-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathKnnContainer.cs
618 lines (500 loc) · 18.4 KB
/
KnnContainer.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
//MIT License
//
//Copyright(c) 2018 Vili Volčini / viliwonka
//
//Permission is hereby granted, free of charge, to any person obtaining a copy
//of this software and associated documentation files (the "Software"), to deal
//in the Software without restriction, including without limitation the rights
//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
//copies of the Software, and to permit persons to whom the Software is
//furnished to do so, subject to the following conditions:
//
//The above copyright notice and this permission notice shall be included in all
//copies or substantial portions of the Software.
//
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
//SOFTWARE.
//
// Modifed 2019 Arthur Brussee
using System;
using KNN.Internal;
using KNN.Jobs;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Jobs;
using Unity.Mathematics;
namespace KNN.Internal {
public static unsafe class UnsafeUtilityEx {
public static T* AllocArray<T>(int length, Allocator allocator) where T : unmanaged {
return (T*)UnsafeUtility.Malloc(length * UnsafeUtility.SizeOf<T>(), UnsafeUtility.AlignOf<T>(), allocator);
}
}
}
namespace KNN {
[NativeContainerSupportsDeallocateOnJobCompletion, NativeContainer, System.Diagnostics.DebuggerDisplay("Length = {Points.Length}")]
public struct KnnContainer : IDisposable {
// We manage safety by our own sentinel. Disable unity's safety system for internal caches / arrays
[NativeDisableContainerSafetyRestriction]
public NativeArray<float3> Points;
[NativeDisableContainerSafetyRestriction]
NativeArray<int> m_permutation;
[NativeDisableContainerSafetyRestriction]
NativeList<KdNode> m_nodes;
[NativeDisableContainerSafetyRestriction]
NativeArray<int> m_rootNodeIndex;
[NativeDisableContainerSafetyRestriction]
NativeQueue<int> m_buildQueue;
KdNode RootNode => m_nodes[m_rootNodeIndex[0]];
#if ENABLE_UNITY_COLLECTIONS_CHECKS
// Note: MUST be named m_Safey, m_DisposeSentinel exactly
// ReSharper disable once InconsistentNaming
internal AtomicSafetyHandle m_Safety;
[NativeSetClassTypeToNullOnSchedule]
// ReSharper disable once InconsistentNaming
internal DisposeSentinel m_DisposeSentinel;
#endif
const int c_maxPointsPerLeafNode = 64;
public struct KnnQueryTemp : IDisposable {
public MinMaxHeap<int> MaxHeap;
public MinMaxHeap<QueryNode> MinHeap;
public static KnnQueryTemp Create(int kCapacity) {
KnnQueryTemp temp;
temp.MaxHeap = new MinMaxHeap<int>(kCapacity, Allocator.Temp);
// Min heap keeps track of current stack.
// The max stack depth is the tree depth
// The tree depth is log_c(nodes)
// Let's assume people have a tree at most 32 deep (which equals 2^32 * c_maxPointsPerLeafNode ~ 2^39 nodes)
// There are left/right nodes -> 64 max on stack at any given time
temp.MinHeap = new MinMaxHeap<QueryNode>(64, Allocator.Temp);
return temp;
}
public void PushQueryNode(int index, float3 closestPoint, float3 queryPosition) {
float lengthsq = math.lengthsq(closestPoint - queryPosition);
MinHeap.PushObjMin(new QueryNode {
NodeIndex = index,
TempClosestPoint = closestPoint,
Distance = lengthsq
}, lengthsq);
}
public void Dispose() {
MaxHeap.Dispose();
MinHeap.Dispose();
}
}
public KnnContainer(NativeArray<float3> points, bool buildNow, Allocator allocator) {
int nodeCountEstimate = 4 * (int) math.ceil(points.Length / (float) c_maxPointsPerLeafNode + 1) + 1;
Points = points;
// Both arrays are filled in as we go, so start with uninitialized mem
m_nodes = new NativeList<KdNode>(nodeCountEstimate, allocator);
// Dumb way to create an int* essentially..
