-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfftw_cpp.hh
181 lines (157 loc) · 5.32 KB
/
fftw_cpp.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#ifndef __FFTW_CPP__HH__
#define __FFTW_CPP__HH__
#include <cstring>
#include <vector>
#include <complex>
#include <fftw3.h>
typedef std::complex<double> dcomplex;
typedef std::vector<double> dvector;
typedef std::vector<dcomplex> dcvector;
#ifdef _OPENMP
#include <omp.h>
#endif
/**
* Class representing a Fourier transform
*/
class FFT
{
public:
const size_t N; // Number of data points
const double length; // Length of interval in real space
const double sample_rate; // Sample rate (N/length)
const double df; // (Angular) frequency step (2*pi/length)
private:
fftw_plan plan_fw;
fftw_plan plan_bw;
public:
/**
* Setup Fourier transform
* @param N Number of datapoints
* @param length Length of interval in real space
*/
FFT(size_t N, double length) : N(N), length(length),
sample_rate(N/length), df(2*M_PI/length)
{
#ifdef _OPENMP
// Initialisize multithreaded FFT automatically if OpenMP is
// available
FFT::init_multithread(omp_get_max_threads());
#endif
plan_fw = fftw_plan_dft_1d(N, 0, 0, FFTW_FORWARD, FFTW_ESTIMATE);
plan_bw = fftw_plan_dft_1d(N, 0, 0, FFTW_BACKWARD, FFTW_ESTIMATE);
}
/**
* Clean up
*/
~FFT()
{
fftw_destroy_plan(plan_fw);
fftw_destroy_plan(plan_bw);
}
/**
* Calculate Fourier transform
* @param in Input data
* @param out Fourier transformed output data
* If in == out, the transformation is done in-place
*/
void fft(dcvector& in, dcvector& out)
{
// Ensure in-place transformation
if(in.data() != out.data()) {
memcpy(out.data(), in.data(), N*sizeof(dcomplex));
}
fftw_execute_dft(plan_fw,
reinterpret_cast<fftw_complex*>(out.data()),
reinterpret_cast<fftw_complex*>(out.data())
);
// Scale amplitude as FFTW calculates unscaled coefficients
for(size_t i = 0; i < N; ++i) {
out[i] /= N;
}
}
/**
* Calculate inverse Fourier transform
* @param in Input data
* @param out Fourier transformed output data
* If in == out, the transformation is done in-place
*/
void ifft(dcvector& in, dcvector& out)
{
// Ensure in-place transformation
if(in.data() != out.data()) {
memcpy(out.data(), in.data(), N*sizeof(dcomplex));
}
fftw_execute_dft(plan_bw,
reinterpret_cast<fftw_complex*>(out.data()),
reinterpret_cast<fftw_complex*>(out.data())
);
}
/**
* Calculate sample frequencies (angular frequency)
* @param f This array will store the frequency data. Format:
* [0, df, 2*df, ..., N/2*df,
* -(N/2-1)*df, -(N/2-2)*df, ..., -df]
*/
void freq(dvector& f)
{
f.resize(N);
for(size_t i = 0; i < N; ++i) {
if(i <= N/2) {
// Positive frequencies first
f[i] = 2*M_PI*i*sample_rate/N;
} else {
f[i] = -2*M_PI*(N-i)*sample_rate/N;
}
}
}
/**
* Shift frequency and data array to order frequencies from negative
* to positive
* @param f Frequency array
* @param data Data array
*/
void shift_freq(dvector& f, dcvector& data)
{
dvector buf1(N);
dcvector buf2(N);
if(N%2 == 0) { // Even number of data points
for(size_t i = 0; i < N/2+1; ++i) {
buf1[N/2-1+i] = f[i];
buf2[N/2-1+i] = data[i];
if(i < N/2-1) {
buf1[i] = f[N/2+1+i];
buf2[i] = data[N/2+1+i];
}
}
} else { // Odd number of data points
buf1[N/2] = f[0];
buf2[N/2] = data[0];
for(size_t i = 0; i < N/2; ++i) {
buf1[N/2+1+i] = f[i+1];
buf2[N/2+1+i] = data[i+1];
buf1[i] = f[N/2+1+i];
buf2[i] = data[N/2+1+i];
}
}
memcpy(f.data(), buf1.data(), N*sizeof(double));
memcpy(data.data(), buf2.data(), N*sizeof(dcomplex));
}
/**
* Initialisize FFTW to use multiple threads
* Call this function before creating a FFT object
* @param threads Number of threads to use
*/
static void init_multithread(int threads=4)
{
fftw_init_threads();
fftw_plan_with_nthreads(threads);
}
/**
* Uninitialisize multithreaded FFTW
*/
static void clean_multithread()
{
fftw_cleanup_threads();
}
};
#endif