], "pframe": [45, 47, 50, 55], "philosophi": [147, 152], "photon": [43, 146, 147], "phrase": 138, "phyic": 1, "physic": [0, 1, 21, 35, 37, 68, 74, 76, 79, 115, 118, 146, 147, 148, 151, 152], "physicist": [0, 1, 147, 148, 151], "physicst": 1, "pick": 146, "pickl": [145, 147, 150, 152], "pid": [4, 60, 124, 133, 146], "pid_kei": 124, "piecewiselinearlr": [122, 123, 147, 152], "pip": [144, 149], "pisa": 27, "place": [14, 82, 98, 138, 144], "plai": 1, "plane": [24, 125], "pleas": [145, 146, 147, 150], "plot": 146, "plug": 1, "pmt": [84, 108, 146, 147], "pmt_area": 4, "pmt_dir_i": 4, "pmt_dir_x": 4, "pmt_dir_z": 4, "pmt_number": 4, "point": [5, 30, 110, 124, 125, 126, 147, 150, 152], "pole": [96, 98], "pone": 89, "pone_triangl": 89, "ponesmal": [65, 66], "ponetriangl": [85, 89], "pool": [7, 80, 81, 92, 94, 96, 99], "pop_default": 129, "popular": 152, "port": 147, "portabl": [0, 147, 148, 151, 152], "portion": [14, 125], "pos_x": 147, "posit": [74, 82, 83, 84, 98, 108, 117, 120, 131, 136, 146, 150], "position_i": 4, "position_x": 4, "position_x_pr": 117, "position_y_pr": 117, "position_z": 4, "position_z_pr": 117, "positionreconstruct": [115, 117], "possibl": [0, 34, 64, 144, 148, 150, 151], "post": [92, 94, 96, 99], "post_processing_layer_s": [92, 94, 96, 147, 152], "posterior": 110, "pow": [147, 152], "power": [145, 147, 152], "pr": 112, "practic": [0, 144, 148, 151], "pre": [0, 5, 46, 47, 65, 86, 104, 124, 144, 146, 147, 148, 151, 152], "pre_configur": 3, "precis": 125, "precommit": 144, "preconfigur": 47, "pred": [90, 114, 118], "predict": [0, 9, 26, 30, 32, 74, 76, 90, 93, 98, 110, 114, 116, 118, 125, 126, 147, 148, 151, 152], "predict_as_datafram": [90, 147, 152], "prediction_column": [70, 76, 90, 126], "prediction_kei": 125, "prediction_label": [90, 118, 147, 152], "prefer": 103, "prefetch_factor": 8, "prepar": [0, 5, 9, 125, 146, 148, 151], "prepare_data": [5, 9], "preprocess": 147, "present": [11, 13, 21, 36, 121, 129, 139, 140, 146, 152], "previou": [123, 147, 152], "primari": [59, 64, 146, 147], "primary_hadron_1_direction_phi": [4, 146, 147], "primary_hadron_1_direction_theta": [4, 146, 147], "primary_hadron_1_energi": [4, 146, 147], "primary_hadron_1_position_i": [4, 146, 147], "primary_hadron_1_position_x": [4, 146, 147], "primary_hadron_1_position_z": [4, 146, 147], "primary_hadron_1_typ": [4, 146, 147], "primary_key_rescu": 64, "primary_lepton_1_direction_phi": [4, 146, 147], "primary_lepton_1_direction_theta": [4, 146, 147], "primary_lepton_1_energi": [4, 146, 147], "primary_lepton_1_position_i": [4, 146, 147], "primary_lepton_1_position_x": [4, 146, 147], "primary_lepton_1_position_z": [4, 146, 147], "primary_lepton_1_typ": [4, 146, 147], "principl": [1, 147], "print": [5, 109, 123, 141], "prior": 146, "prioriti": 144, "privat": 127, "pro": [147, 152], "probabl": [83, 125, 152], "problem": [0, 102, 144, 146, 147, 148, 151, 152], "procedur": 9, "proceedur": 64, "process": [1, 7, 14, 45, 47, 55, 74, 82, 86, 92, 94, 96, 99, 144, 145, 147, 152], "process_posit": 123, "produc": [5, 49, 82, 110, 114, 124, 127, 146, 147], "product": [8, 83, 126], "programm": [0, 148, 151], "progress": 123, "progressbar": [122, 123, 147, 152], "proj_drop": 83, "project": [0, 53, 83, 144, 147, 148, 151, 152], "prometheu": [4, 17, 53, 66, 85, 146, 147, 152], "prometheus_dataset": 65, "prometheus_extractor": 42, "prometheus_read": 48, "prometheusextractor": [7, 42, 43, 49], "prometheusfeatureextractor": [42, 43], "prometheusread": [48, 53], "prometheustruthextractor": [42, 43], "prompt": 147, "prone": 147, "proof": [147, 152], "properti": [5, 9, 11, 13, 14, 19, 26, 37, 49, 62, 84, 86, 90, 97, 107, 108, 118, 124, 132, 141, 145], "protocol": 145, "prototyp": 88, "proven": [19, 21, 39, 41, 43, 145], "provid": [0, 1, 7, 11, 13, 14, 16, 74, 79, 98, 104, 109, 110, 125, 144, 145, 146, 147, 148, 151, 152], "pth": [147, 152], "public": [66, 86, 127], "publicprometheusdataset": [65, 66], "publish": [14, 125, 147, 152], "puls": [5, 11, 13, 16, 18, 22, 23, 35, 37, 43, 59, 74, 80, 84, 98, 104, 107, 108, 114, 120, 121, 146, 147, 150, 152], "pulse_truth": 5, "pulsemap": [5, 11, 13, 16, 22, 66, 67, 74, 76, 126, 133, 146, 147], "pulsemap_extractor": [74, 76], "pulseseri": 35, "pulsmap": [74, 76], "punch4nfdi": [0, 148, 151], "pure": [7, 19, 20, 23, 37], "purpos": [0, 14, 79, 125, 148, 150, 151], "put": [64, 147, 152], "py": [14, 125, 147], "py3": 149, "pydant": [131, 133, 134, 136], "pydantic_cor": [131, 136], "pydocstyl": 144, "pyg": [146, 147, 152], "pylint": 144, "python": [0, 1, 7, 19, 20, 23, 34, 37, 144, 147, 148, 149, 151, 152], "python3": [87, 88, 89, 129], "pytorch": [16, 123, 147, 149, 152], "pytorch_lightn": [90, 123, 141, 147, 152], "pytorchlightn": 147, "q": 83, "qk_scale": 83, "qkv_bia": 83, "qualiti": [0, 147, 148, 151], "quantiti": [27, 118, 121, 147], "queri": [11, 13, 16, 59, 60, 64, 83, 146, 147], "query_databas": [56, 59], "query_t": [11, 13, 16, 146], "queso": 28, "question": 147, "quick": 147, "r": [84, 102, 145, 147, 149, 150], "radial": 102, "radialedg": [101, 102], "radiat": [107, 108, 147, 152], "radiu": [102, 147], "rais": [11, 13, 21, 23, 109, 110, 131, 136, 145], "random": [11, 13, 16, 56, 60, 63, 107, 133, 146, 147], "randomchunksampl": [10, 14], "randomli": [14, 60, 104, 105, 134, 147, 152], "rang": [14, 118, 148, 150, 151, 152], "rare": 145, "rasmu": [0, 95, 148, 151], "rate": [110, 123], "rather": [118, 141, 147, 152], "ratio": [9, 83, 98], "raw": [0, 107, 108, 146, 147, 148, 150, 151, 152], "rde": 4, "re": [132, 146, 147, 150, 152], "reach": [146, 150], "read": [0, 3, 7, 11, 13, 16, 34, 48, 50, 51, 52, 53, 86, 94, 115, 145, 146, 147, 148, 150, 151], "read_csv": 150, "read_sql": 147, "readabl": 147, "reader": [3, 47, 150], "readi": [65, 150, 152], "readm": 147, "readout": [92, 94, 96, 99], "readout_layer_s": [92, 94, 96, 99, 147, 152], "readthedoc": 147, "receiv": [0, 148, 151, 152], "reciev": [62, 145, 150, 152], "recommend": [147, 149, 150, 152], "reconstruct": [0, 1, 22, 24, 25, 29, 30, 32, 68, 96, 98, 112, 115, 118, 146, 147, 148, 151], "record": 141, "recov": 118, "recreat": [146, 147, 152], "recurr": 111, "recurs": [23, 37, 45, 47, 49, 50, 55, 109, 135, 139], "reduc": [147, 152], "reduce_opt": 80, "refer": [9, 89, 110, 133, 146, 147, 150, 152], "refresh_r": 123, "regardless": [146, 147, 152], "regist": 120, "regress": 114, "regular": [37, 83, 147, 152], "rel": [83, 98, 120], "rel_pos_bia": 83, "rel_pos_bucket": 120, "relat": [58, 139, 150], "relev": [1, 37, 58, 139, 144], "reli": [50, 110], "reload": 152, "relu": 99, "remain": 146, "remaining_batch": 14, "remov": [8, 45, 55, 104, 126, 129, 150], "renam": 138, "rename_state_dict_entri": [128, 138], "repeat": [104, 141], "repeat_label": 104, "repeatfilt": [128, 141], "replac": [131, 133, 134, 136, 138], "repo": 144, "repositori": 144, "repres": [84, 92, 104, 105, 107, 108, 121, 131, 133, 134, 145, 146, 147, 150, 152], "represent": [5, 11, 13, 16, 37, 66, 67, 82, 83, 84, 105, 109, 110, 112, 146, 147, 150, 152], "reproduc": [133, 134, 152], "repurpos": 152, "requir": [0, 21, 27, 39, 43, 59, 107, 116, 118, 125, 133, 134, 136, 144, 145, 146, 147, 148, 149, 150, 151, 152], "requires_icecub": [128, 140], "research": [0, 147, 148, 151], "reset": 83, "reset_paramet": 83, "resolv": [11, 13, 16, 60], "respect": [126, 147, 150], "respons": [146, 147], "restrict": [14, 118, 125, 152], "result": [14, 59, 63, 84, 105, 108, 123, 125, 126, 135, 147, 150, 152], "retriev": [86, 145, 146], "retro": 29, "return": [5, 7, 8, 9, 11, 13, 14, 16, 18, 19, 21, 34, 35, 37, 49, 50, 51, 52, 53, 58, 59, 60, 62, 63, 64, 69, 80, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 118, 120, 121, 123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 145, 146, 147, 150, 152], "return_discard": 37, "return_el": 125, "reusabl": [0, 148, 151], "reuseabl": [147, 152], "review": 144, "rhel_7_x86_64": 149, "right": [14, 125, 147], "rmse": 125, "rmseloss": [122, 125], "rmsevonmisesfisher3dloss": [122, 125], "rng": 58, "rnn": [79, 92], "rnn_dropout": 92, "rnn_dynedg": 92, "rnn_hidden_s": 92, "rnn_layer": 92, "rnn_tito": 91, "role": 152, "root": 125, "roughli": 146, "row": [59, 64, 104, 108, 121, 146, 147, 150, 152], "run": [1, 14, 50, 69, 145, 147, 149, 150, 152], "run_sql_cod": [56, 59], "runner": [87, 88, 89, 129], "runtim": [124, 149], "runtimeerror": 21, "ryabinin": 125, "sai": [147, 152], "same": [18, 37, 59, 80, 84, 108, 116, 121, 123, 135, 