forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
injectives.tex
2091 lines (1851 loc) · 74 KB
/
injectives.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Injectives}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In future chapters we will use the existence of injectives and
K-injective complexes to do cohomology of sheaves of modules on
ringed sites. In this chapter we explain how to produce injectives
and K-injective complexes first for modules on sites and later
more generally for Grothendieck abelian categories.
\medskip\noindent
We observe that we already know that the category of
abelian groups and the category of modules over a ring have
enough injectives, see More on Algebra, Sections
\ref{more-algebra-section-abelian-groups} and
\ref{more-algebra-section-injectives-modules}
\section{Baer's argument for modules}
\label{section-baer}
\noindent
There is another, more set-theoretic approach to showing that any $R$-module
$M$ can be imbedded in an injective module. This approach constructs
the injective module by a transfinite colimit of push-outs. While this
method is somewhat abstract and more complicated than the one of
More on Algebra, Section \ref{more-algebra-section-injectives-modules},
it is also more general. Apparently this method originates with Baer,
and was revisited by Cartan and Eilenberg in
\cite{Cartan-Eilenberg} and by Grothendieck in \cite{Tohoku}.
There Grothendieck uses it to show that
many other abelian categories have enough injectives. We will get back to
the general case later (insert future reference here).
\medskip\noindent
We begin with a few set theoretic remarks.
Let $\{B_{\beta}\}_{\beta \in \alpha}$ be an inductive system of
objects in some category $\mathcal{C}$, indexed by
an ordinal $\alpha$. Assume that $\colim_{\beta \in \alpha} B_\beta$
exists in $\mathcal{C}$. If $A$ is an object of $\mathcal{C}$, then there is a
natural map
\begin{equation}
\label{equation-compare}
\colim_{\beta \in \alpha} \Mor_\mathcal{C}(A, B_\beta)
\longrightarrow
\Mor_\mathcal{C}(A, \colim_{\beta \in \alpha} B_\beta).
\end{equation}
because if one is given a map $A \to B_\beta$ for some $\beta$, one
naturally gets a map from $A$ into the colimit by composing with
$B_\beta \to \colim_{\beta \in \alpha} B_\alpha$.
Note that the left colimit is one of sets! In general, (\ref{equation-compare})
is neither injective or surjective.
\begin{example}
\label{example-not-surjective}
Consider the category of sets. Let $A = \mathbf{N}$ and
$B_n = \{1, \dots, n\}$ be the inductive system indexed by the natural numbers
where $B_n \to B_m$ for $n \leq m$ is the obvious map. Then
$\colim B_n = \mathbf{N}$, so there is a map
$A \to \varinjlim B_n$, which does not factor as $A \to B_m$
for any $m$. Consequently,
$\colim \Mor(A, B_n) \to \Mor(A, \colim B_n)$
is not surjective.
\end{example}
\begin{example}
\label{example-not-injective}
Next we give an example where the map fails to be injective. Let $B_n =
\mathbf{N}/\{1, 2, \dots, n\}$, that is, the quotient set of
$\mathbf{N}$ with the first $n$ elements collapsed to one element.
There are natural maps $B_n \to B_m$ for $n \leq m$, so the
$\{B_n\}$ form a system of sets over $\mathbf{N}$. It is easy to see that
$\colim B_n = \{*\}$: it is the one-point set.
So it follows that $\Mor(A, \colim B_n)$ is a one-element set
for every set $A$.
However, $\colim \Mor(A , B_n)$ is {\bf not} a one-element set.
Consider the family of maps $A \to B_n$ which are just the natural projections
$\mathbf{N} \to \mathbf{N}/\{1, 2, \dots, n\}$ and the family of
maps $A \to B_n$ which map the whole of $A$ to the class of $1$.
These two families of maps are distinct at each step and thus are distinct in
$\colim \Mor(A, B_n)$, but they induce the same map
$A \to \colim B_n$.
\end{example}
\noindent
Nonetheless, if we map out of a finite set then
(\ref{equation-compare}) is an isomorphism always.
\begin{lemma}
\label{lemma-out-of-finite}
Suppose that, in (\ref{equation-compare}), $\mathcal{C}$ is the category
of sets and $A$ is a {\it finite set}, then the map is a bijection.
