-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFirstNN.py
186 lines (179 loc) · 6.62 KB
/
FirstNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import numpy as np
import random as r
import pickle
import matplotlib.pylab as plt
import copy
def bin():
return r.randint(0,1)
def parent(distr):
rt = r.randint(0,10000)
if rt<distr[0]: return 0
for i in range(1,len(distr)):
if distr[i-1]<rt<distr[i]:
return i
def best(list):
b = 0
for i in range(len(list)):
if list[i]>list[b]: b = i
return b
def sigmoid(x):
return 1/(1+np.exp(-x))
class Neuron:
def __init__(self,*, count, weights=None, activation_function=sigmoid):
if weights is None:
self.__weights = list()
for i in range(count):
self.__weights.append(r.random()*2-1)
else: self.__weights = list(weights)
self.__activation_function = activation_function
def f(self,x):
return self.__activation_function(x)
@property
def weights(self):
return self.__weights
def set_weights(self, weights):
self.__weights = weights
class Layer:
def __init__(self, *,count, neurons=None, next_layer_count=0,bias=None):
if neurons is None:
self.__neurons=list()
for i in range(count):
self.__neurons.append(Neuron(count=next_layer_count))
#if bias is None: self.__bias=r.random()*0.2 - 0.1
if bias is None: self.__bias = r.random()
else: self.__bias = bias
self.__matrix = None
@property
def neurons(self):
return self.__neurons
@property
def matrix(self):
if self.__matrix is None:
self.__matrix = np.zeros((len(self.neurons),len(self.neurons[0].weights)))
for i in range(len(self.__matrix)):
self.__matrix[i] = self.neurons[i].weights
self.__matrix = self.__matrix.transpose()
return self.__matrix
@property
def bias(self):
return self.__bias
def set_bias(self,bias):
self.__bias = bias
def set_weights(self, weigths):
for i in range(len(weigths)):
self.neurons[i].set_weights(weigths[i])
self.__matrix = None
class Network:
def __init__(self,layers_count, bias=None):
count = len(layers_count)
self.__layers = list()
if bias is None: bias = [r.random for i in range(count-1)]
for i in range(count-1):
self.__layers.append(Layer(count = layers_count[i],next_layer_count=layers_count[i+1],bias=bias[i]))
self.__layers.append(Layer(count = layers_count[i+1],bias=0))
@property
def layers(self):
return self.__layers
@property
def bias(self):
return [l.bias for l in self.layers]
def set_weights(self,weights):
for i in range(len(weights)):
self.layers[i].set_weights(weights[i])
def set_bias(self, bias):
for i in range(len(bias)):
self.layers[i].set_bias(bias[i])
def __str__(self):
res=''
for s in self.layers:
res+= str(s.matrix) +'\n'
return res
def __call__(self,values):
for i in range(len(self.layers)-1):
# print('iteration', i)
# print(values)
values = [np.tanh(x) for x in values]
# print(values)
# print(self.layers[i].matrix)
values = np.dot(self.layers[i].matrix,values)+self.layers[i].bias
# print(values)
values = [sigmoid(x) for x in values]
return [abs(x) for x in values]
def get_answer(self,values):
values = list(values)
values = self(values)
b = 0
for i in range(len(values)):
if values[i]>values[b]: b = i
return b
def mistake(self,learning_data):
full_mistake = 0.0
for key in learning_data.keys():
answer = self(key)
mistake = 0.0
for i in range(len(answer)):
mistake += ((i==learning_data[key]) - answer[i])**2
full_mistake += np.sqrt(mistake)
return full_mistake/len(learning_data.keys())
def generate(layers_count,*,learning_data, population_count = 8, needed_accuracy = 0.2):
variants = [Network(layers_count) for i in range(population_count)]
e=0
survival_coeffs = []
accuracies=[]
for e in range(3000):
z=0
if e%500 == 0:
print('epoch ', e,accuracies)
print(survival_coeffs)
for n in variants:
print('number',z)
for key in learning_data.keys():
print(key,':',n(key))
print([x.bias for x in n.layers])
z+=1
#print(accuracies)
accuracies = [n.mistake(learning_data) for n in variants]
sum = 0.0
for m in range(population_count):
if accuracies[m] <= needed_accuracy: return variants[m]
sum += 1/accuracies[m]
#print(sum)
survival_coeffs = [int((1/m)/sum*10000) for m in accuracies]
#print(survival_coeffs)
distr = [0 for i in range(population_count)]
distr[0] = survival_coeffs[0]
for i in range(1, len(survival_coeffs)):
distr[i] = distr[i-1] + survival_coeffs[i]
parents = []
for i in range(population_count):
first = parent(distr)
while first is None:
first = parent(distr)
second = first
while second == first:
second = parent(distr)
while second is None:
second = parent(distr)
parents.append((first,second))
s = variants[best(survival_coeffs)]
new_variants = []
for i in range(population_count):
first = [copy.deepcopy(l.matrix.transpose()) for l in variants[parents[i][0]].layers]
second = [copy.deepcopy(l.matrix.transpose()) for l in variants[parents[i][1]].layers]
both = (first,second)
res = [[[both[bin()][i][j][k] for k in range(len(first[i][j]))] for j in range(len(first[i]))] for i in range(len(first))]
for z in res:
if z!= []:
for j in z:
if bin()*bin() == 1 and len(j)>0: j[r.randint(0,len(j)-1)] = r.random()
z = np.matrix(z)
z = z.transpose()
new_variants.append(Network(layers_count,bias=[variants[parents[i][bin()]].bias[l] for l in range(len(variants[i].bias))]))
new_variants[i].set_weights(res)
variants = new_variants
variants[0] = s
#e+=1
learning_data = {(0,0):0, (0,1):1,(1,0):1,(1,1):0}
n = generate([2,3,4,2],learning_data=learning_data)
for key in learning_data.keys():
print(key,':',n(key))