-
Notifications
You must be signed in to change notification settings - Fork 11
/
ffdnet.py
309 lines (265 loc) · 12.5 KB
/
ffdnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import argparse
import numpy as np
import cv2
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from model import FFDNet
import utils
def read_image(image_path, is_gray):
"""
:return: Normalized Image (C * W * H)
"""
if is_gray:
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
image = np.expand_dims(image.T, 0) # 1 * W * H
else:
image = cv2.imread(image_path)
image = (cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).transpose(2, 1, 0) # 3 * W * H
return utils.normalize(image)
def load_images(is_train, is_gray, base_path):
"""
:param base_path: ./train_data/
:return: List[Patches] (C * W * H)
"""
if is_gray:
train_dir = 'gray/train/'
val_dir = 'gray/val/'
else:
train_dir = 'rgb/train/'
val_dir = 'rgb/val/'
image_dir = base_path.replace('\'', '').replace('"', '') + (train_dir if is_train else val_dir)
print('> Loading images in ' + image_dir)
images = []
for fn in next(os.walk(image_dir))[2]:
image = read_image(image_dir + fn, is_gray)
images.append(image)
return images
def images_to_patches(images, patch_size):
"""
:param images: List[Image (C * W * H)]
:param patch_size: int
:return: (n * C * W * H)
"""
patches_list = []
for image in images:
patches = utils.image_to_patches(image, patch_size=patch_size)
if len(patches) != 0:
patches_list.append(patches)
del images
return np.vstack(patches_list)
def train(args):
print('> Loading dataset...')
# Images
train_dataset = load_images(is_train=True, is_gray=args.is_gray, base_path=args.train_path)
val_dataset = load_images(is_train=False, is_gray=args.is_gray, base_path=args.train_path)
print(f'\tTrain image datasets: {len(train_dataset)}')
print(f'\tVal image datasets: {len(val_dataset)}')
# Patches
train_dataset = images_to_patches(train_dataset, patch_size=args.patch_size)
val_dataset = images_to_patches(val_dataset, patch_size=args.patch_size)
print(f'\tTrain patch datasets: {train_dataset.shape}')
print(f'\tVal patch datasets: {val_dataset.shape}')
# DataLoader
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=6)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=6)
print(f'\tTrain batch number: {len(train_dataloader)}')
print(f'\tVal batch number: {len(val_dataloader)}')
# Noise list
train_noises = args.train_noise_interval # [0, 75, 15]
val_noises = args.val_noise_interval # [0, 60, 30]
train_noises = list(range(train_noises[0], train_noises[1], train_noises[2]))
val_noises = list(range(val_noises[0], val_noises[1], val_noises[2]))
print(f'\tTrain noise internal: {train_noises}')
print(f'\tVal noise internal: {val_noises}')
print('\n')
# Model & Optim
model = FFDNet(is_gray=args.is_gray)
model.apply(utils.weights_init_kaiming)
if args.cuda:
model = model.cuda()
loss_fn = nn.MSELoss(reduction='sum')
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
print('> Start training...')
for epoch_idx in range(args.epoches):
# Train
loss_idx = 0
train_losses = 0
model.train()
start_time = time.time()
for batch_idx, batch_data in enumerate(train_dataloader):
# According to internal, add noise
for int_noise_sigma in train_noises:
noise_sigma = int_noise_sigma / 255
new_images = utils.add_batch_noise(batch_data, noise_sigma)
noise_sigma = torch.FloatTensor(np.array([noise_sigma for idx in range(new_images.shape[0])]))
new_images = Variable(new_images)
noise_sigma = Variable(noise_sigma)
if args.cuda:
new_images = new_images.cuda()
noise_sigma = noise_sigma.cuda()
# Predict
images_pred = model(new_images, noise_sigma)
train_loss = loss_fn(images_pred, batch_data.to(images_pred.device))
train_losses += train_loss
loss_idx += 1
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
# Log Progress
stop_time = time.time()
all_num = len(train_dataloader) * len(train_noises)
done_num = batch_idx * len(train_noises) + train_noises.index(int_noise_sigma) + 1
rest_time = int((stop_time - start_time) / done_num * (all_num - done_num))
percent = int(done_num / all_num * 100)
print(f'\rEpoch: {epoch_idx + 1} / {args.epoches}, ' +
f'Batch: {batch_idx + 1} / {len(train_dataloader)}, ' +
f'Noise_Sigma: {int_noise_sigma} / {train_noises[-1]}, ' +
f'Train_Loss: {train_loss}, ' +
f'=> {rest_time}s, {percent}%', end='')
train_losses /= loss_idx
print(f', Avg_Train_Loss: {train_losses}, All: {int(stop_time - start_time)}s')
# Evaluate
loss_idx = 0
val_losses = 0
if (epoch_idx + 1) % args.val_epoch != 0:
continue
model.eval()
start_time = time.time()
for batch_idx, batch_data in enumerate(val_dataloader):
# According to internal, add noise
for int_noise_sigma in val_noises:
noise_sigma = int_noise_sigma / 255
new_images = utils.add_batch_noise(batch_data, noise_sigma)
noise_sigma = torch.FloatTensor(np.array([noise_sigma for idx in range(new_images.shape[0])]))
new_images = Variable(new_images)
noise_sigma = Variable(noise_sigma)
if args.cuda:
new_images = new_images.cuda()
noise_sigma = noise_sigma.cuda()
# Predict
images_pred = model(new_images, noise_sigma)
val_loss = loss_fn(images_pred, batch_data.to(images_pred.device))