\end{lemma}
\begin{proof}
Let $f : A \to \colim B_\beta$.
The range of $f$ is finite, containing say
elements $c_1, \dots, c_r \in \colim B_\beta$.
These all come from some elements in $B_\beta$ for $\beta \in \alpha$
large by definition of the colimit. Thus we can define
$\widetilde{f} : A \to B_\beta$ lifting $f$ at a finite stage.
This proves that (\ref{equation-compare}) is surjective.
Next, suppose two maps $f : A \to B_\gamma, f' : A \to B_{\gamma'}$
define the same map $A \to \colim B_\beta$.
Then each of the finitely many elements of $A$ gets sent to the same point in
the colimit. By definition of the colimit for sets, there is
$\beta \geq \gamma, \gamma'$ such that the finitely many elements of
$A$ get sent to the same points in $B_\beta$ under $f$ and $f'$.
This proves that (\ref{equation-compare}) is injective.
\end{proof}
\noindent
The most interesting case of the lemma is when $\alpha = \omega$, i.e.,
when the system $\{B_\beta\}$ is a system $\{B_n\}_{n \in \mathbf{N}}$
over the natural numbers as in
Examples \ref{example-not-surjective} and
\ref{example-not-injective}.
The essential idea is that $A$ is ``small'' relative to the long chain of
compositions $B_1 \to B_2 \to \dots$, so that it has to factor through a
finite step. A more general version of this lemma can be found in
Sets, Lemma \ref{sets-lemma-map-from-set-lifts}.
Next, we generalize this to the category of modules.
\begin{definition}
\label{definition-small}
Let $\mathcal{C}$ be a category, let $I \subset \text{Arrow}(\mathcal{C})$,
and let $\alpha$ be an ordinal. An object $A$ of $\mathcal{C}$ is said to
be {\it $\alpha$-small with respect to $I$} if whenever $\{B_\beta\}$ is
a system over $\alpha$ with transition maps in $I$, then
the map (\ref{equation-compare}) is an isomorphism.
\end{definition}
\noindent
In the rest of this section we shall restrict ourselves
to the category of $R$-modules for a fixed commutative ring $R$.
We shall also take $I$ to be the collection of injective maps, i.e., the
{\it monomorphisms} in the category of modules over $R$. In this case, for
any system $\{B_\beta\}$ as in the definition each of the maps
$$
B_\beta \to \colim_{\beta \in \alpha} B_\beta
$$
is an injection. It follows that the map (\ref{equation-compare}) is an
{\it injection}. We can in fact interpret the $B_\beta$'s as submodules
of the module $B = \colim_{\beta \in \alpha} B_\beta$, and then we
have $B = \bigcup_{\beta \in \alpha} B_\beta$. This is not an abuse of
notation if we identify $B_\alpha$ with the image in the colimit.
We now want to show that modules are always small for ``large'' ordinals
$\alpha$.
\begin{proposition}
\label{proposition-modules-are-small}
Let $R$ be a ring. Let $M$ be an $R$-module.
Let $\kappa$ the cardinality of the set of submodules of $M$.
If $\alpha$ is an ordinal whose cofinality is bigger than $\kappa$,
then $M$ is $\alpha$-small with respect to injections.
\end{proposition}
\begin{proof}
The proof is straightforward, but let us first think about a special case.
If $M$ is finite, then the claim is that for any inductive system
$\{B_\beta\}$ with injections between them, parametrized by a
limit ordinal, any map $M \to \colim B_\beta$ factors through one of
the $B_\beta$. And this we proved in
Lemma \ref{lemma-out-of-finite}.
\medskip\noindent
Now we start the proof in the general case.
We need only show that the map (\ref{equation-compare}) is a surjection.
Let $f : M \to \colim B_\beta$ be a map.
Consider the subobjects $\{f^{-1}(B_\beta)\}$ of $M$, where $B_\beta$
is considered as a subobject of the colimit $B = \bigcup_\beta B_\beta$.
