forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spaces-more-groupoids.tex
1927 lines (1737 loc) · 67.4 KB
/
spaces-more-groupoids.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{More on Groupoids in Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is devoted to advanced topics on groupoids
in algebraic spaces.
Even though the results are stated in terms of groupoids in
algebraic spaces, the
reader should keep in mind the $2$-cartesian diagram
\begin{equation}
\label{equation-quotient-stack}
\vcenter{
\xymatrix{
R \ar[r] \ar[d] & U \ar[d] \\
U \ar[r] & [U/R]
}
}
\end{equation}
where $[U/R]$ is the quotient stack, see
Groupoids in Spaces, Remark \ref{spaces-groupoids-remark-fundamental-square}.
Many of the results are motivated by thinking about this diagram.
See for example the beautiful paper \cite{K-M} by Keel and Mori.
\section{Notation}
\label{section-notation}
\noindent
We continue to abide by the conventions and notation introduced in
Groupoids in Spaces, Section \ref{spaces-groupoids-section-notation}.
\section{Useful diagrams}
\label{section-diagrams}
\noindent
We briefly restate the results of
Groupoids in Spaces, Lemmas \ref{spaces-groupoids-lemma-diagram} and
\ref{spaces-groupoids-lemma-diagram-pull}
for easy reference in this chapter.
Let $S$ be a scheme. Let $B$ be an algebraic space over $S$.
Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$.
In the commutative diagram
\begin{equation}
\label{equation-diagram}
\vcenter{
\xymatrix{
& U & \\
R \ar[d]_s \ar[ru]^t &
R \times_{s, U, t} R
\ar[l]^-{\text{pr}_0} \ar[d]^{\text{pr}_1} \ar[r]_-c &
R \ar[d]^s \ar[lu]_t \\
U & R \ar[l]_t \ar[r]^s & U
}
}
\end{equation}
the two lower squares are fibre product squares.
Moreover, the triangle on top (which is really a square)
is also cartesian.
\medskip\noindent
The diagram
\begin{equation}
\label{equation-pull}
\vcenter{
\xymatrix{
R \times_{t, U, t} R
\ar@<1ex>[r]^-{\text{pr}_1} \ar@<-1ex>[r]_-{\text{pr}_0}
\ar[d]_{\text{pr}_0 \times c \circ (i, 1)} &
R \ar[r]^t \ar[d]^{\text{id}_R} &
U \ar[d]^{\text{id}_U} \\
R \times_{s, U, t} R
\ar@<1ex>[r]^-c \ar@<-1ex>[r]_-{\text{pr}_0} \ar[d]_{\text{pr}_1} &
R \ar[r]^t \ar[d]^s &
U \\
R \ar@<1ex>[r]^s \ar@<-1ex>[r]_t &
U
}
}
\end{equation}
is commutative. The two top rows are isomorphic via the vertical maps given.
The two lower left squares are cartesian.
\section{Properties of groupoids}
\label{section-technical-lemma}
\noindent
This section is the analogue of
More on Groupoids, Section \ref{more-groupoids-section-technical-lemma}.
The reader is strongly encouraged to read that section first.
\medskip\noindent
The following lemma is the analogue of
More on Groupoids, Lemma \ref{more-groupoids-lemma-property-invariant}.
\begin{lemma}
\label{lemma-property-invariant}
Let $B \to S$ be as in Section \ref{section-notation}.
Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$.
Let
$\tau \in \{fppf, \linebreak[0] \etale, \linebreak[0]
smooth, \linebreak[0] syntomic\}$.
Let $\mathcal{P}$ be a property of morphisms of algebraic spaces
which is $\tau$-local on the target
(Descent on Spaces,
Definition \ref{spaces-descent-definition-property-morphisms-local}).
Assume $\{s : R \to U\}$ and $\{t : R \to U\}$ are coverings for the
$\tau$-topology. Let $W \subset U$ be the maximal open subspace such that
$s^{-1}(W) \to W$ has property $\mathcal{P}$.
Then $W$ is $R$-invariant
(Groupoids in Spaces,
Definition \ref{spaces-groupoids-definition-invariant-open}).
\end{lemma}
\begin{proof}
The existence and properties of the open $W \subset U$ are described in
Descent on Spaces, Lemma \ref{spaces-descent-lemma-largest-open-of-the-base}.
In
Diagram (\ref{equation-diagram})
let $W_1 \subset R$ be the maximal open subscheme over which the morphism
$\text{pr}_1 : R \times_{s, U, t} R \to R$ has property $\mathcal{P}$.
It follows from the aforementioned
Descent on Spaces, Lemma \ref{spaces-descent-lemma-largest-open-of-the-base}
and the assumption that $\{s : R \to U\}$ and $\{t : R \to U\}$ are coverings
for the $\tau$-topology that $t^{-1}(W) = W_1 = s^{-1}(W)$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-property-G-invariant}
Let $B \to S$ be as in Section \ref{section-notation}.
Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$.
Let $G \to U$ be its stabilizer group algebraic space.
Let
$\tau \in \{fppf, \linebreak[0] \etale, \linebreak[0]
smooth, \linebreak[0] syntomic\}$.
