forked from fdbtrs/Self-restrained-Triplet-Loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
343 lines (275 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import pdb
from torch.backends import cudnn
from torch.optim.lr_scheduler import ExponentialLR, StepLR
from tqdm import tqdm
import torch
import numpy as np
import os
import time
import torch.nn.functional as F
import argparse
from pathlib import Path
import torch.nn as nn
import adabound
from util.databaseTest import MaskDatasetTestMFR2
from model.model import SingleLayerModel
from util.losses import TripletLoss
from util.database_triplet import MaskDataset
from util.databaseTest import MaskDatasetTest
from util.misc import CSVLogger
def setupt():
torch.cuda.empty_cache()
cudnn.benchmark = True
#torch.backends.cudnn.benchmark = False
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed(0)
# Data Loader (Input Pipeline)
def CosineDistance(x1,x2):
return 1- F.cosine_similarity(x1,x2)
metric= nn.CosineSimilarity(eps=1e-6)
'''
def metric(emb1,emb2):
sub=torch.sub(emb1,emb2)
sm=torch.sum(sub*sub,dim=1)
return torch.norm(emb1 - emb2, 2, 1).detach().cpu().numpy()
'''
cnn = SingleLayerModel(embedding_size=512).cuda()
def validation(val_loader):
cnn.eval()
scores=[]
scores_imposter=[]
i=200
for mask_embedding,face_embedding,negative_embedding,cls,_ in val_loader:
mask_embedding = mask_embedding.cuda()
face_embedding = face_embedding.cuda()
negative_embedding = negative_embedding.cuda()
with torch.no_grad():
pred= cnn(mask_embedding)
scores.append(metric(l2_norm(pred),l2_norm(face_embedding)).item())
m = (metric(l2_norm(pred) , l2_norm(negative_embedding)).item())
scores_imposter.append(m )
i=i-1
cnn.train()
return np.mean(scores),np.mean(scores_imposter)
def l2_norm( input, axis=1):
norm = torch.norm(input, 2, axis, True)
output = torch.div(input, norm)
return output
def validation_init(val_loader):
cnn.eval()
scores=[]
scores_imposter=[]
i=200
for mask_embedding,face_embedding,negative_embedding,cls,_ in val_loader:
mask_embedding = mask_embedding.cuda()
face_embedding = face_embedding.cuda()
negative_embedding = negative_embedding.cuda()
scores.append(metric(l2_norm(mask_embedding),l2_norm(face_embedding)).item())
m=metric(l2_norm(mask_embedding),l2_norm(negative_embedding)).item()
scores_imposter.append(m)
i=i-1
return np.mean(scores), np.mean(scores_imposter)
def training(args):
if not os.path.isdir('logs'):
os.makedirs('logs')
train_loader = torch.utils.data.DataLoader(dataset=MaskDataset(root=args.data_dir,random=True,isTraining=True),
batch_size=int(512),
shuffle=True,
pin_memory=True,
num_workers=16)
val_loader = torch.utils.data.DataLoader(
dataset=MaskDataset(root=args.data_dir+'validation/',random=True,isTraining=False),
batch_size=1,
shuffle=False,
pin_memory=True,
num_workers=2)
cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=float(0.1), momentum=0.9, nesterov=True,
weight_decay=0.0) # 0.0001
scheduler = StepLR(cnn_optimizer, gamma=0.1, step_size=3)
criterion=TripletLoss(distance=args.loss).cuda()
early_stopping = True
patience = 20
epochs_no_improvement = 0
max_val_fscore = 0.0
best_weights = None
best_epoch = -1
filename = 'logs/' + str(args.loss) + '.csv'
csv_logger = CSVLogger(args=None, fieldnames=['epoch', 'TotalLoss', 'positive_loss','negative_loss','negative_positive', 'val_acc'], filename=filename)
init_val_fscore, val_fscore_imposter = validation_init(val_loader)
# set model to train mode
cnn.train()
tqdm.write('genuine: %.5f' % (init_val_fscore))
tqdm.write('imposter: %.5f' % (val_fscore_imposter))
update_weight_loss=True
val_fscore=0.
for epoch in range(1, 1 + args.epoch):
loss_total = 0.
fscore_total = 0.
positive_loss_totoal=0.
negative_loss_total=0.
negative_positive_total=0.
