forked from resilar/sqleet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crypto.c
593 lines (532 loc) · 18.2 KB
/
crypto.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/* This file is included by sqleet.c */
#include <stdint.h>
#include <string.h>
#define ROL32(x, c) (((x) << (c)) | ((x) >> (32-(c))))
#define ROR32(x, c) (((x) >> (c)) | ((x) << (32-(c))))
#define LOAD32_LE(p) \
( ((uint32_t)((p)[0]) << 0) \
| ((uint32_t)((p)[1]) << 8) \
| ((uint32_t)((p)[2]) << 16) \
| ((uint32_t)((p)[3]) << 24) \
)
#define LOAD32_BE(p) \
( ((uint32_t)((p)[3]) << 0) \
| ((uint32_t)((p)[2]) << 8) \
| ((uint32_t)((p)[1]) << 16) \
| ((uint32_t)((p)[0]) << 24) \
)
#define STORE32_LE(p, v) \
(p)[0] = ((v) >> 0) & 0xFF; \
(p)[1] = ((v) >> 8) & 0xFF; \
(p)[2] = ((v) >> 16) & 0xFF; \
(p)[3] = ((v) >> 24) & 0xFF;
#define STORE32_BE(p, v) \
(p)[3] = ((v) >> 0) & 0xFF; \
(p)[2] = ((v) >> 8) & 0xFF; \
(p)[1] = ((v) >> 16) & 0xFF; \
(p)[0] = ((v) >> 24) & 0xFF;
#define STORE64_BE(p, v) \
(p)[7] = ((v) >> 0) & 0xFF; \
(p)[6] = ((v) >> 8) & 0xFF; \
(p)[5] = ((v) >> 16) & 0xFF; \
(p)[4] = ((v) >> 24) & 0xFF; \
(p)[3] = ((v) >> 32) & 0xFF; \
(p)[2] = ((v) >> 40) & 0xFF; \
(p)[1] = ((v) >> 48) & 0xFF; \
(p)[0] = ((v) >> 56) & 0xFF;
/*
* ChaCha20 stream cipher
*/
static void chacha20_block(unsigned char out[64], const uint32_t in[16])
{
int i;
uint32_t x[16];
memcpy(x, in, sizeof(uint32_t) * 16);
#define QR(x, a, b, c, d) \
x[a] += x[b]; x[d] ^= x[a]; x[d] = ROL32(x[d], 16); \
x[c] += x[d]; x[b] ^= x[c]; x[b] = ROL32(x[b], 12); \
x[a] += x[b]; x[d] ^= x[a]; x[d] = ROL32(x[d], 8); \
x[c] += x[d]; x[b] ^= x[c]; x[b] = ROL32(x[b], 7);
for (i = 0; i < 10; i++) {
/* Column round */
QR(x, 0, 4, 8, 12)
QR(x, 1, 5, 9, 13)
QR(x, 2, 6, 10, 14)
QR(x, 3, 7, 11, 15)
/* Diagonal round */
QR(x, 0, 5, 10, 15)
QR(x, 1, 6, 11, 12)
QR(x, 2, 7, 8, 13)
QR(x, 3, 4, 9, 14)
}
#undef QR
for (i = 0; i < 16; i++) {
const uint32_t v = x[i] + in[i];
STORE32_LE(&out[4*i], v);
}
}
void chacha20_xor(unsigned char *data, size_t n, const unsigned char key[32],
const unsigned char nonce[12], uint32_t counter)
{
int i;
uint32_t state[16];
unsigned char block[64];
static const unsigned char sigma[16] = "expand 32-byte k";
state[ 0] = LOAD32_LE(sigma + 0);
state[ 1] = LOAD32_LE(sigma + 4);
state[ 2] = LOAD32_LE(sigma + 8);
state[ 3] = LOAD32_LE(sigma + 12);
state[ 4] = LOAD32_LE(key + 0);
state[ 5] = LOAD32_LE(key + 4);
state[ 6] = LOAD32_LE(key + 8);
state[ 7] = LOAD32_LE(key + 12);
state[ 8] = LOAD32_LE(key + 16);