Let $\mathcal{P}$ be a property of morphisms of algebraic spaces
which is $\tau$-local on the target.
Assume $\{s : R \to U\}$ and $\{t : R \to U\}$ are coverings for the
$\tau$-topology. Let $W \subset U$ be the maximal open subspace such that
$G_W \to W$ has property $\mathcal{P}$.
Then $W$ is $R$-invariant (see
Groupoids in Spaces,
Definition \ref{spaces-groupoids-definition-invariant-open}).
\end{lemma}
\begin{proof}
The existence and properties of the open $W \subset U$ are described in
Descent on Spaces, Lemma \ref{spaces-descent-lemma-largest-open-of-the-base}.
The morphism
$$
G \times_{U, t} R \longrightarrow R \times_{s, U} G, \quad
(g, r) \longmapsto (r, r^{-1} \circ g \circ r)
$$
is an isomorphism of algebraic spaces over $R$ (where $\circ$ denotes
composition in the groupoid). Hence $s^{-1}(W) = t^{-1}(W)$ by the
properties of $W$ proved in the aforementioned
Descent on Spaces, Lemma \ref{spaces-descent-lemma-largest-open-of-the-base}.
\end{proof}
\section{Comparing fibres}
\label{section-fibres}
\noindent
This section is the analogue of
More on Groupoids, Section \ref{more-groupoids-section-fibres}.
The reader is strongly encouraged to read that section first.
\begin{lemma}
\label{lemma-two-fibres}
Let $B \to S$ be as in Section \ref{section-notation}.
Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$.
Let $K$ be a field and let $r, r' : \Spec(K) \to R$
be morphisms such that $t \circ r = t \circ r' : \Spec(K) \to U$.
Set $u = s \circ r$, $u' = s \circ r'$ and denote
$F_u = \Spec(K) \times_{u, U, s} R$ and
$F_{u'} = \Spec(K) \times_{u', U, s} R$ the fibre products.
Then $F_u \cong F_{u'}$ as algebraic spaces over $K$.
\end{lemma}
\begin{proof}
We use the properties and the existence of
Diagram (\ref{equation-diagram}).
There exists a morphism $\xi : \Spec(K) \to R \times_{s, U, t} R$
with $\text{pr}_0 \circ \xi = r$ and $c \circ \xi = r'$.
Let $\tilde r = \text{pr}_1 \circ \xi : \Spec(K) \to R$.
Then looking at the bottom two squares of
Diagram (\ref{equation-diagram})
we see that both $F_u$ and $F_{u'}$ are identified with the algebraic space
$\Spec(K) \times_{\tilde r, R, \text{pr}_1} (R \times_{s, U, t} R)$.
\end{proof}
\noindent
Actually, in the situation of the lemma the morphisms of pairs
$s : (R, r) \to (U, u)$ and $s : (R, r') \to (U, u')$ are
locally isomorphic in the $\tau$-topology, provided $\{s: R \to U\}$ is a
$\tau$-covering. We will insert a precise statement here if needed.
\section{Restricting groupoids}
\label{section-restricting-groupoids}
\noindent
In this section we collect a bunch of lemmas on
properties of groupoids which are inherited by restrictions.
Most of these lemmas can be proved by contemplating the
defining diagram
\begin{equation}
\label{equation-restriction}
\vcenter{
\xymatrix{
R' \ar[d] \ar[r] \ar@/_3pc/[dd]_{t'} \ar@/^1pc/[rr]^{s'}&
R \times_{s, U} U' \ar[r] \ar[d] &
U' \ar[d]^g \\
U' \times_{U, t} R \ar[d] \ar[r] &
R \ar[r]^s \ar[d]_t &
U \\
U' \ar[r]^g &
U
}
}
\end{equation}
of a restriction. See
Groupoids in Spaces, Lemma \ref{spaces-groupoids-lemma-restrict-groupoid}.
\begin{lemma}
\label{lemma-restrict-preserves-type}
Let $S$ be a scheme. Let $B$ be an algebraic space over $S$.
Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$.
Let $g : U' \to U$ be a morphism of algebraic spaces over $B$.
Let $(U', R', s', t', c')$ be the restriction of
$(U, R, s, t, c)$ via $g$.
\begin{enumerate}
\item If $s, t$ are locally of finite type and $g$ is locally of finite
type, then $s', t'$ are locally of finite type.
\item If $s, t$ are locally of finite presentation and $g$ is locally of finite
presentation, then $s', t'$ are locally of finite presentation.
\item If $s, t$ are flat and $g$ is flat, then $s', t'$ are flat.
\item Add more here.
\end{enumerate}
\end{lemma}
\begin{proof}
The property of being locally of finite type is stable under composition
and arbitrary base change, see
Morphisms of Spaces,
Lemmas \ref{spaces-morphisms-lemma-composition-finite-type} and
\ref{spaces-morphisms-lemma-base-change-finite-type}.
Hence (1) is clear from Diagram (\ref{equation-restriction}).
