Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[semantic conventions] support for parallel tool calling #337

Open
mikeldking opened this issue Mar 26, 2024 · 0 comments
Open

[semantic conventions] support for parallel tool calling #337

mikeldking opened this issue Mar 26, 2024 · 0 comments
Labels
language: python Related to Python integration

Comments

@mikeldking
Copy link
Contributor

Adjust the semantic conventions to support parallel tool calling like tool id

Parallel function calling
Parallel function calling is the model's ability to perform multiple function calls together, allowing the effects and results of these function calls to be resolved in parallel. This is especially useful if functions take a long time, and reduces round trips with the API. For example, the model may call functions to get the weather in 3 different locations at the same time, which will result in a message with 3 function calls in the tool_calls array, each with an id. To respond to these function calls, add 3 new messages to the conversation, each containing the result of one function call, with a tool_call_id referencing the id from tool_calls.

In this example, we define a single function get_current_weather. The model calls the function multiple times, and after sending the function response back to the model, we let it decide the next step. It responded with a user-facing message which was telling the user the temperature in San Francisco, Tokyo, and Paris. Depending on the query, it may choose to call a function again.

If you want to force the model to call a specific function you can do so by setting tool_choice with a specific function name. You can also force the model to generate a user-facing message by setting tool_choice: "none". Note that the default behavior (tool_choice: "auto") is for the model to decide on its own whether to call a function and if so which function to call.

from openai import OpenAI
import json

client = OpenAI()

# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
    """Get the current weather in a given location"""
    if "tokyo" in location.lower():
        return json.dumps({"location": "Tokyo", "temperature": "10", "unit": unit})
    elif "san francisco" in location.lower():
        return json.dumps({"location": "San Francisco", "temperature": "72", "unit": unit})
    elif "paris" in location.lower():
        return json.dumps({"location": "Paris", "temperature": "22", "unit": unit})
    else:
        return json.dumps({"location": location, "temperature": "unknown"})

def run_conversation():
    # Step 1: send the conversation and available functions to the model
    messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather in a given location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                    },
                    "required": ["location"],
                },
            },
        }
    ]
    response = client.chat.completions.create(
        model="gpt-3.5-turbo-0125",
        messages=messages,
        tools=tools,
        tool_choice="auto",  # auto is default, but we'll be explicit
    )
    response_message = response.choices[0].message
    tool_calls = response_message.tool_calls
    # Step 2: check if the model wanted to call a function
    if tool_calls:
        # Step 3: call the function
        # Note: the JSON response may not always be valid; be sure to handle errors
        available_functions = {
            "get_current_weather": get_current_weather,
        }  # only one function in this example, but you can have multiple
        messages.append(response_message)  # extend conversation with assistant's reply
        # Step 4: send the info for each function call and function response to the model
        for tool_call in tool_calls:
            function_name = tool_call.function.name
            function_to_call = available_functions[function_name]
            function_args = json.loads(tool_call.function.arguments)
            function_response = function_to_call(
                location=function_args.get("location"),
                unit=function_args.get("unit"),
            )
            messages.append(
                {
                    "tool_call_id": tool_call.id,
                    "role": "tool",
                    "name": function_name,
                    "content": function_response,
                }
            )  # extend conversation with function response
        second_response = client.chat.completions.create(
            model="gpt-3.5-turbo-0125",
            messages=messages,
        )  # get a new response from the model where it can see the function response
        return second_response
print(run_conversation())
@github-project-automation github-project-automation bot moved this to 📘 Todo in phoenix Mar 26, 2024
@dosubot dosubot bot added documentation Improvements or additions to documentation language: python Related to Python integration labels Mar 26, 2024
@mikeldking mikeldking removed the documentation Improvements or additions to documentation label Jan 15, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
language: python Related to Python integration
Projects
Status: 📘 Todo
Development

No branches or pull requests

1 participant