state[ 9] = LOAD32_LE(key + 20);
state[10] = LOAD32_LE(key + 24);
state[11] = LOAD32_LE(key + 28);
state[12] = counter;
state[13] = LOAD32_LE(nonce + 0);
state[14] = LOAD32_LE(nonce + 4);
state[15] = LOAD32_LE(nonce + 8);
while (n >= 64) {
chacha20_block(block, state);
for (i = 0; i < 64; i++)
data[i] ^= block[i];
state[12]++;
data += 64;
n -= 64;
}
if (n > 0) {
chacha20_block(block, state);
for (i = 0; i < n; i++)
data[i] ^= block[i];
}
return;
}
/*
* Poly1305 authentication tags
*/
void poly1305(const unsigned char *msg, size_t n, const unsigned char key[32],
unsigned char tag[16])
{
uint32_t hibit, m, w;
uint32_t h0, h1, h2, h3, h4;
uint32_t r0, r1, r2, r3, r4;
uint32_t s1, s2, s3, s4;
uint64_t f0, f1, f2, f3;
uint32_t g0, g1, g2, g3, g4;
unsigned char buf[16];
hibit = 1 << 24;
h0 = h1 = h2 = h3 = h4 = 0;
r0 = (LOAD32_LE(key + 0) >> 0) & 0x03FFFFFF;
r1 = (LOAD32_LE(key + 3) >> 2) & 0x03FFFF03; s1 = r1 * 5;
r2 = (LOAD32_LE(key + 6) >> 4) & 0x03FFC0FF; s2 = r2 * 5;
r3 = (LOAD32_LE(key + 9) >> 6) & 0x03F03FFF; s3 = r3 * 5;
r4 = (LOAD32_LE(key + 12) >> 8) & 0x000FFFFF; s4 = r4 * 5;
while (n >= 16) {
uint64_t d0, d1, d2, d3, d4;
process_block:
h0 += (LOAD32_LE(msg + 0) >> 0) & 0x03FFFFFF;
h1 += (LOAD32_LE(msg + 3) >> 2) & 0x03FFFFFF;
h2 += (LOAD32_LE(msg + 6) >> 4) & 0x03FFFFFF;
h3 += (LOAD32_LE(msg + 9) >> 6) & 0x03FFFFFF;
h4 += (LOAD32_LE(msg + 12) >> 8) | hibit;
#define MUL(a,b) ((uint64_t)(a) * (b))
d0 = MUL(h0,r0) + MUL(h1,s4) + MUL(h2,s3) + MUL(h3,s2) + MUL(h4,s1);
d1 = MUL(h0,r1) + MUL(h1,r0) + MUL(h2,s4) + MUL(h3,s3) + MUL(h4,s2);
d2 = MUL(h0,r2) + MUL(h1,r1) + MUL(h2,r0) + MUL(h3,s4) + MUL(h4,s3);
d3 = MUL(h0,r3) + MUL(h1,r2) + MUL(h2,r1) + MUL(h3,r0) + MUL(h4,s4);
d4 = MUL(h0,r4) + MUL(h1,r3) + MUL(h2,r2) + MUL(h3,r1) + MUL(h4,r0);
#undef MUL
h0 = d0 & 0x03FFFFFF; d1 += (uint32_t)(d0 >> 26);
h1 = d1 & 0x03FFFFFF; d2 += (uint32_t)(d1 >> 26);
h2 = d2 & 0x03FFFFFF; d3 += (uint32_t)(d2 >> 26);
h3 = d3 & 0x03FFFFFF; d4 += (uint32_t)(d3 >> 26);
h4 = d4 & 0x03FFFFFF; h0 += (uint32_t)(d4 >> 26) * 5;
h1 += (h0 >> 26); h0 = h0 & 0x03FFFFFF;
msg += 16;
n -= 16;
}
if (n) {
int i;
for (i = 0; i < n; i++) buf[i] = msg[i];
buf[i++] = 1;
while (i < 16) buf[i++] = 0;
msg = buf;
hibit = 0;
n = 16;
goto process_block;
}
*(volatile uint32_t *)&r0 = 0;
*(volatile uint32_t *)&r1 = 0; *(volatile uint32_t *)&s1 = 0;
*(volatile uint32_t *)&r2 = 0; *(volatile uint32_t *)&s2 = 0;
*(volatile uint32_t *)&r3 = 0; *(volatile uint32_t *)&s3 = 0;