For the other cases, see
Morphisms of Spaces,
Lemmas \ref{spaces-morphisms-lemma-composition-finite-presentation},
\ref{spaces-morphisms-lemma-base-change-finite-presentation},
\ref{spaces-morphisms-lemma-composition-flat}, and
\ref{spaces-morphisms-lemma-base-change-flat}.
\end{proof}
\section{Properties of groups over fields and groupoids on fields}
\label{section-properties-groupoids-on-fields}
\noindent
The reader is advised to first look at the corresponding sections for
groupoid schemes, see
Groupoids, Section \ref{groupoids-section-properties-group-schemes-field}
and
More on Groupoids,
Section \ref{more-groupoids-section-properties-groupoids-on-fields}.
\begin{situation}
\label{situation-group-over-field}
Here $S$ is a scheme, $k$ is a field over $S$, and
$(G, m)$ is a group algebraic spaces over $\Spec(k)$.
\end{situation}
\begin{situation}
\label{situation-groupoid-on-field}
Here $S$ is a scheme, $B$ is an algebraic space, and
$(U, R, s, t, c)$ is a groupoid in algebraic spaces over $B$
with $U = \Spec(k)$ for some field $k$.
\end{situation}
\noindent
Note that in
Situation \ref{situation-group-over-field}
we obtain a groupoid in algebraic spaces
\begin{equation}
\label{equation-groupoid-from-group}
(\Spec(k), G, p, p, m)
\end{equation}
where $p : G \to \Spec(k)$ is the structure morphism of $G$, see
Groupoids in Spaces, Lemma \ref{spaces-groupoids-lemma-groupoid-from-action}.
This is a situation as in
Situation \ref{situation-groupoid-on-field}.
We will use this without further mention in the rest of this section.
\begin{lemma}
\label{lemma-groupoid-on-field-open-multiplication}
In
Situation \ref{situation-groupoid-on-field}
the composition morphism $c : R \times_{s, U, t} R \to R$ is flat and
universally open.
In
Situation \ref{situation-group-over-field}
the group law $m : G \times_k G \to G$ is flat and
universally open.
\end{lemma}
\begin{proof}
The composition is isomorphic to the projection map
$\text{pr}_1 : R \times_{t, U, t} R \to R$ by
Diagram (\ref{equation-pull}).
The projection is flat as a base change of the flat morphism $t$
and open by
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-space-over-field-universally-open}.
The second assertion follows immediately from the first because
$m$ matches $c$ in (\ref{equation-groupoid-from-group}).
\end{proof}
\noindent
Note that the following lemma applies in particular when working
with either quasi-separated or locally separated algebraic spaces
(Decent Spaces, Lemma \ref{decent-spaces-lemma-locally-separated-decent}).
\begin{lemma}
\label{lemma-group-scheme-over-field-separated}
In Situation \ref{situation-groupoid-on-field}
assume $R$ is a decent space. Then $R$ is a separated algebraic space.
In Situation \ref{situation-group-over-field} assume that
$G$ is a decent algebraic space. Then $G$ is separated algebraic space.
\end{lemma}
\begin{proof}
We first prove the second assertion. By Groupoids in Spaces,
Lemma \ref{spaces-groupoids-lemma-group-scheme-separated}
we have to show that $e : S \to G$ is a closed immersion.
This follows from Decent Spaces, Lemma
\ref{decent-spaces-lemma-finite-residue-field-extension-finite}.
\medskip\noindent
Next, we prove the second assertion. To do this we may replace $B$ by $S$.
By the paragraph above the stabilizer group scheme $G \to U$ is separated. By
Groupoids in Spaces, Lemma \ref{spaces-groupoids-lemma-diagonal}
the morphism $j = (t, s) : R \to U \times_S U$ is separated.
As $U$ is the spectrum of a field the scheme
$U \times_S U$ is affine (by the construction of fibre products in
Schemes, Section \ref{schemes-section-fibre-products}).
Hence $R$ is separated, see
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-separated-over-separated}.
\end{proof}
\begin{lemma}
\label{lemma-restrict-groupoid-on-field}
In
Situation \ref{situation-groupoid-on-field}.
Let $k \subset k'$ be a field extension, $U' = \Spec(k')$
and let $(U', R', s', t', c')$ be the restriction of
$(U, R, s, t, c)$ via $U' \to U$. In the defining diagram
$$
\xymatrix{
R' \ar[d] \ar[r] \ar@/_3pc/[dd]_{t'} \ar@/^1pc/[rr]^{s'} \ar@{..>}[rd] &
R \times_{s, U} U' \ar[r] \ar[d] &
U' \ar[d] \\
U' \times_{U, t} R \ar[d] \ar[r] &
R \ar[r]^s \ar[d]_t &
U \\
U' \ar[r] &
U
}
$$
all the morphisms are surjective, flat, and universally open.
The dotted arrow $R' \to R$ is in addition affine.
\end{lemma}
\begin{proof}
The morphism $U' \to U$ equals $\Spec(k') \to \Spec(k)$,
hence is affine, surjective and flat. The morphisms $s, t : R \to U$
and the morphism $U' \to U$ are universally open by
Morphisms, Lemma \ref{morphisms-lemma-scheme-over-field-universally-open}.
