forked from polarch/Spherical-Harmonic-Transform
-
Notifications
You must be signed in to change notification settings - Fork 0
/
replicatePerOrder.m
49 lines (44 loc) · 1.27 KB
/
replicatePerOrder.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
function x_rep = replicatePerOrder(x, dim)
%REPLICATEPERORDER Replicate l^th element 2*l+1 times across dimension
%
% Replicates multidimensional array across dimension dim, so that the
% l^th element of dim is replicated 2*l+1 times. that effectively has the
% effect that the dimension grows from L to L^2 elements. This can be useful
% in some spherical harmonic operations.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Archontis Politis, 7/2/2015
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin<2
dim = 1;
end
ndimx = ndims(x);
sizx = size(x);
orderN = sizx(dim)-1;
sizx_rep = sizx;
sizx_rep(dim) = (orderN+1)^2;
x_rep = zeros(sizx_rep);
% I'm sure there's a better way to do this
str_dim_l = [];
rep_idx_l = [];
str_dim_r = [];
rep_idx_r = [];
for k=1:dim-1
str_dim_l = [str_dim_l ':,'];
rep_idx_l = [rep_idx_l '1,'];
end
for k=dim+1:ndimx
str_dim_r = [str_dim_r ',:'];
rep_idx_r = [rep_idx_r ',1'];
end
rep_idx = [rep_idx_l '2*n+1' rep_idx_r];
idx_n = 0;
for n=0:orderN
eval(['x_n = x(' str_dim_l 'n+1' str_dim_r ');']);
eval(['x_rep(' str_dim_l 'idx_n+(1:2*n+1)' str_dim_r ') = repmat(x_n,' rep_idx ');']);
idx_n = idx_n+2*n+1;
end
end