m_permutation = new NativeArray<int>(points.Length, allocator, NativeArrayOptions.UninitializedMemory);
m_rootNodeIndex = new NativeArray<int>(new[] {-1}, allocator);
m_buildQueue = new NativeQueue<int>(allocator);
#if ENABLE_UNITY_COLLECTIONS_CHECKS
if (allocator <= Allocator.None) {
throw new ArgumentException("Allocator must be Temp, TempJob or Persistent", nameof(allocator));
}
if (points.Length <= 0) {
throw new ArgumentOutOfRangeException(nameof(points), "Input points length must be >= 0");
}
DisposeSentinel.Create(out m_Safety, out m_DisposeSentinel, 0, allocator);
#endif
if (buildNow) {
var rebuild = new KnnRebuildJob(this);
rebuild.Schedule().Complete();
}
}
public void Rebuild() {
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckWriteAndThrow(m_Safety);
#endif
m_nodes.Clear();
for (int i = 0; i < m_permutation.Length; ++i) {
m_permutation[i] = i;
}
int rootNode = GetKdNode(MakeBounds(), 0, Points.Length);
m_rootNodeIndex[0] = rootNode;
m_buildQueue.Enqueue(rootNode);
while (m_buildQueue.Count > 0) {
int index = m_buildQueue.Dequeue();
SplitNode(index, out int posNodeIndex, out int negNodeIndex);
if (m_nodes[negNodeIndex].Count > c_maxPointsPerLeafNode) {
m_buildQueue.Enqueue(posNodeIndex);
}
if (m_nodes[posNodeIndex].Count > c_maxPointsPerLeafNode) {
m_buildQueue.Enqueue(negNodeIndex);
}
}
}
public void Dispose() {
#if ENABLE_UNITY_COLLECTIONS_CHECKS
DisposeSentinel.Dispose(ref m_Safety, ref m_DisposeSentinel);
#endif
m_permutation.Dispose();
m_nodes.Dispose();
m_rootNodeIndex.Dispose();
m_buildQueue.Dispose();
}
int GetKdNode(KdNodeBounds bounds, int start, int end) {
m_nodes.Add(new KdNode {
Bounds = bounds,
Start = start,
End = end,
PartitionAxis = -1,
PartitionCoordinate = 0.0f,
PositiveChildIndex = -1,
NegativeChildIndex = -1
});
return m_nodes.Length - 1;
}
/// <summary>
/// For calculating root node bounds
/// </summary>
/// <returns>Boundary of all Vector3 points</returns>
KdNodeBounds MakeBounds() {
var max = new float3(float.MinValue, float.MinValue, float.MinValue);
var min = new float3(float.MaxValue, float.MaxValue, float.MaxValue);
int even = Points.Length & ~1; // calculate even Length
// min, max calculations
// 3n/2 calculations instead of 2n
for (int i0 = 0; i0 < even; i0 += 2) {
int i1 = i0 + 1;
// X Coords
if (Points[i0].x > Points[i1].x) {
// i0 is bigger, i1 is smaller
if (Points[i1].x < min.x) {
min.x = Points[i1].x;
}
if (Points[i0].x > max.x) {
max.x = Points[i0].x;
}
} else {
// i1 is smaller, i0 is bigger
if (Points[i0].x < min.x) {
min.x = Points[i0].x;
}
if (Points[i1].x > max.x) {
max.x = Points[i1].x;
}
}
// Y Coords
if (Points[i0].y > Points[i1].y) {
// i0 is bigger, i1 is smaller
if (Points[i1].y < min.y) {
min.y = Points[i1].y;
}
if (Points[i0].y > max.y) {
max.y = Points[i0].y;
}
} else {
// i1 is smaller, i0 is bigger
if (Points[i0].y < min.y) {
min.y = Points[i0].y;
}
if (Points[i1].y > max.y) {
max.y = Points[i1].y;
}
}
// Z Coords
if (Points[i0].z > Points[i1].z) {
// i0 is bigger, i1 is smaller
if (Points[i1].z < min.z) {
min.z = Points[i1].z;
}
if (Points[i0].z > max.z) {
max.z = Points[i0].z;
}
} else {
// i1 is smaller, i0 is bigger
if (Points[i0].z < min.z) {
min.z = Points[i0].z;
}
if (Points[i1].z > max.z) {
max.z = Points[i1].z;
}
}
}
// if array was odd, calculate also min/max for the last element
if (even != Points.Length) {
// X
if (min.x > Points[even].x) {
min.x = Points[even].x;
}
if (max.x < Points[even].x) {
max.x = Points[even].x;
}
// Y
if (min.y > Points[even].y) {
min.y = Points[even].y;
}
if (max.y < Points[even].y) {
max.y = Points[even].y;
}
// Z
if (min.z > Points[even].z) {
min.z = Points[even].z;
}
if (max.z < Points[even].z) {
max.z = Points[even].z;
}
}
var b = new KdNodeBounds();
b.Min = min;
b.Max = max;
return b;
}
// TODO: When multiple points overlap exactly this function breaks.