Since $R$ is not empty and $U$ is the spectrum of a field the morphisms
$s, t : R \to U$ are surjective and flat. Then you conclude by using
Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-base-change-surjective},
\ref{spaces-morphisms-lemma-composition-surjective},
\ref{spaces-morphisms-lemma-composition-open},
\ref{spaces-morphisms-lemma-base-change-affine},
\ref{spaces-morphisms-lemma-composition-affine},
\ref{spaces-morphisms-lemma-base-change-flat}, and
\ref{spaces-morphisms-lemma-composition-flat}.
\end{proof}
\begin{lemma}
\label{lemma-groupoid-on-field-explain-points}
In
Situation \ref{situation-groupoid-on-field}.
For any point $r \in |R|$ there exist
\begin{enumerate}
\item a field extension $k \subset k'$ with $k'$ algebraically closed,
\item a point $r' : \Spec(k') \to R'$ where
$(U', R', s', t', c')$ is the restriction of $(U, R, s, t, c)$
via $\Spec(k') \to \Spec(k)$
\end{enumerate}
such that
\begin{enumerate}
\item the point $r'$ maps to $r$ under the morphism $R' \to R$, and
\item the maps
$s' \circ r', t' \circ r' : \Spec(k') \to \Spec(k')$
are automorphisms.
\end{enumerate}
\end{lemma}
\begin{proof}
Let's represent $r$ by a morphism $r : \Spec(K) \to R$ for some
field $K$. To prove the lemma we have to find an algebraically closed
field $k'$ and a commutative diagram
$$
\xymatrix{
k' & k' \ar[l]^1 & \\
k' \ar[u]^\tau & K \ar[lu]^\sigma & k \ar[l]^-s \ar[lu]_i \\
& k \ar[lu]^i \ar[u]_t
}
$$
where $s, t : k \to K$ are the field maps coming from
$s \circ r$ and $t \circ r$. In the proof of
More on Groupoids,
Lemma \ref{more-groupoids-lemma-groupoid-on-field-explain-points}
it is shown how to construct such a diagram.
\end{proof}
\begin{lemma}
\label{lemma-groupoid-on-field-move-point}
In
Situation \ref{situation-groupoid-on-field}.
If $r : \Spec(k) \to R$ is a morphism such that
$s \circ r, t \circ r$ are automorphisms of $\Spec(k)$, then the map
$$
R \longrightarrow R, \quad
x \longmapsto c(r, x)
$$
is an automorphism $R \to R$ which maps $e$ to $r$.
\end{lemma}
\begin{proof}
Proof is identical to the proof of
More on Groupoids,
Lemma \ref{more-groupoids-lemma-groupoid-on-field-move-point}.
\end{proof}
\begin{lemma}
\label{lemma-groupoid-on-field-geometrically-irreducible}
In
Situation \ref{situation-groupoid-on-field}
the algebraic space $R$ is geometrically unibranch. In
Situation \ref{situation-group-over-field}
the algebraic space $G$ is geometrically unibranch.
\end{lemma}
\begin{proof}
Let $r \in |R|$. We have to show that $R$ is geometrically unibranch
at $r$. Combining
Lemma \ref{lemma-restrict-groupoid-on-field}
with
Descent on Spaces, Lemma \ref{spaces-descent-lemma-descend-unibranch}
we see that it suffices to prove this in case $k$ is algebraically closed
and $r$ comes from a morphism $r : \Spec(k) \to R$ such that
$s \circ r$ and $t \circ r$
are automorphisms of $\Spec(k)$. By
Lemma \ref{lemma-groupoid-on-field-move-point}
we reduce to the case that $r = e$ is the identity of $R$ and $k$ is
algebraically closed.
\medskip\noindent
Assume $r = e$ and $k$ is algebraically closed. Let
$A = \mathcal{O}_{R, e}$ be the \'etale local ring of
$R$ at $e$ and let
$C = \mathcal{O}_{R \times_{s, U, t} R, (e, e)}$
be the \'etale local ring of $R \times_{s, U, t} R$ at $(e, e)$.
By
Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-minimal-primes-tensor-strictly-henselian}
the minimal prime ideals $\mathfrak q$ of $C$ correspond $1$-to-$1$
to pairs of minimal primes $\mathfrak p, \mathfrak p' \subset A$.
On the other hand, the composition law induces a flat ring map
$$
\xymatrix{
A \ar[r]_{c^\sharp} & C & \mathfrak q \\
& A \otimes_{s^\sharp, k, t^\sharp} A \ar[u] &
\mathfrak p \otimes A + A \otimes \mathfrak p' \ar@{|}[u]
}
$$
Note that $(c^\sharp)^{-1}(\mathfrak q)$ contains both $\mathfrak p$ and
$\mathfrak p'$ as the diagrams
$$
\xymatrix{
A \ar[r]_{c^\sharp} & C \\
A \otimes_{s^\sharp, k} k \ar[u] &
A \otimes_{s^\sharp, k, t^\sharp} A \ar[l]_{1 \otimes e^\sharp} \ar[u]
}
\quad\quad
\xymatrix{
A \ar[r]_{c^\sharp} & C \\
k \otimes_{k, t^\sharp} A \ar[u] &
A \otimes_{s^\sharp, k, t^\sharp} A \ar[l]_{e^\sharp \otimes 1} \ar[u]
}
$$
commute by (\ref{equation-diagram}).