*(volatile uint32_t *)&r4 = 0; *(volatile uint32_t *)&s4 = 0;
h2 += (h1 >> 26); h1 &= 0x03FFFFFF;
h3 += (h2 >> 26); h2 &= 0x03FFFFFF;
h4 += (h3 >> 26); h3 &= 0x03FFFFFF;
h0 += (h4 >> 26) * 5; h4 &= 0x03FFFFFF;
h1 += (h0 >> 26); h0 &= 0x03FFFFFF;
g0 = h0 + 5;
g1 = h1 + (g0 >> 26); g0 &= 0x03FFFFFF;
g2 = h2 + (g1 >> 26); g1 &= 0x03FFFFFF;
g3 = h3 + (g2 >> 26); g2 &= 0x03FFFFFF;
g4 = h4 + (g3 >> 26) - (1 << 26); g3 &= 0x03FFFFFF;
w = ~(m = (g4 >> 31) - 1);
h0 = (h0 & w) | (g0 & m);
h1 = (h1 & w) | (g1 & m);
h2 = (h2 & w) | (g2 & m);
h3 = (h3 & w) | (g3 & m);
h4 = (h4 & w) | (g4 & m);
f0 = ((h0 >> 0) | (h1 << 26)) + (uint64_t)LOAD32_LE(key + 16);
f1 = ((h1 >> 6) | (h2 << 20)) + (uint64_t)LOAD32_LE(key + 20);
f2 = ((h2 >> 12) | (h3 << 14)) + (uint64_t)LOAD32_LE(key + 24);
f3 = ((h3 >> 18) | (h4 << 8)) + (uint64_t)LOAD32_LE(key + 28);
STORE32_LE(tag + 0, f0); f1 += (f0 >> 32);
STORE32_LE(tag + 4, f1); f2 += (f1 >> 32);
STORE32_LE(tag + 8, f2); f3 += (f2 >> 32);
STORE32_LE(tag + 12, f3);
}
int poly1305_tagcmp(const unsigned char tag1[16], const unsigned char tag2[16])
{
unsigned int d = 0;
d |= tag1[ 0] ^ tag2[ 0];
d |= tag1[ 1] ^ tag2[ 1];
d |= tag1[ 2] ^ tag2[ 2];
d |= tag1[ 3] ^ tag2[ 3];
d |= tag1[ 4] ^ tag2[ 4];
d |= tag1[ 5] ^ tag2[ 5];
d |= tag1[ 6] ^ tag2[ 6];
d |= tag1[ 7] ^ tag2[ 7];
d |= tag1[ 8] ^ tag2[ 8];
d |= tag1[ 9] ^ tag2[ 9];
d |= tag1[10] ^ tag2[10];
d |= tag1[11] ^ tag2[11];
d |= tag1[12] ^ tag2[12];
d |= tag1[13] ^ tag2[13];
d |= tag1[14] ^ tag2[14];
d |= tag1[15] ^ tag2[15];
return d;
}
/*
* SHA256 hash function
*/
struct sha256 {
uint32_t state[8];
unsigned char buffer[64];
uint64_t n64;
int n;
};
void sha256_init(struct sha256 *ctx)
{
ctx->state[0] = 0x6a09e667; /* sqrt(2) */
ctx->state[1] = 0xbb67ae85; /* sqrt(3) */
ctx->state[2] = 0x3c6ef372; /* sqrt(5) */
ctx->state[3] = 0xa54ff53a; /* sqrt(7) */
ctx->state[4] = 0x510e527f; /* sqrt(11) */
ctx->state[5] = 0x9b05688c; /* sqrt(13) */
ctx->state[6] = 0x1f83d9ab; /* sqrt(17) */
ctx->state[7] = 0x5be0cd19; /* sqrt(19) */
ctx->n64 = 0;
ctx->n = 0;
}
static void sha256_block(uint32_t state[8], const unsigned char p[64])
{
uint32_t w[64], a, b, c, d, e, f, g, h;
uint32_t s0, s1, S0, S1, t1, t2;
static const uint32_t K256[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
a = state[0]; b = state[1]; c = state[2]; d = state[3];
e = state[4]; f = state[5]; g = state[6]; h = state[7];
#define ROUND_CORE(i) \
S1 = ROR32(e, 6) ^ ROR32(e, 11) ^ ROR32(e, 25); \
t1 = h + S1 + ((e & f) ^ (~e & g)) + K256[i] + w[i]; \