progress_bar = tqdm(train_loader)
for i, (mask_embedding,face_embedding,negative_embedding,label,_) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch))
mask_embedding = mask_embedding.cuda()
face_embedding =face_embedding.cuda()
negative_embedding=negative_embedding.cuda()
label=label.cuda()
cnn.zero_grad()
pred = cnn(mask_embedding)
loss, positive_loss,negative_loss , negative_positive= criterion(pred, face_embedding, negative_embedding)
loss.backward()
cnn_optimizer.step()
loss_total += loss.item()
positive_loss_totoal+=positive_loss.item()
negative_loss_total+=negative_loss.item()
negative_positive_total+=negative_positive.item()
row = {'epoch': str(epoch)+str("-")+str(i), 'TotalLoss': str(loss_total / (i + 1)), 'positive_loss': str(positive_loss_totoal / (i + 1)), 'negative_loss': str(negative_loss_total / (i + 1)),'negative_positive':str(negative_positive_total / (i + 1)),'val_acc':str(val_fscore)}
csv_logger.writerow(row)
progress_bar.set_postfix(
loss='%.5f' % (loss_total / (i + 1)),negative_loss='%.5f' % (negative_loss_total/(i+1) ),positive_loss='%.5f' % (positive_loss_totoal / (i + 1)),negative_positive='%.5f' % (negative_positive_total / (i + 1)) )
val_fscore ,val_fscore_imposter= validation(val_loader)
tqdm.write('fscore: %.5f' % (val_fscore))
tqdm.write('imposter: %.5f' % (val_fscore_imposter))
# scheduler.step(epoch) # Use this line for PyTorch <1.4
scheduler.step() # Use this line for PyTorch >=1.4
#row = {'epoch': str(epoch), 'train_acc': str(train_fscore), 'val_acc': str(val_fscore)}
#csv_logger.writerow(row)
do_stop=False
if early_stopping:
if val_fscore > max_val_fscore:
max_val_fscore = val_fscore
epochs_no_improvement = 0
best_weights = cnn.state_dict()
best_epoch = epoch
else:
epochs_no_improvement += 1
if epochs_no_improvement >= patience and do_stop:
print(f"EARLY STOPPING at {best_epoch}: {max_val_fscore}")
break
else:
best_weights = cnn.state_dict()
if not os.path.isdir(os.path.join(args.weights,str(args.loss))):
os.makedirs(os.path.join(args.weights,str(args.loss)))
torch.save(best_weights, os.path.join(args.weights,str(args.loss),'weights.pt'))
csv_logger.close()
def testing(args):
cnn.load_state_dict(torch.load(os.path.join(args.weights,str(args.loss),'weights.pt')))
cnn.eval()
if not os.path.isdir(args.test_output):
os.makedirs(args.test_output)
if(args.do_test_ar):
test_data = args.test_dir_ar.split(',')
else:
test_data=args.test_dir.split(',')
for t in test_data:
save_path=os.path.join(args.test_output,str(args.loss),os.path.basename(t)+str(args.loss))
if not os.path.isdir(save_path):
os.makedirs(save_path)
if (args.do_test_ar):
test_loader = torch.utils.data.DataLoader(dataset=MaskDatasetTestMFR2(root=t),batch_size=1, shuffle=False, pin_memory=True,num_workers=2)
else:
test_loader = torch.utils.data.DataLoader(
dataset=MaskDatasetTest(root=t),
batch_size=1,
shuffle=False,
pin_memory=True,
num_workers=2)
for mask_embedding,f,_ in test_loader:
mask_embedding = mask_embedding.cuda()
with torch.no_grad():
pred = cnn(mask_embedding)
pred = pred.squeeze(dim=0).detach().cpu().numpy()
f = f[0]
#print(f)
if (args.do_test_ar):
if not os.path.isdir(save_path+'/'+f.split('_')[0]):
os.makedirs(save_path+'/'+f.split('_')[0])
np.save(os.path.join(save_path+'/'+f.split('_')[0],f),pred)
else:
np.save(os.path.join(save_path, f), pred)
def testlfw(args):
cnn.load_state_dict(torch.load(os.path.join(args.weights,str(args.loss),'weights.pt')))
cnn.eval()
if not os.path.isdir(args.test_output):
os.makedirs(args.test_output)
test_data=args.test_dir_lfw
for t in test_data:
path = t.split("/")
save_path=os.path.join(args.lfw_test_output,str(args.loss),path[len(path)-2],os.path.basename(t)+str(args.loss))
print(t)
print(save_path)
if not os.path.isdir(save_path):
os.makedirs(save_path)