141, 146, 147, 152], "sampl": [14, 60, 83, 104, 105, 107, 147, 152], "sampler": 10, "satisfi": [0, 145, 148, 151], "save": [7, 19, 21, 34, 39, 41, 43, 45, 47, 55, 59, 61, 62, 64, 109, 123, 125, 126, 127, 131, 132, 133, 134, 145, 147, 150], "save_config": [132, 147, 152], "save_dataset_config": [130, 133], "save_dir": [123, 147, 152], "save_fil": [62, 145], "save_method": [7, 145, 150], "save_model_config": [130, 134], "save_result": [122, 126], "save_select": [122, 126], "save_state_dict": [109, 147, 152], "save_to_sql": [56, 59], "scalabl": 146, "scalar": [11, 13, 19, 121, 125], "scale": [82, 83, 95, 98, 103, 104, 107, 108, 118, 120, 125, 146, 152], "scaled_emb": [98, 120], "scatter": [107, 108], "schedul": 110, "scheduler_class": [110, 147, 152], "scheduler_config": [110, 147, 152], "scheduler_kwarg": [110, 147, 152], "schema": 147, "scheme": [92, 94, 96, 99, 145], "scientif": [0, 1, 148, 151], "scope": 144, "script": [147, 152], "search": [45, 47, 49, 50, 51, 52, 53, 55, 139, 145], "sec": 125, "second": 103, "section": 147, "see": [82, 92, 102, 104, 110, 118, 123, 144, 146, 147, 149], "seed": [9, 11, 13, 16, 60, 104, 105, 126, 133, 146, 147], "seen": 82, "select": [5, 8, 9, 11, 13, 14, 16, 28, 60, 126, 127, 133, 144, 147, 150], "selection_nam": 8, "self": [11, 13, 90, 104, 110, 114, 131, 136, 145, 146, 147, 150, 152], "sell": [14, 125], "send": 118, "sensor": [86, 104, 146, 147, 150, 152], "sensor_i": 150, "sensor_id": [87, 89, 150], "sensor_id_column": [87, 88, 89, 150], "sensor_index_nam": 86, "sensor_mask": 104, "sensor_pos_i": [4, 89, 146, 147, 152], "sensor_pos_x": [4, 89, 146, 147, 152], "sensor_pos_z": [4, 89, 146, 147, 152], "sensor_position_nam": 86, "sensor_string_id": 89, "sensor_tim": 150, "sensor_x": [146, 150], "sensor_z": 150, "separ": [34, 103, 123, 147, 149], "seper": [112, 146], "seq_length": [82, 98, 120, 121], "sequenc": [14, 69, 82, 83, 108, 121, 126, 147, 152], "sequenti": [11, 13], "sequential_index": [11, 13, 16], "seri": [11, 13, 16, 22, 23, 35, 37, 59, 74, 92, 107, 112, 146, 147, 152], "serial": [145, 146], "serialis": [33, 34, 147, 152], "serv": 146, "session": [133, 134, 146, 147, 152], "set": [3, 6, 9, 13, 21, 23, 45, 47, 49, 50, 55, 62, 82, 83, 98, 107, 108, 109, 118, 124, 126, 144, 145, 147, 150, 152], "set_extractor": 49, "set_gcd": 21, "set_index": 150, "set_number_of_input": 107, "set_output_feature_nam": 107, "set_verbose_print_recurs": 109, "setlevel": 141, "setup": [9, 123, 149], "setuptool": 149, "sever": [147, 152], "sh": 149, "shall": [14, 125], "shape": [19, 103, 104, 107, 121, 125, 145, 146], "share": [90, 110, 114, 147, 152], "share_redirect": 5, "shared_step": [90, 110, 114], "sharelink": 5, "shell": 149, "should": [8, 11, 13, 16, 19, 21, 34, 60, 67, 70, 83, 84, 92, 98, 104, 105, 112, 121, 125, 126, 131, 133, 134, 136, 144, 145, 146, 147, 149, 150, 152], "show": [60, 123, 147], "shown": 147, "shuffl": [8, 9, 58, 63, 126, 146], "shutdown": 9, "sid": 5, "sigmoid": 152, "sign": 125, "signal": [74, 152], "signatur": [23, 37], "signific": 146, "significantli": 146, "signup": 147, "similar": [14, 23, 37, 107, 147, 152], "similarli": [37, 145, 146, 147, 152], "simpl": [0, 79, 90, 147, 148, 151, 152], "simplecoarsen": 80, "simplest": [147, 152], "simpli": [147, 152], "simul": [35, 43, 53, 66, 74, 147, 150], "sinc": [14, 74, 125, 147], "singl": [5, 11, 18, 62, 64, 84, 94, 99, 108, 124, 127, 133, 134, 145, 146, 147, 150, 152], "sinusoid": [82, 98, 120], "sinusoidalposemb": [81, 82], "sipm_i": [4, 88], "sipm_id": 88, "sipm_x": [4, 88], "sipm_z": [4, 88], "situat": 144, "size": [13, 14, 64, 82, 83, 84, 92, 94, 95, 96, 98, 99, 121, 129, 146], "skip": [36, 94, 99, 147], "skip_readout": [94, 99], "sklearn": [147, 152], "sk\u0142odowska": [0, 148, 151], "slack": 147, "slice": [83, 94, 99], "slower": 64, "small": [125, 146, 147, 152], "smaller": [62, 145], "smooth": 144, "snippet": [147, 152], "so": [14, 125, 146, 147, 149, 150, 152], "soft": 82, "softmax": 125, "softwar": [0, 14, 50, 125, 148, 151], "solut": [82, 83, 96, 98, 144], "solv": [1, 144, 152], "some": [11, 13, 14, 16, 45, 47, 50, 55, 104, 108, 146, 147], "someth": [147, 152], "somewhat": 147, "sort": [104, 108], "sort_bi": 104, "sota": 5, "sourc": [0, 4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 55, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 74, 76, 78, 80, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 118, 120, 121, 123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 144, 146, 147, 148, 151], "south": [96, 98], "space": [82, 102, 103, 118, 127], "space_coord": 103, "spacetim": 82, "spacetimeencod": [81, 82], "sparsetensor": 83, "spatial": 108, "spawn": [13, 14], "special": [23, 74, 112, 121], "specialis": [147, 152], "specif": [0, 1, 3, 5, 6, 7, 11, 13, 16, 17, 19, 22, 37, 48, 49, 50, 59, 64, 68, 70, 78, 80, 84, 85, 86, 87, 88, 89, 91, 92, 97, 102, 104, 107, 111, 115, 116, 117, 118, 119, 125, 144, 145, 146, 147, 148, 150, 151, 152], "specifi": [11, 13, 14, 16, 60, 80, 108, 110, 118, 123, 146, 147, 150, 152], "speed": [74, 103, 146], "sphere": 102, "spite": 125, "splinemp": 30, "split": [0, 9, 36, 64, 80, 148, 151], "split_se": 9, "splitinicepuls": 59, "sql": 127, "sqlite": [1, 3, 5, 9, 10, 47, 57, 59, 64, 66, 67, 146, 147], "sqlite3": 147, "sqlite_dataset": [15, 146], "sqlite_util": 56, "sqlite_writ": 61, "sqlitedataconvert": [54, 55], "sqlitedatas": 146, "sqlitedataset": [9, 15, 16, 145], "sqlitewrit": [61, 64, 145, 146], "squar": 125, "src": [14, 147], "stabl": [117, 118], "stage": [9, 123], "standalon": 112, "standard": [0, 3, 4, 36, 60, 70, 87, 88, 89, 92, 104, 105, 107, 110, 113, 114, 118, 129, 144, 147, 148, 150, 151, 152], "standard_argu": 129, "standard_averaged_model": 79, "standard_model": [79, 147], "standardaveragedmodel": [79, 113], "standardaveragemodel": 113, "standardflowtask": [115, 118], "standardis": 85, "standardlearnedtask": [115, 116, 117, 118, 152], "standardmodel": [79, 90, 113, 114], "start": [14, 31, 144, 147, 150, 152], "state": [0, 70, 92, 112, 138, 148, 151], "state_dict": [70, 74, 76, 109, 113, 138, 147], "static": [125, 144], "std": 84, "std_pool": [81, 84], "std_pool_x": [81, 84], "stdout": 123, "step": [90, 110, 113, 114, 121, 123, 147, 150, 152], "still": 133, "stochast": 83, "stop": [31, 123, 129], "stopped_muon": 4, "store": [11, 13, 16, 59, 62, 63, 64, 124, 145, 146, 147, 150, 152], "str": [5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 55, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 74, 76, 83, 84, 86, 87, 88, 89, 90, 92, 94, 96, 98, 99, 104, 105, 107, 108, 109, 110, 113, 118, 121, 123, 124, 126, 127, 129, 131, 132, 133, 134, 135, 136, 138, 139, 141, 145, 150], "straightforward": 146, "strategi": [147, 152], "stream_handl": 141, "streamhandl": 141, "streamlin": 1, "string": [4, 5, 11, 13, 16, 34, 60, 84, 86, 87, 104, 109, 110, 118, 131, 147, 150, 152], "string_id": 150, "string_id_column": [87, 88, 89, 150], "string_index_nam": 86, "string_mask": 104, "string_select": [11, 13, 16, 126, 133], "string_selection_resolv": 56, "stringselectionresolv": [56, 60], "strongli": [147, 152], "structur": [90, 135, 145, 146, 147, 152], "style": 144, "sub": 147, "subclass": [0, 5, 79, 90, 145, 146, 147, 148, 151, 152], "subfold": [45, 47, 50, 55], "subject": [14, 98, 125], "sublicens": [14, 125], "submodul": [135, 143], "subpackag": 143, "subsampl": [63, 146], "subsequ": 147, "subset": [11, 13, 16, 83, 92, 94, 96, 99, 112, 147], "substanti": [14, 125], "suggest": [90, 125, 147], "suit": [0, 110, 118, 147, 148, 151], "suitabl": [1, 150], "sum": [80, 84, 90, 94, 96, 99, 114, 127, 147, 152], "sum_pool": [80, 81, 84], "sum_pool_and_distribut": [81, 84], "sum_pool_x": [80, 81, 84], "summar": [74, 76, 107, 108], "summari": [107, 108], "summaris": [147, 152], "summariz": 152, "summarization_indic": 108, "super": [145, 146, 147, 152], "supervis": [114, 118, 152], "support": [0, 7, 37, 118, 144, 145, 146, 147, 148, 151], "suppos": [5, 108, 146, 150], "sure": [144, 145], "swa": 113, "swapabl": 147, "switch": [125, 147, 152], "synchron": 7, "syntax": [60, 90, 125, 146, 147], "system": [139, 147, 152], "t": [4, 37, 59, 123, 125, 145, 146, 147, 150, 152], "t_co": 8, "tabl": [5, 11, 13, 16, 18, 19, 21, 39, 41, 43, 49, 59, 63, 64, 86, 104, 127, 145, 146, 147], "table_nam": [43, 59], "table_without_index": 150, "tackl": 152, "tag": [126, 144], "take": [37, 84, 108, 112, 144, 146], "talk": 147, "tar": 5, "target": [90, 