forked from polarch/Spherical-Harmonic-Transform
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsphVoronoi.m
125 lines (99 loc) · 4.34 KB
/
sphVoronoi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
function [voronoi, duplicates] = sphVoronoi(dirs, faces)
%SPVORONOI Computes the a Voronoi diagram on the unit sphere
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SPHVORONOI.M - 10/10/2013
% Archontis Politis, [email protected]
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convert to cartesian
N_vert = size(dirs, 1);
[tempx, tempy, tempz] = sph2cart(dirs(:,1), dirs(:,2), ones(N_vert,1));
U_vert = [tempx, tempy, tempz];
% number of triangles
N_face = size(faces, 1);
% Calculate the voronoi vertices for each triangle - for the unit sphere
% are given by the unit normal vector of the triangle
U_vor = zeros(N_face, 3);
for n = 1:N_face
i1 = faces(n, 1);
i2 = faces(n, 2);
i3 = faces(n, 3);
r_12 = U_vert(i2, :) - U_vert(i1, :);
r_13 = U_vert(i3, :) - U_vert(i1, :);
r_normal = cross(r_12, r_13);
u_normal = r_normal/norm(r_normal);
U_vor(n, :) = u_normal;
end
voronoi.vert = U_vor;
% Find duplicate vertices if any, due to two triangles sharing the same
% circumscribed circle
duplicates = zeros(N_face, 1);
for n = 1:N_face
if duplicates(n) == 0
curVert = U_vor(n,:);
for m = 1:N_face
if n == m
m = m+1;
elseif all(abs(curVert - U_vor(m,:))<1.0e-5)
duplicates(m) = n;
else
m = m+1;
end
end
end
end
% Calculate the voronoi polygons
% find the an ordered sequence of the triangles around each vertex and
% get the proper sequence of the voronoi vertices that constitute a
% polygon
for n = 1:N_vert
faceIdx = []; % list of triangles that contain the specific vertex
for m = 1:N_face
if any(faces(m, :) == n)
faceIdx(end+1) = m;
end
end
% each triangle from the list contain the common vertex and two
% other vertices - each triangle has two common vertices with each
% other. One (brute) way of sorting the sequence is to pick one
% triangle, find the neighbour triangle by finding their common
% vertex, move to that triangle and iterate till all the number of
% riangles have been checked.
k = 1;
currentfaceIdx = faceIdx(k); % pick-up one of the triangles in the list
currentface = faces(currentfaceIdx, :); % the triangle's vertices
currentvertIdx = find(currentface ~= n, 1); % pick-up one of the vertices that is not the central one
currentvert = currentface(currentvertIdx);
sorted = faceIdx(k); % this is the list that keeps the the ordered triangles
notsorted = 1;
while(notsorted)
tempfacelist = faceIdx(find(currentfaceIdx ~= faceIdx)); % exclude the current triangle from the list
for l = 1:length(tempfacelist)
currentfaceIdx = tempfacelist(l);
currentface = faces(currentfaceIdx, :);
if any(currentface == currentvert) % if the currentvert exists in the current triangles vertices
sorted(end+1) = currentfaceIdx; % then it's the neighbour triangle - store its index
if length(sorted) == length(faceIdx) % if the sorted list has the length of faceIdx then done
notsorted = 0;
break
end
currentvertIdx = find((currentface ~= n).*(currentface ~= currentvert)); % find the next vertex from current triangle that excludes the central one and the pervious one
currentvert = currentface(currentvertIdx);
break
end
end
end
% remove the duplicate vertices from the list
for i = 1:length(sorted)
if duplicates(sorted(i)) ~= 0
sorted(i) = duplicates(sorted(i));
end
end
[~, notDupes] = unique(sorted, 'first');
sorted = sorted(sort(notDupes));
voronoi.face(n) = {sorted}; % save the sequence of voronoi vertices for each point
sorted = [];
end
end