val_losses += val_loss
loss_idx += 1
# Log Progress
stop_time = time.time()
all_num = len(val_dataloader) * len(val_noises)
done_num = batch_idx * len(val_noises) + val_noises.index(int_noise_sigma) + 1
rest_time = int((stop_time - start_time) / done_num * (all_num - done_num))
percent = int(done_num / all_num * 100)
print(f'\rEpoch: {epoch_idx + 1} / {args.epoches}, ' +
f'Batch: {batch_idx + 1} / {len(val_dataloader)}, ' +
f'Noise_Sigma: {int_noise_sigma} / {val_noises[-1]}, ' +
f'Val_Loss: {val_loss}, ' +
f'=> {rest_time}s, {percent}%', end='')
val_losses /= loss_idx
print(f', Avg_Val_Loss: {val_losses}, All: {int(stop_time - start_time)}s')
# Save Checkpoint
if (epoch_idx + 1) % args.save_checkpoints == 0:
model_path = args.model_path + ('net_gray_checkpoint.pth' if args.is_gray else 'net_rgb_checkpoint.pth')
torch.save(model.state_dict(), model_path)
print(f'| Saved Checkpoint at Epoch {epoch_idx + 1} to {model_path}')
# Final Save Model Dict
model.eval()
model_path = args.model_path + ('net_gray.pth' if args.is_gray else 'net_rgb.pth')
torch.save(model.state_dict(), model_path)
print(f'Saved State Dict in {model_path}')
print('\n')
def test(args):
# Image
image = cv2.imread(args.test_path)
if image is None:
raise Exception(f'File {args.test_path} not found or error')
is_gray = utils.is_image_gray(image)
image = read_image(args.test_path, is_gray)
print("{} image shape: {}".format("Gray" if is_gray else "RGB", image.shape))
# Expand odd shape to even
expend_W = False
expend_H = False
if image.shape[1] % 2 != 0:
expend_W = True
image = np.concatenate((image, image[:, -1, :][:, np.newaxis, :]), axis=1)
if image.shape[2] % 2 != 0:
expend_H = True
image = np.concatenate((image, image[:, :, -1][:, :, np.newaxis]), axis=2)
# Noise
image = torch.FloatTensor([image]) # 1 * C(1 / 3) * W * H
if args.add_noise:
image = utils.add_batch_noise(image, args.noise_sigma)
noise_sigma = torch.FloatTensor([args.noise_sigma])
# Model & GPU
model = FFDNet(is_gray=is_gray)
if args.cuda:
image = image.cuda()
noise_sigma = noise_sigma.cuda()
model = model.cuda()
# Dict
model_path = args.model_path + ('net_gray.pth' if is_gray else 'net_rgb.pth')
print(f"> Loading model param in {model_path}...")
state_dict = torch.load(model_path)
model.load_state_dict(state_dict)
model.eval()
print('\n')
# Test
with torch.no_grad():
start_time = time.time()
image_pred = model(image, noise_sigma)
stop_time = time.time()
print("Test time: {0:.4f}s".format(stop_time - start_time))
# PSNR
psnr = utils.batch_psnr(img=image_pred, imclean=image, data_range=1)
print("PSNR denoised {0:.2f}dB".format(psnr))
# UnExpand odd
if expend_W:
image_pred = image_pred[:, :, :-1, :]
if expend_H:
image_pred = image_pred[:, :, :, :-1]
# Save
cv2.imwrite("ffdnet.png", utils.variable_to_cv2_image(image_pred))
if args.add_noise:
cv2.imwrite("noisy.png", utils.variable_to_cv2_image(image))
def main():
parser = argparse.ArgumentParser()
# Train
parser.add_argument("--train_path", type=str, default='./train_data/', help='Train dataset dir.')
parser.add_argument("--is_gray", action='store_true', help='Train gray/rgb model.')
parser.add_argument("--patch_size", type=int, default=32, help='Uniform size of training images patches.')
parser.add_argument("--train_noise_interval", nargs=3, type=int, default=[0, 75, 15], help='Train dataset noise sigma set interval.')
parser.add_argument("--val_noise_interval", nargs=3, type=int, default=[0, 60, 30], help='Validation dataset noise sigma set interval.')
parser.add_argument("--batch_size", type=int, default=256, help='Batch size for training.')
parser.add_argument("--epoches", type=int, default=80, help='Total number of training epoches.')
parser.add_argument("--val_epoch", type=int, default=5, help='Total number of validation epoches.')
parser.add_argument("--learning_rate", type=float, default=1e-3, help='The initial learning rate for Adam.')
parser.add_argument("--save_checkpoints", type=int, default=5, help='Save checkpoint every epoch.')
# Test
parser.add_argument("--test_path", type=str, default='./test_data/color.png', help='Test image path.')
parser.add_argument("--noise_sigma", type=float, default=25, help='Input uniform noise sigma for test.')
parser.add_argument('--add_noise', action='store_true', help='Add noise_sigma to input or not.')
# Global
parser.add_argument("--model_path", type=str, default='./models/', help='Model loading and saving path.')
parser.add_argument("--use_gpu", action='store_true', help='Train and test using GPU.')
parser.add_argument("--is_train", action='store_true', help='Do train.')
parser.add_argument("--is_test", action='store_true', help='Do test.')
args = parser.parse_args()
assert (args.is_train or args.is_test), 'is_train 和 is_test 至少有一个为 True'
args.cuda = args.use_gpu and torch.cuda.is_available()
print("> Parameters: ")
for k, v in zip(args.__dict__.keys(), args.__dict__.values()):
print(f'\t{k}: {v}')
print('\n')
# Normalize noise level
args.noise_sigma /= 255
args.train_noise_interval[1] += 1
args.val_noise_interval[1] += 1
if args.is_train:
train(args)
if args.is_test:
test(args)
if __name__ == "__main__":
main()