110, 116, 118, 125, 136, 147, 152], "target_label": [90, 110, 118, 147, 152], "target_norm": 118, "target_pr": [116, 152], "task": [0, 1, 9, 79, 90, 114, 125, 144, 147, 148, 151], "team": [104, 144, 146, 147, 149, 150, 152], "teardown": 9, "technic": [0, 148, 150, 151], "techniqu": [0, 148, 151, 152], "telescop": [0, 1, 147, 148, 150, 151, 152], "tend": 64, "tensor": [11, 13, 16, 70, 80, 82, 83, 84, 86, 90, 92, 93, 94, 95, 96, 97, 98, 99, 103, 107, 110, 112, 113, 114, 118, 120, 121, 125, 138, 142, 146, 147, 150, 152], "term": [83, 125, 152], "termin": 147, "test": [5, 9, 60, 66, 67, 118, 126, 133, 140, 144, 146, 147, 152], "test_dataload": 9, "test_dataloader_kwarg": [5, 9, 66, 67], "test_dataset": 65, "test_funct": 140, "test_select": [9, 133, 146, 147], "test_siz": 126, "testdataset": [65, 67], "tev": 66, "than": [0, 8, 118, 126, 141, 146, 147, 148, 151, 152], "thei": [69, 145, 146, 147, 152], "them": [0, 1, 34, 70, 79, 94, 118, 146, 147, 148, 150, 151, 152], "themselv": [1, 133, 134, 147, 152], "therebi": [1, 133, 134, 147, 152], "therefor": [34, 50, 145, 146, 147, 150, 152], "thi": [0, 3, 5, 7, 9, 11, 13, 14, 16, 18, 19, 21, 23, 37, 39, 41, 43, 45, 47, 49, 50, 55, 58, 59, 63, 64, 67, 74, 79, 82, 84, 90, 92, 94, 98, 99, 103, 104, 105, 107, 108, 110, 112, 114, 116, 117, 118, 121, 123, 125, 126, 127, 131, 133, 134, 136, 141, 144, 145, 146, 147, 148, 149, 150, 151, 152], "thing": 147, "thoglu": [110, 118], "those": [21, 146, 147], "thread": 13, "three": [99, 108, 125, 152], "threshold": [0, 74, 148, 151], "through": [0, 116, 117, 118, 125, 145, 147, 148, 151, 152], "throw": 145, "thu": [134, 152], "ti": 146, "time": [0, 4, 59, 80, 82, 84, 92, 103, 107, 108, 112, 117, 121, 127, 141, 146, 147, 148, 150, 151], "time_column": 107, "time_coord": 103, "time_lik": 103, "time_like_weight": 103, "time_series_column": [92, 112], "time_window": 80, "timereconstruct": [115, 117], "tini": 147, "tito": [83, 92, 96], "to_config": 152, "to_csv": [147, 152], "to_parquet": 150, "todo": 147, "togeth": [0, 14, 79, 102, 125, 148, 151], "token": 120, "too": [147, 152], "tool": [0, 1, 148, 151], "top": 152, "torch": [0, 11, 13, 16, 79, 83, 104, 105, 109, 110, 140, 146, 147, 148, 149, 150, 151, 152], "torch_cpu": 149, "torch_geometr": [84, 121, 146, 147, 152], "torch_lightn": 152, "tort": [14, 125], "total": [121, 126, 127, 146, 147, 150], "total_energi": [4, 146, 147, 152], "tqdmprogressbar": 123, "track": [0, 19, 21, 25, 39, 41, 43, 66, 117, 122, 124, 144, 145, 147, 148, 151], "tradit": [0, 148, 151], "train": [0, 1, 5, 7, 9, 10, 60, 65, 66, 67, 68, 74, 83, 90, 98, 104, 110, 113, 114, 121, 129, 133, 134, 136, 143, 145, 146, 147, 148, 150, 151], "train_batch": [90, 113], "train_dataload": [9, 90, 147, 152], "train_dataloader_kwarg": [5, 9, 66, 67], "train_ev": 118, "train_select": [133, 146, 147], "train_val_split": 9, "trainabl": 134, "trainer": [90, 123, 126, 147, 152], "trainer_kwarg": 90, "training_config": [130, 147, 152], "training_example_data_sqlit": [129, 146, 147, 152], "training_step": [90, 113], "trainingconfig": [130, 136, 147, 152], "transform": [1, 79, 83, 84, 96, 98, 112, 118, 127, 147, 152], "transform_infer": [118, 147, 152], "transform_prediction_and_target": [118, 147, 152], "transform_support": [118, 147, 152], "transform_target": [118, 147, 152], "transit": 138, "transpar": [133, 134, 144, 147, 152], "transpos": 34, "transpose_list_of_dict": [33, 34], "traverse_and_appli": [130, 135], "treat": [92, 112], "tree": [23, 147], "tri": [23, 37], "triangl": 89, "trident": [66, 89], "trident1211": [85, 89], "tridentsmal": [65, 66], "trigger": [23, 146, 147, 152], "trivial": [37, 118], "true": [36, 59, 74, 92, 94, 96, 98, 99, 104, 107, 109, 123, 125, 127, 133, 134, 136, 139, 145, 146, 147, 152], "trust": [109, 147, 152], "truth": [3, 4, 5, 11, 13, 16, 22, 31, 43, 59, 63, 66, 67, 104, 118, 126, 127, 133, 146, 150, 152], "truth_dict": 104, "truth_label": 146, "truth_tabl": [5, 11, 13, 16, 63, 126, 127, 133, 146, 147], "truthdata": 41, "try": [37, 145], "tum": [25, 32], "tupl": [7, 11, 13, 14, 16, 35, 37, 59, 83, 92, 94, 96, 99, 108, 118, 121, 126, 129, 138], "turn": [108, 144], "tutorial_output": [147, 152], "two": [8, 94, 123, 125, 126, 145, 146, 147, 150], "txt": 149, "type": [0, 5, 7, 8, 9, 11, 13, 14, 16, 21, 33, 34, 35, 41, 43, 49, 50, 51, 52, 53, 58, 59, 60, 62, 63, 64, 69, 80, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 118, 120, 121, 123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 151], "typic": [0, 34, 112, 146, 148, 150, 151], "u": [146, 150], "ultra": 146, "unaccur": 125, "unambigu": [133, 134], "unbatch_edge_index": [79, 80], "uncertainti": [117, 147, 152], "uncompress": 146, "under": [0, 147, 148, 150, 151, 152], "unfamiliar": 152, "uniform": [122, 127], "uniformweightfitt": 127, "union": [0, 7, 8, 9, 11, 13, 16, 23, 34, 37, 45, 47, 49, 50, 51, 52, 53, 55, 69, 70, 74, 76, 80, 83, 84, 90, 92, 94, 99, 104, 105, 110, 114, 118, 133, 136, 139, 145, 148, 150, 151], "uniqu": [11, 13, 16, 59, 107, 121, 133, 147, 150, 152], "unit": [0, 7, 67, 103, 140, 144, 148, 151], "univers": [96, 98], "unlik": 146, "unscal": 152, "untransform": 116, "up": [0, 74, 144, 148, 151], "updat": [99, 112, 113, 121, 123, 147, 149, 152], "upgrad": [4, 22, 87, 147, 149], "upon": [110, 152], "us": [0, 1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 26, 31, 33, 34, 39, 41, 43, 45, 47, 49, 50, 54, 55, 56, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 76, 79, 82, 83, 84, 86, 90, 92, 94, 95, 96, 98, 99, 102, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 120, 121, 123, 124, 125, 127, 128, 129, 130, 133, 134, 135, 140, 141, 144, 145, 148, 149, 150, 151], "usabl": [0, 148, 151], "usag": [110, 118, 129], "use_cach": 60, "use_global_featur": [92, 96], "use_post_processing_lay": [92, 96], "user": [0, 5, 79, 90, 123, 146, 147, 148, 149, 151, 152], "usual": 146, "util": [1, 3, 20, 79, 100, 122, 143, 146, 147, 149, 152], "v": 83, "v1": [131, 133, 134, 136, 149], "v4": 149, "val_batch": [90, 113], "val_dataload": [9, 90], "valid": [5, 9, 37, 60, 66, 67, 90, 110, 113, 114, 118, 123, 125, 129, 131, 136, 146, 147, 152], "validate_fil": 49, "validate_task": [90, 110, 114], "validation_dataloader_kwarg": [5, 9, 66, 67], "validation_step": [90, 113], "validationerror": [131, 136], "valu": [11, 13, 16, 31, 34, 59, 83, 84, 99, 103, 104, 105, 118, 121, 124, 125, 129, 131, 152], "valueerror": [23, 109, 110], "var": 117, "var1": 19, "var_n": 19, "variabl": [19, 21, 23, 37, 49, 94, 107, 108, 121, 127, 141, 145, 150, 152], "varieti": 147, "variou": [1, 61, 147], "vast": [114, 118], "vector": [80, 83, 84, 125, 145, 152], "verbos": [45, 47, 50, 55, 90, 114, 123], "verbose_print": 109, "veri": [60, 146, 147, 152], "verifi": [90, 110, 114], "versa": 123, "version": [84, 108, 118, 123, 144, 147, 152], "vertex": [117, 147], "vertex_i": 4, "vertex_x": 4, "vertex_z": 4, "vertexreconstruct": [115, 117], "viabl": 150, "vice": 123, "virtual": 149, "visit": 150, "vmf": 117, "vmf_loss": 125, "vmfs_factor": 125, "volum": 31, "von": 125, "vonmisesfisher2dloss": [122, 125, 147, 152], "vonmisesfisher3dloss": [122, 125], "vonmisesfisherloss": [122, 125], "w": [147, 152], "wa": [0, 7, 146, 147, 148, 150, 151, 152], "wai": [14, 37, 60, 114, 144, 147, 150, 152], "wandb": [147, 152], "wandb_dir": [147, 152], "wandb_logg": [147, 152], "wandblogg": [147, 152], "want": [146, 147, 149, 150, 152], "warn": [141, 147], "warning_onc": [141, 147], "warranti": [14, 125], "waterdemo81": [85, 89], "wb": 145, "we": [34, 37, 60, 108, 110, 144, 147, 149, 150, 152], "weight": [11, 13, 16, 74, 76, 83, 98, 104, 118, 125, 127, 134, 147, 152], "weight_fit": 122, "weight_nam": 127, "weightfitt": [122, 127], "well": [144, 147, 152], "wether": 99, "what": [1, 82, 104, 144, 147, 152], "whatev": 147, "wheel": 149, "when": [0, 11, 13, 14, 16, 34, 36, 59, 74, 83, 92, 94, 96, 99, 112, 124, 141, 144, 145, 146, 147, 148, 149, 150, 151, 152], "whenev": 149, "where": [19, 45, 47, 50, 55, 104, 105, 107, 108, 112, 121, 124, 145, 146, 147, 150, 152], "wherea": [127, 146], "whether": [8, 14, 35, 37, 59, 82, 83, 92, 94, 96, 98, 99, 109, 120, 125, 135, 139, 140, 147], "which": [0, 5, 11, 13, 16, 19, 21, 22, 31, 35, 39, 41, 43, 60, 62, 64, 69, 80, 84, 94, 99, 104, 105, 108, 109, 110, 116, 118, 121, 125, 126, 129, 145, 146, 147, 148, 151, 152], "while": [0, 23, 90, 123, 144, 146, 148, 151], "who": [5, 138, 147, 152], "whom": [14, 125], "whose": 