Since $c^\sharp$ is flat (as $c$ is a flat morphism by
Lemma \ref{lemma-groupoid-on-field-open-multiplication}),
we see that $(c^\sharp)^{-1}(\mathfrak q)$ is a minimal prime
of $A$. Hence $\mathfrak p = (c^\sharp)^{-1}(\mathfrak q) = \mathfrak p'$.
\end{proof}
\noindent
In the following lemma we use dimension of algebraic spaces (at a point)
as defined in
Properties of Spaces, Section \ref{spaces-properties-section-dimension}.
We also use the dimension of the local ring defined in
Properties of Spaces, Section
\ref{spaces-properties-section-dimension-local-ring}
and transcendence degree of points, see
Morphisms of Spaces, Section \ref{spaces-morphisms-section-relative-dimension}.
\begin{lemma}
\label{lemma-groupoid-on-field-locally-finite-type-dimension}
In
Situation \ref{situation-groupoid-on-field}
assume $s, t$ are locally of finite type.
For all $r \in |R|$
\begin{enumerate}
\item $\dim(R) = \dim_r(R)$,
\item the transcendence degree of $r$ over $\Spec(k)$
via $s$ equals the transcendence degree of $r$ over $\Spec(k)$
via $t$, and
\item if the transcendence degree mentioned in (2) is $0$, then
$\dim(R) = \dim(\mathcal{O}_{R, \overline{r}})$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $r \in |R|$. Denote $\text{trdeg}(r/_{\!\!s}k)$ the transcendence
degree of $r$ over $\Spec(k)$ via $s$. Choose an \'etale morphism
$\varphi : V \to R$ where $V$ is a scheme and $v \in V$ mapping to $r$.
Using the definitions mentioned above the lemma we see that
$$
\dim_r(R) = \dim_v(V) =
\dim(\mathcal{O}_{V, v}) + \text{trdeg}_{s(k)}(\kappa(v)) =
\dim(\mathcal{O}_{R, \overline{r}}) + \text{trdeg}(r/_{\!\!s}k)
$$
and similarly for $t$ (the second equality by
Morphisms, Lemma \ref{morphisms-lemma-dimension-fibre-at-a-point}).
Hence we see that $\text{trdeg}(r/_{\!\!s}k) = \text{trdeg}(r/_{\!\!t}k)$,
i.e., (2) holds.
\medskip\noindent
Let $k \subset k'$ be a field extension. Note that the restriction $R'$
of $R$ to $\Spec(k')$ (see
Lemma \ref{lemma-restrict-groupoid-on-field})
is obtained from $R$ by two base changes by morphisms of fields. Thus
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-dimension-fibre-after-base-change}
shows the dimension of $R$ at a point is unchanged by this operation.
Hence in order to prove (1) we may assume, by
Lemma \ref{lemma-groupoid-on-field-explain-points},
that $r$ is represented by a morphism $r : \Spec(k) \to R$ such
that both $s \circ r$ and $t \circ r$ are automorphisms of $\Spec(k)$.
In this case there exists an automorphism $R \to R$ which maps $r$ to $e$
(Lemma \ref{lemma-groupoid-on-field-move-point}).
Hence we see that $\dim_r(R) = \dim_e(R)$ for any $r$. By definition this
means that $\dim_r(R) = \dim(R)$.
\medskip\noindent
Part (3) is a formal consequence of the results obtained in the discussion
above.
\end{proof}
\begin{lemma}
\label{lemma-group-over-field-locally-finite-type-dimension}
In
Situation \ref{situation-group-over-field}
assume $G$ locally of finite type.
For all $g \in |G|$
\begin{enumerate}
\item $\dim(G) = \dim_g(G)$,
\item if the transcendence degree of $g$ over $k$ is $0$, then
$\dim(G) = \dim(\mathcal{O}_{G, \overline{g}})$.
\end{enumerate}
\end{lemma}
\begin{proof}
Immediate from
Lemma \ref{lemma-groupoid-on-field-locally-finite-type-dimension}
via (\ref{equation-groupoid-from-group}).
\end{proof}
\begin{lemma}
\label{lemma-groupoid-on-field-dimension-equal-stabilizer}
In
Situation \ref{situation-groupoid-on-field}
assume $s, t$ are locally of finite type.
Let
$G = \Spec(k)
\times_{\Delta, \Spec(k) \times_B \Spec(k), t \times s} R$
be the stabilizer group algebraic space.
Then we have $\dim(R) = \dim(G)$.
\end{lemma}
\begin{proof}
Since $G$ and $R$ are equidimensional (see
Lemmas \ref{lemma-groupoid-on-field-locally-finite-type-dimension} and
\ref{lemma-group-over-field-locally-finite-type-dimension})
it suffices to prove that $\dim_e(R) = \dim_e(G)$. Let $V$ be an affine scheme,
$v \in V$, and let $\varphi : V \to R$ be an \'etale morphism of schemes
such that $\varphi(v) = e$. Note that $V$ is a Noetherian scheme as
$s \circ \varphi$ is locally of finite type as a composition of morphisms
locally of finite type and as $V$ is quasi-compact (use
Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-composition-finite-type},
\ref{spaces-morphisms-lemma-etale-locally-finite-presentation}, and
\ref{spaces-morphisms-lemma-finite-presentation-finite-type}
and
Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian}).