S0 = ROR32(a, 2) ^ ROR32(a, 13) ^ ROR32(a, 22); \
t2 = S0 + ((a & b) ^ (a & c) ^ (b & c)); \
h = g; g = f; f = e; e = d + t1; \
d = c; c = b; b = a; a = t1 + t2;
#define ROUND_0_15(i) w[i] = LOAD32_BE(p); p += 4; ROUND_CORE(i)
ROUND_0_15( 0) ROUND_0_15( 1) ROUND_0_15( 2) ROUND_0_15( 3)
ROUND_0_15( 4) ROUND_0_15( 5) ROUND_0_15( 6) ROUND_0_15( 7)
ROUND_0_15( 8) ROUND_0_15( 9) ROUND_0_15(10) ROUND_0_15(11)
ROUND_0_15(12) ROUND_0_15(13) ROUND_0_15(14) ROUND_0_15(15)
#undef ROUND_0_15
#define ROUND_16_19(i) \
s0 = ROR32(w[i-15], 7) ^ ROR32(w[i-15], 18) ^ (w[i-15] >> 3); \
s1 = ROR32(w[i-2], 17) ^ ROR32(w[i-2], 19) ^ (w[i-2] >> 10); \
w[i] = w[i-16] + s0 + w[i-7] + s1; ROUND_CORE(i)
ROUND_16_19(16) ROUND_16_19(17) ROUND_16_19(18) ROUND_16_19(19)
ROUND_16_19(20) ROUND_16_19(21) ROUND_16_19(22) ROUND_16_19(23)
ROUND_16_19(24) ROUND_16_19(25) ROUND_16_19(26) ROUND_16_19(27)
ROUND_16_19(28) ROUND_16_19(29) ROUND_16_19(30) ROUND_16_19(31)
ROUND_16_19(32) ROUND_16_19(33) ROUND_16_19(34) ROUND_16_19(35)
ROUND_16_19(36) ROUND_16_19(37) ROUND_16_19(38) ROUND_16_19(39)
ROUND_16_19(40) ROUND_16_19(41) ROUND_16_19(42) ROUND_16_19(43)
ROUND_16_19(44) ROUND_16_19(45) ROUND_16_19(46) ROUND_16_19(47)
ROUND_16_19(48) ROUND_16_19(49) ROUND_16_19(50) ROUND_16_19(51)
ROUND_16_19(52) ROUND_16_19(53) ROUND_16_19(54) ROUND_16_19(55)
ROUND_16_19(56) ROUND_16_19(57) ROUND_16_19(58) ROUND_16_19(59)
ROUND_16_19(60) ROUND_16_19(61) ROUND_16_19(62) ROUND_16_19(63)
#undef ROUND_16_19
#undef ROUND_CORE
state[0] += a; state[1] += b; state[2] += c; state[3] += d;
state[4] += e; state[5] += f; state[6] += g; state[7] += h;
}
void sha256_update(struct sha256 *ctx, const unsigned char *data, size_t n)
{
if (n < 64 || ctx->n) {
int i, j = (ctx->n + n < 64) ? n : 64 - ctx->n;
for (i = 0; i < j; i++)
ctx->buffer[ctx->n + i] = data[i];
if ((ctx->n += j) < 64)
return;
sha256_block(ctx->state, ctx->buffer);
ctx->n64 += 64;
ctx->n = 0;
data += j;
n -= j;
}
while (n >= 64) {
sha256_block(ctx->state, data);
ctx->n64 += 64;
data += 64;
n -= 64;
}
if (n) {
int i = 0;
while (i < n) {
ctx->buffer[i] = data[i];
i++;
}
ctx->n = n;
}
}
static void sha256_serialize(const uint32_t state[8], unsigned char hash[32])
{
STORE32_BE(hash + 0, state[0]);
STORE32_BE(hash + 4, state[1]);
STORE32_BE(hash + 8, state[2]);
STORE32_BE(hash + 12, state[3]);
STORE32_BE(hash + 16, state[4]);
STORE32_BE(hash + 20, state[5]);
STORE32_BE(hash + 24, state[6]);
STORE32_BE(hash + 28, state[7]);
}
void sha256_final(struct sha256 *ctx, unsigned char hash[32])