74, "wide": [14, 110, 152], "width": 14, "willing": [146, 150], "window": [80, 146, 147], "wise": 84, "wish": [0, 69, 144, 148, 151], "with_standard_argu": 129, "within": [31, 80, 83, 84, 94, 99, 102, 147, 152], "without": [1, 14, 102, 105, 107, 125, 146, 149], "work": [0, 4, 35, 92, 144, 145, 146, 147, 148, 151, 152], "worker": [6, 7, 14, 45, 55, 58, 63, 69, 129, 141], "workflow": [0, 148, 151], "would": [144, 146, 147, 150, 152], "wrap": [123, 133, 134], "write": [63, 74, 76, 145, 147, 152], "writer": [3, 47, 150], "written": [47, 69, 145], "wrt": 118, "www": 147, "x": [4, 31, 82, 83, 84, 87, 103, 107, 108, 112, 118, 121, 125, 127, 146, 147, 150, 152], "x8": 146, "x_i": 83, "x_j": 83, "x_low": 127, "xyz": [86, 87, 88, 89, 107, 108, 146, 150], "xyz_coord": 121, "xyzt": 121, "y": [4, 31, 82, 87, 103, 121], "yaml": [131, 132, 147], "yield": [0, 94, 99, 125, 148, 151], "yml": [60, 129, 133, 134, 146, 147, 152], "you": [64, 69, 82, 110, 133, 134, 144, 146, 147, 149, 150, 152], "your": [105, 110, 144, 145, 146, 147, 149], "yourself": 144, "z": [4, 31, 82, 87, 103, 107, 108, 121], "z_name": 107, "z_offset": [107, 108], "z_scale": [107, 108], "zenith": [4, 117, 124, 147, 152], "zenith_kappa": 117, "zenith_kei": 124, "zenith_pr": 117, "zenithreconstruct": [115, 117], "zenithreconstructionwithkappa": [115, 117, 147, 152], "\u00f8rs\u00f8e": [0, 148, 151]}, "titles": ["Usage", "Subpackages", "graphnet.constants module", "graphnet.data package", "graphnet.data.constants module", "graphnet.data.curated_datamodule module", "graphnet.data.dataclasses module", "graphnet.data.dataconverter module", "graphnet.data.dataloader module", "graphnet.data.datamodule module", "graphnet.data.dataset package", "graphnet.data.dataset.dataset module", "graphnet.data.dataset.parquet package", "graphnet.data.dataset.parquet.parquet_dataset module", "graphnet.data.dataset.samplers module", "graphnet.data.dataset.sqlite package", "graphnet.data.dataset.sqlite.sqlite_dataset module", "graphnet.data.extractors package", "graphnet.data.extractors.combine_extractors module", "graphnet.data.extractors.extractor module", "graphnet.data.extractors.icecube package", "graphnet.data.extractors.icecube.i3extractor module", "graphnet.data.extractors.icecube.i3featureextractor module", "graphnet.data.extractors.icecube.i3genericextractor module", "graphnet.data.extractors.icecube.i3hybridrecoextractor module", "graphnet.data.extractors.icecube.i3ntmuonlabelsextractor module", "graphnet.data.extractors.icecube.i3particleextractor module", "graphnet.data.extractors.icecube.i3pisaextractor module", "graphnet.data.extractors.icecube.i3quesoextractor module", "graphnet.data.extractors.icecube.i3retroextractor module", "graphnet.data.extractors.icecube.i3splinempeextractor module", "graphnet.data.extractors.icecube.i3truthextractor module", "graphnet.data.extractors.icecube.i3tumextractor module", "graphnet.data.extractors.icecube.utilities package", "graphnet.data.extractors.icecube.utilities.collections module", "graphnet.data.extractors.icecube.utilities.frames module", "graphnet.data.extractors.icecube.utilities.i3_filters module", "graphnet.data.extractors.icecube.utilities.types module", "graphnet.data.extractors.internal package", "graphnet.data.extractors.internal.parquet_extractor module", "graphnet.data.extractors.liquido package", "graphnet.data.extractors.liquido.h5_extractor module", "graphnet.data.extractors.prometheus package", "graphnet.data.extractors.prometheus.prometheus_extractor module", "graphnet.data.parquet package", "graphnet.data.parquet.deprecated_methods module", "graphnet.data.pre_configured package", "graphnet.data.pre_configured.dataconverters module", "graphnet.data.readers package", "graphnet.data.readers.graphnet_file_reader module", "graphnet.data.readers.i3reader module", "graphnet.data.readers.internal_parquet_reader module", "graphnet.data.readers.liquido_reader module", "graphnet.data.readers.prometheus_reader module", "graphnet.data.sqlite package", "graphnet.data.sqlite.deprecated_methods module", "graphnet.data.utilities package", "graphnet.data.utilities.parquet_to_sqlite module", "graphnet.data.utilities.random module", "graphnet.data.utilities.sqlite_utilities module", "graphnet.data.utilities.string_selection_resolver module", "graphnet.data.writers package", "graphnet.data.writers.graphnet_writer module", "graphnet.data.writers.parquet_writer module", "graphnet.data.writers.sqlite_writer module", "graphnet.datasets package", "graphnet.datasets.prometheus_datasets module", "graphnet.datasets.test_dataset module", "graphnet.deployment package", "graphnet.deployment.deployer module", "graphnet.deployment.deployment_module module", "graphnet.deployment.i3modules package", "graphnet.deployment.i3modules.deprecated_methods module", "graphnet.deployment.icecube package", "graphnet.deployment.icecube.cleaning_module module", "graphnet.deployment.icecube.i3deployer module", "graphnet.deployment.icecube.inference_module module", "graphnet.exceptions package", "graphnet.exceptions.exceptions module", "graphnet.models package", "graphnet.models.coarsening module", "graphnet.models.components package", "graphnet.models.components.embedding module", "graphnet.models.components.layers module", "graphnet.models.components.pool module", "graphnet.models.detector package", "graphnet.models.detector.detector module", "graphnet.models.detector.icecube module", "graphnet.models.detector.liquido module", "graphnet.models.detector.prometheus module", "graphnet.models.easy_model module", "graphnet.models.gnn package", "graphnet.models.gnn.RNN_tito module", "graphnet.models.gnn.convnet module", "graphnet.models.gnn.dynedge module", "graphnet.models.gnn.dynedge_jinst module", "graphnet.models.gnn.dynedge_kaggle_tito module", "graphnet.models.gnn.gnn module", "graphnet.models.gnn.icemix module", "graphnet.models.gnn.particlenet module", "graphnet.models.graphs package", "graphnet.models.graphs.edges package", "graphnet.models.graphs.edges.edges module", "graphnet.models.graphs.edges.minkowski module", "graphnet.models.graphs.graph_definition module", "graphnet.models.graphs.graphs module", "graphnet.models.graphs.nodes package", "graphnet.models.graphs.nodes.nodes module", "graphnet.models.graphs.utils module", "graphnet.models.model module", "graphnet.models.normalizing_flow module", "graphnet.models.rnn package", "graphnet.models.rnn.node_rnn module", "graphnet.models.standard_averaged_model module", "graphnet.models.standard_model module", "graphnet.models.task package", "graphnet.models.task.classification module", "graphnet.models.task.reconstruction module", "graphnet.models.task.task module", "graphnet.models.transformer package", "graphnet.models.transformer.iseecube module", "graphnet.models.utils module", "graphnet.training package", "graphnet.training.callbacks module", "graphnet.training.labels module", "graphnet.training.loss_functions module", "graphnet.training.utils module", "graphnet.training.weight_fitting module", "graphnet.utilities package", "graphnet.utilities.argparse module", "graphnet.utilities.config package", "graphnet.utilities.config.base_config module", "graphnet.utilities.config.configurable module", "graphnet.utilities.config.dataset_config module", "graphnet.utilities.config.model_config module", "graphnet.utilities.config.parsing module", "graphnet.utilities.config.training_config module", "graphnet.utilities.decorators module", "graphnet.utilities.deprecation_tools module", "graphnet.utilities.filesys module", "graphnet.utilities.imports module", "graphnet.utilities.logging module", "graphnet.utilities.maths module", "src", "Contributing To GraphNeT", "Data Conversion in GraphNeT", "Datasets In GraphNeT", "GraphNeT tutorial", "GraphNeT", "Installation", "Integrating New Experiments into GraphNeT", "GraphNeT", "Models In GraphNeT", "<no title>"], "titleterms": {"1": 150, "2": 150, "In": [146, 152], "The": [147, 152], "To": 144, "acknowledg": 0, "ad": [146, 147, 150, 152], "advanc": 147, "appendix": 147, "appli": 150, "argpars": 129, "backbon": 152, "base_config": 131, "befor": 150, "callback": 123, "checkpoint": 152, "choos": 146, "class": [147, 150, 152], "classif": 116, "cleaning_modul": 74, "coarsen": 80, "code": 144, "collect": 34, "combin": [146, 147], "combine_extractor": 18, "compon": [81, 82, 83, 84], "config": [130, 131, 132, 133, 134, 135, 