Hence $V$ is locally connected (see
Properties, Lemma \ref{properties-lemma-Noetherian-topology}
and
Topology, Lemma \ref{topology-lemma-locally-Noetherian-locally-connected}).
Thus we may replace $V$ by the connected component containing $v$ (it
is still affine as it is an open and closed subscheme of $V$).
Set $T = V_{red}$ equal to the reduction of $V$. Consider the two
morphisms $a, b : T \to \Spec(k)$ given by
$a = s \circ \varphi|_T$ and $b = t \circ \varphi|_T$. Note that
$a, b$ induce the same field map $k \to \kappa(v)$ because $\varphi(v) = e$!
Let $k_a \subset \Gamma(T, \mathcal{O}_T)$ be the integral closure of
$a^\sharp(k) \subset \Gamma(T, \mathcal{O}_T)$. Similarly, let
$k_b \subset \Gamma(T, \mathcal{O}_T)$ be the integral closure of
$b^\sharp(k) \subset \Gamma(T, \mathcal{O}_T)$. By
Varieties, Proposition \ref{varieties-proposition-unique-base-field}
we see that $k_a = k_b$. Thus we obtain the following commutative diagram
$$
\xymatrix{
k \ar[rd]^a \ar[rrrd] \\
& k_a = k_b \ar[r] & \Gamma(T, \mathcal{O}_T) \ar[r] & \kappa(v) \\
k \ar[ru]_b \ar[rrru]
}
$$
As discussed above the long arrows are equal.
Since $k_a = k_b \to \kappa(v)$ is injective we conclude that
the two morphisms $a$ and $b$ agree. Hence $T \to R$ factors through $G$.
It follows that $R_{red} = G_{red}$ in an open neighbourhood of $e$
which certainly implies that $\dim_e(R) = \dim_e(G)$.
\end{proof}
\section{The finite part of a morphism}
\label{section-finite}
\noindent
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
For an algebraic space or a scheme $T$ over $S$ consider pairs
$(a, Z)$ where
\begin{equation}
\label{equation-finite-conditions}
\begin{matrix}
a : T \to Y\text{ is a morphism over }S, \hfill \\
Z \subset T \times_Y X\text{ is an open subspace such that }
\text{pr}_0|_Z : Z \to T\text{ is finite.}
\end{matrix}
\end{equation}
Suppose $h : T' \to T$ is a morphism of algebraic spaces over $S$
and $(a, Z)$ is a pair over $T$. Set
$a' = a \circ h$ and $Z' = (h \times \text{id}_X)^{-1}(Z) = T' \times_T Z$.
Then the pair $(a', Z')$ satisfies (1), (2) over $T'$.
This follows as finite morphisms are preserved under base change, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-base-change-integral}.
Thus we obtain a functor
\begin{equation}
\label{equation-finite}
\begin{matrix}
(X/Y)_{fin} : &
(\Sch/S)^{opp} &
\longrightarrow &
\textit{Sets} \\
& T & \longmapsto &
\{(a, Z)\text{ as above}\}
\end{matrix}
\end{equation}
For applications we are mainly interested in this functor $(X/Y)_{fin}$
when $f$ is separated and locally of finite type. To get an idea
of what this is all about, take a look at
Remark \ref{remark-finite-quasi-finite-separated-morphism-schemes}.
\begin{lemma}
\label{lemma-finite-sheaf}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Then we have
\begin{enumerate}
\item The presheaf $(X/Y)_{fin}$ satisfies the sheaf condition for
the fppf topology.
\item If $T$ is an algebraic space over $S$, then there is a
canonical bijection
$$
\Mor_{\Sh((\Sch/S)_{fppf})}(T, (X/Y)_{fin})
=
\{(a, Z)\text{ satisfying \ref{equation-finite-conditions}}\}
$$
\end{enumerate}
\end{lemma}
\begin{proof}
Let $T$ be an algebraic space over $S$.
Let $\{T_i \to T\}$ be an fppf covering (by algebraic spaces).
Let $s_i = (a_i, Z_i)$ be pairs over $T_i$
satisfying \ref{equation-finite-conditions}
such that we have $s_i|_{T_i \times_T T_j} = s_j|_{T_i \times_T T_j}$.
First, this implies in particular that $a_i$ and $a_j$ define the same
morphism $T_i \times_T T_j \to Y$. By
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-fppf-universal-effective-epimorphisms}
we deduce that there exists a unique morphism $a : T \to Y$
such that $a_i$ equals the composition $T_i \to T \to Y$.
Second, this implies that $Z_i \subset T_i \times_Y X$ are open subspaces
whose inverse images in $(T_i \times_T T_j) \times_Y X$ are equal.