test_loader = torch.utils.data.DataLoader(dataset=MaskDatasetTestMFR2(root=t),batch_size=1, shuffle=False, pin_memory=True,num_workers=2)
for mask_embedding,f,dr in test_loader:
mask_embedding = mask_embedding.cuda()
with torch.no_grad():
pred = cnn(mask_embedding)
pred = pred.squeeze(dim=0).detach().cpu().numpy()
f = f[0]
if not os.path.isdir(save_path+'/'+dr[0]):
os.makedirs(save_path+'/'+dr[0])
np.save(os.path.join(save_path+'/'+dr[0],f),pred)
def load_weight(weights):
cnn.load_state_dict(torch.load(weights))
def parse_args():
parser = argparse.ArgumentParser(description='Train face mask adaption')
parser.add_argument('--loss', default="SRT", help='loss Triplet or SRT')
parser.add_argument('--mode', default=2, help='')
parser.add_argument('--weights', default='weights/weightsResNet100', help='')
parser.add_argument('--epoch', default=10, help='')
parser.add_argument('--data_dir', default="ms1m_features_dlib_r100/", help='training dataset directory')
parser.add_argument('--test_dir', default='maskfilm_dataset/ResNet100/M12P,maskfilm_dataset/ResNet100/M12R', help='')
parser.add_argument('--test_dir_ar',default="extracted_features/mfr2/Resnet100")
parser.add_argument('--do_test_ar',default=False)
parser.add_argument('--test_lfw',default=False)
parser.add_argument('--test_dir_lfw',default="extracted_features/lfw/face_embedding/Resnet100")
parser.add_argument('--lfw_test_output', default='outputlwf-Resnet100/', help='')
parser.add_argument('--test_output', default='outputResNet100/', help='')
args = parser.parse_args()
return args
def parse_args_ResNet50():
parser = argparse.ArgumentParser(description='Train face mask adaption')
parser.add_argument('--loss', default="SRT", help='loss Triplet or SRT')
parser.add_argument('--mode', default=2, help='')
parser.add_argument('--weights', default='weights/weightsResNet50', help='')
parser.add_argument('--epoch', default=10, help='')
parser.add_argument('--data_dir', default="ms1m_features_dlib_r50/", help='training dataset directory')
parser.add_argument('--test_dir', default='maskfilm_dataset/ResNet50/M12P,maskfilm_dataset/ResNet50/M12R', help='')
parser.add_argument('--test_dir_ar',default="extracted_features/mfr2/Resnet50")
parser.add_argument('--do_test_ar',default=False)
parser.add_argument('--test_lfw',default=False)
parser.add_argument('--test_dir_lfw',default="extracted_features/lfw/face_embedding/Resnet50")
parser.add_argument('--lfw_test_output', default='outputlwf-Resnet50/', help='')
parser.add_argument('--test_output', default='outputResNet50/', help='')
args = parser.parse_args()
return args
def parse_args_MobilefaceNet():
parser = argparse.ArgumentParser(description='Train face mask adaption')
parser.add_argument('--loss', default="SRT", help='loss Triplet or SRT')
parser.add_argument('--mode', default=2, help='')
parser.add_argument('--weights', default='weights/weightsResNet50', help='')
parser.add_argument('--epoch', default=10, help='')
parser.add_argument('--data_dir', default="ms1m_features_dlib_MobilefaceNet/", help='training dataset directory')
parser.add_argument('--test_dir', default='maskfilm_dataset/MobilefaceNet/M12P,maskfilm_dataset/MobilefaceNet/M12R', help='')
parser.add_argument('--test_dir_ar',default="extracted_features/mfr2/MobilefaceNet")
parser.add_argument('--do_test_ar',default=False)
parser.add_argument('--test_lfw',default=False)
parser.add_argument('--test_dir_lfw',default="extracted_features/lfw/face_embedding/MobilefaceNet")
parser.add_argument('--lfw_test_output', default='outputlwf-MobilefaceNet/', help='')
parser.add_argument('--test_output', default='outputMobilefaceNet/', help='')
args = parser.parse_args()
return args
if __name__ == '__main__':
args=parse_args()
if(args.mode==0):
training(args)
elif(args.mode==1):
testing(args)
elif (args.mode==2):
testlfw(args)
elif (args.mode==3):
args.do_test_ar = True
testing(args)