136], "configur": 132, "constant": [2, 4], "content": 147, "contribut": 144, "convent": 144, "convers": 145, "convnet": 93, "creat": 147, "curated_datamodul": 5, "custom": [146, 147], "cvmf": 149, "data": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 145, 150], "dataclass": 6, "dataconfig": 147, "dataconvert": [7, 47, 145], "dataload": 8, "datamodul": 9, "dataset": [10, 11, 12, 13, 14, 15, 16, 65, 66, 67, 146, 147], "dataset_config": 133, "datasetconfig": 147, "decor": 137, "deploy": [68, 69, 70, 71, 72, 73, 74, 75, 76], "deployment_modul": 70, "deprecated_method": [45, 55, 72], "deprecation_tool": 138, "detector": [85, 86, 87, 88, 89, 150], "dynedg": 94, "dynedge_jinst": 95, "dynedge_kaggle_tito": 96, "easy_model": 90, "edg": [101, 102, 103], "embed": 82, "energi": 152, "event": 146, "exampl": [147, 150, 152], "except": [77, 78], "experi": [150, 152], "extractor": [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 145, 150], "filesi": 139, "frame": 35, "function": 147, "geometri": 150, "github": 144, "gnn": [91, 92, 93, 94, 95, 96, 97, 98, 99], "graph": [100, 101, 102, 103, 104, 105, 106, 107, 108], "graph_definit": 104, "graphdefinit": 152, "graphnet": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 147], "graphnet_file_read": 49, "graphnet_writ": 62, "graphnetfileread": 150, "graphnetgraphnet": [144, 145, 146, 148, 150, 151, 152], "h5_extractor": 41, "i3_filt": 36, "i3deploy": 75, "i3extractor": 21, "i3featureextractor": 22, "i3genericextractor": 23, "i3hybridrecoextractor": 24, "i3modul": [71, 72], "i3ntmuonlabelsextractor": 25, "i3particleextractor": 26, "i3pisaextractor": 27, "i3quesoextractor": 28, "i3read": 50, "i3retroextractor": 29, "i3splinempeextractor": 30, "i3truthextractor": 31, "i3tumextractor": 32, "icecub": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 73, 74, 75, 76, 87, 149], "icemix": 98, "implement": [146, 150], "import": 140, "index": 150, "inference_modul": 76, "instal": 149, "instanti": 152, "integr": 150, "intern": [38, 39], "internal_parquet_read": 51, "introduct": 147, "iseecub": 120, "issu": 144, "label": [124, 146, 147], "layer": 83, "liquido": [40, 41, 88], "liquido_read": 52, "load": 152, "log": 141, "loss_funct": 125, "math": 142, "minkowski": 103, "model": [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 147, 152], "model_config": 134, "modelconfig": [147, 152], "modul": [2, 4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 76, 78, 80, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 118, 120, 121, 123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142], "multi": 150, "multipl": [146, 147], "new": [146, 150], "node": [106, 107], "node_rnn": 112, "normalizing_flow": 110, "overview": 147, "own": [150, 152], "packag": [3, 10, 12, 15, 17, 20, 33, 38, 40, 42, 44, 46, 48, 54, 56, 61, 65, 68, 71, 73, 77, 79, 81, 85, 91, 100, 101, 106, 111, 115, 119, 122, 128, 130], "parquet": [12, 13, 44, 45], "parquet_dataset": 13, "parquet_extractor": 39, "parquet_to_sqlit": 57, "parquet_writ": 63, "parquetdataset": 146, "pars": 135, "particlenet": 99, "pool": 84, "pre_configur": [46, 47], "prometheu": [42, 43, 89], "prometheus_dataset": 66, "prometheus_extractor": 43, "prometheus_read": 53, "pull": 144, "qualiti": 144, "quick": 149, "random": 58, "reader": [48, 49, 50, 51, 52, 53, 145], "reconstruct": [117, 152], "reproduc": 147, "request": 144, "rnn": [111, 112], "rnn_tito": 92, "sampler": 14, "save": 152, "select": 146, "sqlite": [15, 16, 54, 55], "sqlite_dataset": 16, "sqlite_util": 59, "sqlite_writ": 64, "sqlitedataset": [146, 147], "src": 143, "standard_averaged_model": 113, "standard_model": 114, "standardmodel": [147, 152], "start": 149, "state_dict": 152, "string_selection_resolv": 60, "submodul": [1, 3, 10, 12, 15, 17, 20, 33, 38, 40, 42, 44, 46, 48, 54, 56, 61, 65, 68, 71, 73, 77, 79, 81, 85, 91, 100, 101, 106, 111, 115, 119, 122, 128, 130], "subpackag": [1, 3, 10, 17, 20, 68, 79, 100, 128], "subset": 146, "support": 150, "syntax": 152, "tabl": 150, "task": [115, 116, 117, 118, 152], "test_dataset": 67, "track": 152, "train": [122, 123, 124, 125, 126, 127, 152], "training_config": 136, "transform": [119, 120], "truth": 147, "tutori": 147, "type": 37, "us": [146, 147, 152], "usag": 0, "util": [33, 34, 35, 36, 37, 56, 57, 58, 59, 60, 108, 121, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142], "v": 146, "weight_fit": 127, "write": 150, "writer": [61, 62, 63, 64, 145], "your": [150, 152]}}) \ No newline at end of file diff --git a/sitemap.xml b/sitemap.xml index e97e47f3c..65a16b1c4 100644 --- a/sitemap.xml +++ b/sitemap.xml @@ -1 +1 @@ -https://graphnet-team.github.io/graphnetabout/about.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.constants.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.constants.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.curated_datamodule.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataclasses.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataconverter.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataloader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.datamodule.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.parquet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.parquet.parquet_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.sqlite.sqlite_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.combine_extractors.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3featureextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3genericextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3hybridrecoextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3ntmuonlabelsextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3particleextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3pisaextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3quesoextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3retroextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3splinempeextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3truthextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3tumextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.collections.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.frames.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.i3_filters.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.types.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.internal.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.internal.parquet_extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.liquido.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.liquido.h5_extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.prometheus.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.prometheus.prometheus_extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.parquet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.parquet.deprecated_methods.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.pre_configured.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.pre_configured.dataconverters.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.graphnet_file_reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.i3reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.internal_parquet_reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.liquido_reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.prometheus_reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.deprecated_methods.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.parquet_to_sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.random.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.sqlite_utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.string_selection_resolver.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.writers.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.writers.graphnet_writer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.writers.parquet_writer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.writers.sqlite_writer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.datasets.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.datasets.prometheus_datasets.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.datasets.test_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.deployer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.deployment_module.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.deprecated_methods.