Since $\{T_i \times_Y X \to T \times_Y X\}$ is an fppf covering
we deduce that there exists a unique open subspace $Z \subset T \times_Y X$
which restricts back to $Z_i$ over $T_i$, see
Descent on Spaces, Lemma \ref{spaces-descent-lemma-open-fpqc-covering}.
We claim that the projection $Z \to T$ is finite.
This follows as being finite is local for the fpqc topology, see
Descent on Spaces, Lemma \ref{spaces-descent-lemma-descending-property-finite}.
\medskip\noindent
Note that the result of the preceding paragraph in particular implies (1).
\medskip\noindent
Let $T$ be an algebraic space over $S$. In order to prove (2) we will
construct mutually inverse maps between the displayed sets. In the
following when we say ``pair'' we mean a pair satisfying
conditions \ref{equation-finite-conditions}.
\medskip\noindent
Let $v : T \to (X/Y)_{fin}$ be a natural transformation.
Choose a scheme $U$ and a surjective \'etale morphism $p : U \to T$.
Then $v(p) \in (X/Y)_{fin}(U)$ corresponds to a pair $(a_U, Z_U)$
over $U$. Let $R = U \times_T U$ with projections $t, s : R \to U$.
As $v$ is a transformation of functors we see that the pullbacks of
$(a_U, Z_U)$ by $s$ and $t$ agree. Hence, since $\{U \to T\}$ is an
fppf covering, we may apply the result of the first paragraph that
deduce that there exists a unique pair $(a, Z)$ over $T$.
\medskip\noindent
Conversely, let $(a, Z)$ be a pair over $T$.
Let $U \to T$, $R = U \times_T U$, and $t, s : R \to U$ be as
above. Then the restriction $(a, Z)|_U$ gives rise to a
transformation of functors $v : h_U \to (X/Y)_{fin}$ by the
Yoneda lemma
(Categories, Lemma \ref{categories-lemma-yoneda}).
As the two pullbacks $s^*(a, Z)|_U$ and $t^*(a, Z)|_U$
are equal, we see that $v$ coequalizes the two maps
$h_t, h_s : h_R \to h_U$. Since $T = U/R$ is the fppf quotient sheaf by
Spaces, Lemma \ref{spaces-lemma-space-presentation}
and since $(X/Y)_{fin}$ is an fppf sheaf by (1) we conclude
that $v$ factors through a map $T \to (X/Y)_{fin}$.
\medskip\noindent
We omit the verification that the two constructions above are mutually
inverse.
\end{proof}
\begin{lemma}
\label{lemma-finite-open}
Let $S$ be a scheme. Consider a commutative diagram
$$
\xymatrix{
X' \ar[rr]_j \ar[rd] & & X \ar[ld] \\
& Y
}
$$
of algebraic spaces over $S$. If $j$ is an open immersion, then
there is a canonical injective map of sheaves
$j : (X'/Y)_{fin} \to (X/Y)_{fin}$.
\end{lemma}
\begin{proof}
If $(a, Z)$ is a pair over $T$ for $X'/Y$, then
$(a, j(Z))$ is a pair over $T$ for $X/Y$.
\end{proof}
\begin{lemma}
\label{lemma-finite-lives-on-locally-quasi-finite-part}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$ which is
locally of finite type.
Let $X' \subset X$ be the maximal open subspace over which $f$ is
locally quasi-finite, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-locally-finite-type-quasi-finite-part}.
Then $(X/Y)_{fin} = (X'/Y)_{fin}$.
\end{lemma}
\begin{proof}
Lemma \ref{lemma-finite-open}
gives us an injective map $(X'/Y)_{fin} \to (X/Y)_{fin}$.
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-locally-finite-type-quasi-finite-part}
assures us that formation of $X'$ commutes with base change.
Hence everything comes down to proving that if
$Z \subset X$ is a open subspace such that $f|_Z : Z \to Y$ is finite,
then $Z \subset X'$. This is true because a finite morphism
is locally quasi-finite, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-finite-quasi-finite}.
\end{proof}
\begin{lemma}
\label{lemma-finite-separated}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $T$ be an algebraic space over $S$, and let $(a, Z)$ be
a pair as in \ref{equation-finite-conditions}.
If $f$ is separated, then $Z$ is closed in $T \times_Y X$.
\end{lemma}
\begin{proof}
A finite morphism of algebraic spaces is universally closed by
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-finite-proper}.
Since $f$ is separated so is the morphism $T \times_Y X \to T$, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-base-change-separated}.
Thus the closedness of $Z$ follows from
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-universally-closed-permanence}.
\end{proof}
\begin{remark}
\label{remark-finite-monoid}
Let $f : X \to Y$ be a separated morphism of algebraic spaces.