/// <summary>
/// Recursive splitting procedure
/// </summary>
void SplitNode(int parentIndex, out int posNodeIndex, out int negNodeIndex) {
KdNode parent = m_nodes[parentIndex];
// center of bounding box
KdNodeBounds parentBounds = parent.Bounds;
float3 parentBoundsSize = parentBounds.Size;
// Find axis where bounds are largest
int splitAxis = 0;
float axisSize = parentBoundsSize.x;
if (axisSize < parentBoundsSize.y) {
splitAxis = 1;
axisSize = parentBoundsSize.y;
}
if (axisSize < parentBoundsSize.z) {
splitAxis = 2;
}
// Our axis min-max bounds
float boundsStart = parentBounds.Min[splitAxis];
float boundsEnd = parentBounds.Max[splitAxis];
// Calculate the spiting coords
float splitPivot = CalculatePivot(parent.Start, parent.End, boundsStart, boundsEnd, splitAxis);
// 'Spiting' array to two sub arrays
int splittingIndex = Partition(parent.Start, parent.End, splitPivot, splitAxis);
// Negative / Left node
float3 negMax = parentBounds.Max;
negMax[splitAxis] = splitPivot;
var bounds = parentBounds;
bounds.Max = negMax;
negNodeIndex = GetKdNode(bounds, parent.Start, splittingIndex);
parent.PartitionAxis = splitAxis;
parent.PartitionCoordinate = splitPivot;
// Positive / Right node
float3 posMin = parentBounds.Min;
posMin[splitAxis] = splitPivot;
bounds = parentBounds;
bounds.Min = posMin;
posNodeIndex = GetKdNode(bounds, splittingIndex, parent.End);
parent.NegativeChildIndex = negNodeIndex;
parent.PositiveChildIndex = posNodeIndex;
// Write back node to array to update those values
m_nodes[parentIndex] = parent;
}
/// <summary>
/// Sliding midpoint splitting pivot calculation
/// 1. First splits node to two equal parts (midPoint)
/// 2. Checks if elements are in both sides of splitted bounds
/// 3a. If they are, just return midPoint
/// 3b. If they are not, then points are only on left or right bound.
/// 4. Move the splitting pivot so that it shrinks part with points completely (calculate min or max dependent) and return.
/// </summary>
float CalculatePivot(int start, int end, float boundsStart, float boundsEnd, int axis) {
//! sliding midpoint rule
float midPoint = (boundsStart + boundsEnd) / 2.0f;
bool negative = false;
bool positive = false;
float negMax = float.MinValue;
float posMin = float.MaxValue;
// this for loop section is used both for sorted and unsorted data
for (int i = start; i < end; i++) {
float val = Points[m_permutation[i]][axis];
if (val < midPoint) {
negative = true;
} else {
positive = true;
}
if (negative && positive) {
return midPoint;
}
}
if (negative) {
for (int i = start; i < end; i++) {
float val = Points[m_permutation[i]][axis];
if (negMax < val) {
negMax = val;
}
}
return negMax;
}
for (int i = start; i < end; i++) {
float val = Points[m_permutation[i]][axis];
if (posMin > val) {
posMin = val;
}
}
return posMin;
}
/// <summary>
/// Similar to Hoare partitioning algorithm (used in Quick Sort)
/// Modification: pivot is not left-most element but is instead argument of function
/// Calculates splitting index and partially sorts elements (swaps them until they are on correct side - depending on pivot)
/// Complexity: O(n)
/// </summary>
/// <param name="start">Start index</param>
/// <param name="end">End index</param>
/// <param name="partitionPivot">Pivot that decides boundary between left and right</param>
/// <param name="axis">Axis of this pivoting</param>
/// <returns>
/// Returns splitting index that subdivides array into 2 smaller arrays
/// left = [start, pivot),
/// right = [pivot, end)
/// </returns>
int Partition(int start, int end, float partitionPivot, int axis) {
// note: increasing right pointer is actually decreasing!