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.icecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.icecube.cleaning_module.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.icecube.i3deployer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.icecube.inference_module.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.exceptions.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.exceptions.exceptions.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.coarsening.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.embedding.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.layers.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.pool.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.detector.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.icecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.liquido.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.prometheus.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.easy_model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.RNN_tito.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.convnet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge_jinst.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge_kaggle_tito.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.gnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.icemix.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.edges.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.minkowski.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.graph_definition.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.graphs.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.nodes.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.nodes.nodes.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.rnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.rnn.node_rnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.standard_averaged_model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.standard_model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.classification.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.reconstruction.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.task.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.transformer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.transformer.iseecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.callbacks.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.labels.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.loss_functions.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.weight_fitting.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.argparse.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.base_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.configurable.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.dataset_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.model_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.parsing.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.training_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.decorators.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.deprecation_tools.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.filesys.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.imports.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.logging.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.maths.htmlhttps://graphnet-team.github.io/graphnetapi/modules.htmlhttps://graphnet-team.github.io/graphnetcontribute/contribute.htmlhttps://graphnet-team.github.io/graphnetdata_conversion/data_conversion.htmlhttps://graphnet-team.github.io/graphnetdatasets/datasets.htmlhttps://graphnet-team.github.io/graphnetgetting_started/getting_started.htmlhttps://graphnet-team.github.io/graphnetindex.htmlhttps://graphnet-team.github.io/graphnetinstallation/install.htmlhttps://graphnet-team.github.io/graphnetintegration/integration.htmlhttps://graphnet-team.github.io/graphnetintro/intro.htmlhttps://graphnet-team.github.io/graphnetmodels/models.htmlhttps://graphnet-team.github.io/graphnetsubstitutions.htmlhttps://graphnet-team.github.io/graphnetgenindex.htmlhttps://graphnet-team.github.io/graphnetpy-modindex.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/constants.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/curated_datamodule.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataclasses.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataconverter.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataloader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/datamodule.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/parquet/parquet_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/sqlite/sqlite_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/combine_extractors.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3featureextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3genericextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3hybridrecoextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3ntmuonlabelsextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3particleextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3pisaextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3quesoextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3retroextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3splinempeextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3truthextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3tumextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/utilities/collections.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/utilities/frames.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/utilities/i3_filters.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/utilities/types.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/internal/parquet_extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/liquido/h5_extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/prometheus/prometheus_extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/parquet/deprecated_methods.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/pre_configured/dataconverters.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/graphnet_file_reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/i3reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/internal_parquet_reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/liquido_reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/prometheus_reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/sqlite/deprecated_methods.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/random.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/sqlite_utilities.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/string_selection_resolver.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/writers/graphnet_writer.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/writers/parquet_writer.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/writers/sqlite_writer.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/datasets/prometheus_datasets.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/datasets/test_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/deployer.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/deployment_module.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/icecube/cleaning_module.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/icecube/inference_module.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/exceptions/exceptions.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/coarsening.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/embedding.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/layers.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/pool.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/detector.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/icecube.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/liquido.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/prometheus.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/easy_model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/RNN_tito.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/convnet.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge_jinst.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge_kaggle_tito.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/gnn.