{
int i;
unsigned char buf[128];
uint64_t nbits = (ctx->n64 + ctx->n) * 8;
buf[0] = 0x80;
for (i = 1; (ctx->n + i + 8) % 64; buf[i++] = 0);
STORE64_BE(buf+i, nbits);
sha256_update(ctx, buf, i+8);
sha256_serialize(ctx->state, hash);
}
/*
* PBKDF2-HMAC-SHA256 key derivation optimized to reuse intermediate SHA256
* states computed in the HMAC-SHA256 calculation of the inner and outer pad.
*/
void pbkdf2_hmac_sha256(const void *pass, size_t m, const void *salt, size_t n,
int iter, unsigned char *dk, int dklen)
{
unsigned char keyblock[64], iblock[64], oblock[64];
struct sha256 ctx, ictx, octx;
uint32_t I[8], O[8];
int i, j, k, len;
/* Initialize keyblock */
if (m > 64) {
sha256_init(&ctx);
sha256_update(&ctx, pass, m);
sha256_final(&ctx, keyblock);
memset(keyblock+32, 0, 32);
} else {
memcpy(keyblock, pass, m);
memset(keyblock+m, 0, 64 - m);
}
/* Prepare iblock and oblock */
sha256_init(&ictx);
sha256_init(&octx);
for (i = 0; i < 64; i++) {
iblock[i] = 0x36 ^ keyblock[i];
oblock[i] = 0x5C ^ keyblock[i];
*(volatile unsigned char *)(keyblock + i) = 0;
}
sha256_update(&ictx, iblock, 64);
sha256_update(&octx, oblock, 64);
memset(iblock+32, 0, 32);
memset(oblock+32, 0, 32);
STORE32_BE(&iblock[64-4], 96*8);
STORE32_BE(&oblock[64-4], 96*8);
iblock[32] = oblock[32] = 0x80;
/* PBKDF2 main loop */
for (i = 1; dklen; i++) {
unsigned char ibuf[4];
STORE32_BE(ibuf, i);
memcpy(&ctx, &ictx, sizeof(struct sha256));
sha256_update(&ctx, salt, n);
sha256_update(&ctx, ibuf, 4);
sha256_final(&ctx, oblock);
memcpy(O, octx.state, 32);
sha256_block(O, oblock);
sha256_serialize(O, iblock);
len = (dklen < 32) ? dklen : 32;
memcpy(dk, iblock, len);
for (j = 1; j < iter; j++) {
memcpy(I, ictx.state, 32);
memcpy(O, octx.state, 32);
sha256_block(I, iblock);
sha256_serialize(I, oblock);
sha256_block(O, oblock);
sha256_serialize(O, iblock);
for (k = 0; k < len; k++) {
dk[k] ^= iblock[k];
}
}
dklen -= len;
dk += len;
}
/* Burn key material */ /* TODO: is this really necessary? */
for (i = 0; i < 64; i++) { /* for truly paranoid people, yes */
*(volatile unsigned char *)(iblock + i) = 0;
*(volatile unsigned char *)(oblock + i) = 0;
}
}
/*
* Platform-specific entropy functions for seeding RNG
*/
#if defined(__linux__) || defined(__unix__) || defined(__APPLE__)
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <unistd.h>
#ifdef __linux__
#include <sys/ioctl.h>
/* musl does not have <linux/random.h> so let's define RNDGETENTCNT here */
#ifndef RNDGETENTCNT