int lp = start - 1; // left pointer (negative side)
int rp = end; // right pointer (positive side)
while (true) {
do {
// move from left to the right until "out of bounds" value is found
lp++;
} while (lp < rp && Points[m_permutation[lp]][axis] < partitionPivot);
do {
// move from right to the left until "out of bounds" value found
rp--;
} while (lp < rp && Points[m_permutation[rp]][axis] >= partitionPivot);
if (lp < rp) {
// swap
int temp = m_permutation[lp];
m_permutation[lp] = m_permutation[rp];
m_permutation[rp] = temp;
} else {
return lp;
}
}
}
public void QueryRange(float3 queryPosition, float radius, NativeList<int> result) {
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
// Start with a temp of some size. This will be resized dynamically
var temp = KnnQueryTemp.Create(32);
// Biggest Smallest Squared Radius
float bssr = radius * radius;
float3 rootClosestPoint = RootNode.Bounds.ClosestPoint(queryPosition);
temp.PushQueryNode(m_rootNodeIndex[0], rootClosestPoint, queryPosition);
while (temp.MinHeap.Count > 0) {
QueryNode queryNode = temp.MinHeap.PopObjMin();
if (queryNode.Distance > bssr) {
continue;
}
KdNode node = m_nodes[queryNode.NodeIndex];
if (!node.Leaf) {
int partitionAxis = node.PartitionAxis;
float partitionCoord = node.PartitionCoordinate;
float3 tempClosestPoint = queryNode.TempClosestPoint;
if (tempClosestPoint[partitionAxis] - partitionCoord < 0) {
// we already know we are on the side of negative bound/node,
// so we don't need to test for distance
// push to stack for later querying
temp.PushQueryNode(node.NegativeChildIndex, tempClosestPoint, queryPosition);
// project the tempClosestPoint to other bound
tempClosestPoint[partitionAxis] = partitionCoord;
if (node.Count != 0) {
temp.PushQueryNode(node.PositiveChildIndex, tempClosestPoint, queryPosition);
}
}
else {
// we already know we are on the side of positive bound/node,
// so we don't need to test for distance
// push to stack for later querying
temp.PushQueryNode(node.PositiveChildIndex, tempClosestPoint, queryPosition);
// project the tempClosestPoint to other bound
tempClosestPoint[partitionAxis] = partitionCoord;
if (node.Count != 0) {
temp.PushQueryNode(node.NegativeChildIndex, tempClosestPoint, queryPosition);
}
}
} else {
for (int i = node.Start; i < node.End; i++) {
int index = m_permutation[i];
float sqrDist = math.lengthsq(Points[index] - queryPosition);
if (sqrDist <= bssr) {
// Unlike the k-query we want to keep _all_ objects in range
// So resize the heap when pushing this node
if (temp.MaxHeap.IsFull) {
temp.MaxHeap.Resize(temp.MaxHeap.Count * 2);
}
temp.MaxHeap.PushObjMax(index, sqrDist);
}
}
}
}
while (temp.MaxHeap.Count > 0) {
result.Add(temp.MaxHeap.PopObjMax());
}
temp.Dispose();
}
public void QueryKNearest(float3 queryPosition, NativeSlice<int> result) {
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
var temp = KnnQueryTemp.Create(result.Length);
int k = result.Length;
// Biggest Smallest Squared Radius
float bssr = float.PositiveInfinity;
float3 rootClosestPoint = RootNode.Bounds.ClosestPoint(queryPosition);
temp.PushQueryNode(m_rootNodeIndex[0], rootClosestPoint, queryPosition);
while (temp.MinHeap.Count > 0) {
QueryNode queryNode = temp.MinHeap.PopObjMin();
if (queryNode.Distance > bssr) {
continue;
}
KdNode node = m_nodes[queryNode.NodeIndex];
if (!node.Leaf) {
int partitionAxis = node.PartitionAxis;
float partitionCoord = node.PartitionCoordinate;
float3 tempClosestPoint = queryNode.TempClosestPoint;
if (tempClosestPoint[partitionAxis] - partitionCoord < 0) {
// we already know we are on the side of negative bound/node,
// so we don't need to test for distance
// push to stack for later querying
temp.PushQueryNode(node.NegativeChildIndex, tempClosestPoint, queryPosition);
// project the tempClosestPoint to other bound
tempClosestPoint[partitionAxis] = partitionCoord;
if (node.Count != 0) {
temp.PushQueryNode(node.PositiveChildIndex, tempClosestPoint, queryPosition);
}
} else {
// we already know we are on the side of positive bound/node,
// so we don't need to test for distance
// push to stack for later querying
temp.PushQueryNode(node.PositiveChildIndex, tempClosestPoint, queryPosition);
// project the tempClosestPoint to other bound
tempClosestPoint[partitionAxis] = partitionCoord;
if (node.Count != 0) {
temp.PushQueryNode(node.NegativeChildIndex, tempClosestPoint, queryPosition);
}
}
} else {
for (int i = node.Start; i < node.End; i++) {
int index = m_permutation[i];
float sqrDist = math.lengthsq(Points[index] - queryPosition);
if (sqrDist <= bssr) {
temp.MaxHeap.PushObjMax(index, sqrDist);
if (temp.MaxHeap.Count == k) {
bssr = temp.MaxHeap.HeadValue;
}
}
}
}
}
for (int i = 0; i < k; i++) {
result[i] = temp.MaxHeap.PopObjMax();
}
temp.Dispose();
}
}
}