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/icemix.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/edges/edges.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/edges/minkowski.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/graph_definition.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/graphs.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/nodes/nodes.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/rnn/node_rnn.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/standard_averaged_model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/standard_model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/classification.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/reconstruction.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/task.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/transformer/iseecube.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/callbacks.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/labels.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/loss_functions.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/weight_fitting.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/argparse.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/base_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/configurable.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/dataset_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/model_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/parsing.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/training_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/deprecation_tools.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/filesys.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/imports.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/logging.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/maths.htmlhttps://graphnet-team.github.io/graphnet_modules/index.htmlhttps://graphnet-team.github.io/graphnetsearch.html \ No newline at end of file +https://graphnet-team.github.io/graphnetabout/about.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.constants.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.constants.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.curated_datamodule.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataclasses.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataconverter.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataloader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.datamodule.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.parquet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.parquet.parquet_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.samplers.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.sqlite.sqlite_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.combine_extractors.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3featureextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3genericextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3hybridrecoextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3ntmuonlabelsextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3particleextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3pisaextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3quesoextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3retroextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3splinempeextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3truthextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.i3tumextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.collections.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.frames.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.i3_filters.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.icecube.utilities.types.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.internal.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.internal.parquet_extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.liquido.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.liquido.h5_extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.prometheus.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.prometheus.prometheus_extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.parquet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.parquet.deprecated_methods.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.pre_configured.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.pre_configured.dataconverters.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.graphnet_file_reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.i3reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.internal_parquet_reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.liquido_reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.readers.prometheus_reader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.deprecated_methods.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.parquet_to_sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.random.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.sqlite_utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.string_selection_resolver.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.writers.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.writers.graphnet_writer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.writers.parquet_writer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.writers.sqlite_writer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.datasets.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.datasets.prometheus_datasets.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.datasets.test_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.deployer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.deployment_module.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.deprecated_methods.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.icecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.icecube.cleaning_module.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.icecube.i3deployer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.icecube.inference_module.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.exceptions.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.exceptions.exceptions.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.coarsening.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.embedding.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.layers.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.pool.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.detector.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.icecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.liquido.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.prometheus.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.easy_model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.RNN_tito.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.convnet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge_jinst.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge_kaggle_tito.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.gnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.icemix.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.particlenet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.edges.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.minkowski.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.graph_definition.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.graphs.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.nodes.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.nodes.nodes.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.normalizing_flow.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.rnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.rnn.node_rnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.standard_averaged_model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.standard_model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.classification.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.reconstruction.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.task.