#define RNDGETENTCNT _IOR('R', 0x00, int)
#endif
#endif
/* Returns the number of urandom bytes read (either 0 or n) */
static size_t read_urandom(void *buf, size_t n)
{
size_t i;
ssize_t ret;
int fd, count;
struct stat st;
int errnold = errno;
do {
fd = open("/dev/urandom", O_RDONLY, 0);
} while (fd == -1 && errno == EINTR);
if (fd == -1)
goto fail;
fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
/* Check the sanity of the device node */
if (fstat(fd, &st) == -1 || !S_ISCHR(st.st_mode)
#ifdef __linux__
|| ioctl(fd, RNDGETENTCNT, &count) == -1
#endif
) {
close(fd);
goto fail;
}
/* Read bytes */
for (i = 0; i < n; i += ret) {
while ((ret = read(fd, (char *)buf + i, n - i)) == -1) {
if (errno != EAGAIN && errno != EINTR) {
close(fd);
goto fail;
}
}
}
close(fd);
/* Verify that the random device returned non-zero data */
for (i = 0; i < n; i++) {
if (((unsigned char *)buf)[i] != 0) {
errno = errnold;
return n;
}
}
/* Tiny n may unintentionally fall through! */
fail:
fprintf(stderr, "bad /dev/urandom RNG\n");
abort(); /* PANIC! */
return 0;
}
static size_t entropy(void *buf, size_t n)
{
#if defined(__linux__) && defined(SYS_getrandom)
if (syscall(SYS_getrandom, buf, n, 0) == n)
return n;
#elif defined(SYS_getentropy)
if (syscall(SYS_getentropy, buf, n) == 0)
return n;
#endif
return read_urandom(buf, n);
}
#elif defined(_WIN32)
#include <windows.h>
#define RtlGenRandom SystemFunction036
BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength);
#pragma comment(lib, "advapi32.lib")
static size_t entropy(void *buf, size_t n)
{
return RtlGenRandom(buf, n) ? n : 0;
}
#else
#error "Secure pseudorandom number generator unimplemented for this OS"
#endif
/*
* ChaCha20 random number generator
*/
void chacha20_rng(void *out, size_t n)
{
static size_t available = 0;
static uint32_t counter = UINT32_MAX;
static unsigned char key[32], nonce[12], buffer[64] = {0};
#if SQLITE_THREADSAFE
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PRNG);
sqlite3_mutex_enter(mutex);
#endif
while (n > 0) {
size_t m;
if (available == 0) {
if (counter == UINT32_MAX) {
if (entropy(key, sizeof(key)) != sizeof(key))
abort();
if (entropy(nonce, sizeof(nonce)) != sizeof(nonce))
abort();
}
chacha20_xor(buffer, sizeof(buffer), key, nonce, ++counter);
available = sizeof(buffer);
}
m = (available < n) ? available : n;
memcpy(out, buffer + (sizeof(buffer) - available), m);
out = (unsigned char *)out + m;
available -= m;
n -= m;
}
#if SQLITE_THREADSAFE
sqlite3_mutex_leave(mutex);
#endif
}