The sheaf $(X/Y)_{fin}$ comes with a natural map
$(X/Y)_{fin} \to Y$ by mapping the pair $(a, Z) \in (X/Y)_{fin}(T)$
to the element $a \in Y(T)$. We can use
Lemma \ref{lemma-finite-separated}
to define operations
$$
\star_i : (X/Y)_{fin} \times_Y (X/Y)_{fin} \longrightarrow (X/Y)_{fin}
$$
by the rules
\begin{align*}
\star_1 : ((a, Z_1), (a, Z_2)) & \longmapsto (a, Z_1 \cup Z_2) \\
\star_2 : ((a, Z_1), (a, Z_2)) & \longmapsto (a, Z_1 \cap Z_2) \\
\star_3 : ((a, Z_1), (a, Z_2)) & \longmapsto (a, Z_1 \setminus Z_2) \\
\star_4 : ((a, Z_1), (a, Z_2)) & \longmapsto (a, Z_2 \setminus Z_1).
\end{align*}
The reason this works is that $Z_1 \cap Z_2$ is both open and closed
inside $Z_1$ and $Z_2$ (which also implies that $Z_1 \cup Z_2$ is
the disjoint union of the other three pieces).
Thus we can think of $(X/Y)_{fin}$ as an $\mathbf{F}_2$-algebras
(without unit) over $Y$ with multiplication given by
$ss' = \star_2(s, s')$, and addition given by
$$
s + s' = \star_1(\star_3(s, s'), \star_4(s, s'))
$$
which boils down to taking the symmetric difference.
Note that in this sheaf of algebras $0 = (1_Y, \emptyset)$
and that indeed $s + s = 0$ for any local section $s$.
If $f : X \to Y$ is finite, then this algebra has a unit namely
$1 = (1_Y, X)$ and $\star_3(s, s') = s(1 + s')$, and
$\star_4(s, s') = (1 + s)s'$.
\end{remark}
\begin{remark}
\label{remark-finite-quasi-finite-separated-morphism-schemes}
Let $f : X \to Y$ be a separated, locally quasi-finite
morphism of schemes. In this case the sheaf $(X/Y)_{fin}$
is closely related to the sheaf $f_!\mathbf{F}_2$
(insert future reference here) on $Y_\etale$.
Namely, if $V \to Y$ is \'etale, and $s \in \Gamma(V, f_!\mathbf{F}_2)$,
then $s \in \Gamma(V \times_Y X, \mathbf{F}_2)$ is a section
with proper support $Z = \text{Supp}(s)$ over $V$. Since $f$ is
als locally quasi-finite we see that the projection $Z \to V$ is actually
finite. Since the support of a section of a constant abelian sheaf is open
we see that the pair $(V \to Y, \text{Supp}(s))$ satisfies
\ref{equation-finite-conditions}.
In fact, $f_!\mathbf{F}_2 \cong (X/Y)_{fin}|_{Y_\etale}$
in this case which also explains the $\mathbf{F}_2$-algebra structure
introduced in Remark \ref{remark-finite-monoid}.
\end{remark}
\begin{lemma}
\label{lemma-finite-diagonal}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
The diagonal of $(X/Y)_{fin} \to Y$
$$
(X/Y)_{fin} \longrightarrow (X/Y)_{fin} \times_Y (X/Y)_{fin}
$$
is representable (by schemes) and an open immersion and the ``absolute''
diagonal
$$
(X/Y)_{fin} \longrightarrow (X/Y)_{fin} \times (X/Y)_{fin}
$$
is representable (by schemes).
\end{lemma}
\begin{proof}
The second statement follows from the first as the absolute diagonal
is the composition of the relative diagonal and a base change
of the diagonal of $Y$ (which is representable by schemes), see
Spaces, Section \ref{spaces-section-representable}.
To prove the first assertion we have to show the following:
Given a scheme $T$ and two pairs $(a, Z_1)$ and $(a, Z_2)$ over $T$
with identical first component
satisfying \ref{equation-finite-conditions}
there is an open subscheme $V \subset T$ with the following
property: For any morphism of schemes $h : T' \to T$ we have
$$
h(T') \subset V \Leftrightarrow
\Big(T' \times_T Z_1 = T' \times_T Z_2
\text{ as subspaces of }T' \times_Y X\Big)
$$
Let us construct $V$. Note that $Z_1 \cap Z_2$ is open in $Z_1$
and in $Z_2$. Since $\text{pr}_0|_{Z_i} : Z_i \to T$ is finite,
hence proper (see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-finite-proper})
we see that
$$
E =
\text{pr}_0|_{Z_1}\left(Z_1 \setminus Z_1 \cap Z_2)\right)
\cup
\text{pr}_0|_{Z_2}\left(Z_2 \setminus Z_1 \cap Z_2)\right)
$$
is closed in $T$. Now it is clear that $V = T \setminus E$ works.
\end{proof}
\begin{lemma}
\label{lemma-finite-criterion-etale}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Suppose that $U$ is a scheme, $U \to Y$ is an \'etale morphism and
$Z \subset U \times_Y X$ is an open subspace finite over $U$.
Then the induced morphism $U \to (X/Y)_{fin}$ is \'etale.
\end{lemma}
\begin{proof}
This is formal from the description of the diagonal in
Lemma \ref{lemma-finite-diagonal}
but we write it out since it is an important step in the development
of the theory. We have to check that for any scheme $T$ over $S$ and a morphism
$T \to (X/Y)_{fin}$ the projection map
$$
T \times_{(X/Y)_{fin}} U \longrightarrow T
$$
is \'etale. Note that
$$