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.transformer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.transformer.iseecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.callbacks.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.labels.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.loss_functions.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.weight_fitting.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.argparse.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.base_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.configurable.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.dataset_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.model_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.parsing.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.training_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.decorators.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.deprecation_tools.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.filesys.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.imports.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.logging.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.maths.htmlhttps://graphnet-team.github.io/graphnetapi/modules.htmlhttps://graphnet-team.github.io/graphnetcontribute/contribute.htmlhttps://graphnet-team.github.io/graphnetdata_conversion/data_conversion.htmlhttps://graphnet-team.github.io/graphnetdatasets/datasets.htmlhttps://graphnet-team.github.io/graphnetgetting_started/getting_started.htmlhttps://graphnet-team.github.io/graphnetindex.htmlhttps://graphnet-team.github.io/graphnetinstallation/install.htmlhttps://graphnet-team.github.io/graphnetintegration/integration.htmlhttps://graphnet-team.github.io/graphnetintro/intro.htmlhttps://graphnet-team.github.io/graphnetmodels/models.htmlhttps://graphnet-team.github.io/graphnetsubstitutions.htmlhttps://graphnet-team.github.io/graphnetgenindex.htmlhttps://graphnet-team.github.io/graphnetpy-modindex.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/constants.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/curated_datamodule.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataclasses.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataconverter.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataloader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/datamodule.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/parquet/parquet_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/samplers.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/sqlite/sqlite_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/combine_extractors.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3featureextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3genericextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3hybridrecoextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3ntmuonlabelsextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3particleextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3pisaextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3quesoextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3retroextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3splinempeextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3truthextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/i3tumextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/utilities/collections.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/utilities/frames.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/utilities/i3_filters.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/icecube/utilities/types.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/internal/parquet_extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/liquido/h5_extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/prometheus/prometheus_extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/parquet/deprecated_methods.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/pre_configured/dataconverters.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/graphnet_file_reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/i3reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/internal_parquet_reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/liquido_reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/readers/prometheus_reader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/sqlite/deprecated_methods.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/random.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/sqlite_utilities.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/string_selection_resolver.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/writers/graphnet_writer.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/writers/parquet_writer.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/writers/sqlite_writer.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/datasets/prometheus_datasets.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/datasets/test_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/deployer.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/deployment_module.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/icecube/cleaning_module.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/icecube/inference_module.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/exceptions/exceptions.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/coarsening.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/embedding.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/layers.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/pool.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/detector.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/icecube.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/liquido.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/prometheus.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/easy_model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/RNN_tito.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/convnet.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge_jinst.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge_kaggle_tito.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/gnn.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/icemix.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/particlenet.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/edges/edges.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/edges/minkowski.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/graph_definition.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/graphs.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/nodes/nodes.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/normalizing_flow.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/rnn/node_rnn.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/standard_averaged_model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/standard_model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/classification.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/reconstruction.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/task.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/transformer/iseecube.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/callbacks.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/labels.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/loss_functions.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/weight_fitting.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/argparse.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/base_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/configurable.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/dataset_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/model_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/parsing.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/training_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/deprecation_tools.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/filesys.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/imports.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/logging.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/maths.htmlhttps://graphnet-team.github.io/graphnet_modules/index.htmlhttps://graphnet-team.github.io/graphnetsearch.html \ No newline at end of file