If one of these, say $f^{-1}(B_\beta)$, fills $M$,
then the map factors through $B_\beta$.
\medskip\noindent
So suppose to the contrary that all of the $f^{-1}(B_\beta)$ were proper
subobjects of $M$. However, we know that
$$
\bigcup f^{-1}(B_\beta) = f^{-1}\left(\bigcup B_\beta\right) = M.
$$
Now there are at most $\kappa$ different subobjects of $M$ that occur among
the $f^{-1}(B_\alpha)$, by hypothesis.
Thus we can find a subset $S \subset \alpha$ of cardinality at most
$\kappa$ such that as $\beta'$ ranges over $S$, the
$f^{-1}(B_{\beta'})$ range over \emph{all} the $f^{-1}(B_\alpha)$.
\medskip\noindent
However, $S$ has an upper bound $\widetilde{\alpha} < \alpha$ as
$\alpha$ has cofinality bigger than $\kappa$. In particular, all the
$f^{-1}(B_{\beta'})$, $\beta' \in S$ are contained in
$f^{-1}(B_{\widetilde{\alpha}})$.
It follows that $f^{-1}(B_{\widetilde{\alpha}}) = M$.
In particular, the map $f$ factors through $B_{\widetilde{\alpha}}$.
\end{proof}
\noindent
From this lemma we will be able to deduce the existence of lots of injectives.
Let us recall the criterion of Baer.
\begin{lemma}
\label{lemma-criterion-baer}
Let $R$ be a ring. An $R$-module $Q$ is injective if and only if in every
commutative diagram
$$
\xymatrix{
\mathfrak{a} \ar[d] \ar[r] & Q \\
R \ar@{-->}[ru]
}
$$
for $\mathfrak{a} \subset R$ an ideal, the dotted arrow exists.
\end{lemma}
\begin{proof}
Assume $Q$ satisfies the assumption of the lemma.
Let $M \subset N$ be $R$-modules, and let $\varphi : M \to Q$ be an
$R$-module map. Arguing as in the proof of
More on Algebra, Lemma \ref{more-algebra-lemma-injective-abelian}
we see that it suffices to prove that if $M \not = N$, then we
can find an $R$-module $M'$, $M \subset M' \subset N$
such that (a) the inclusion $M \subset M'$ is strict,
and (b) $\varphi$ can be extended to $M'$.
To find $M'$, let $x \in N$, $x \not \in M$. Let $\psi : R \to N$,
$r \mapsto rx$. Set $\mathfrak{a} = \psi^{-1}(M)$. By assumption the
morphism
$$
\mathfrak a \xrightarrow{\psi} M \xrightarrow{\varphi} Q
$$
can be extended to a morphism $\varphi' : R \to Q$.
Note that $\varphi'$ annihilates the kernel of $\psi$ (as this is true
for $\varphi$). Thus $\varphi'$ gives rise to a morphism
$\varphi'' : \text{Im}(\psi) \to Q$ which agrees with $\varphi$
on the intersection $M \cap \text{Im}(\psi)$ by construction.
Thus $\varphi$ and $\varphi''$ glue to give an extension
of $\varphi$ to the strictly bigger module
$M' = \mathcal{F} + \text{Im}(\psi)$.
\end{proof}
\noindent
If $M$ is an $R$-module, then in general we may have a semi-complete
diagram as in
Lemma \ref{lemma-criterion-baer}.
In it, we can form the \emph{push-out}
$$
\xymatrix{
\mathfrak{a} \ar[d] \ar[r] & Q \ar[d] \\
R \ar[r] & R \oplus_{\mathfrak{a}} Q.
}
$$
Here the vertical map is injective, and the diagram commutes. The point is
that we can extend $\mathfrak{a} \to Q$ to $R$ \emph{if} we extend $Q$ to the
larger module $R \oplus_{\mathfrak{a}} Q$.
\medskip\noindent
The key point of Baer's argument is to repeat this procedure
transfinitely many times. To do this we first define, given an $R$-module
$M$ the following (huge) pushout
\begin{equation}
\label{equation-huge-diagram}
\vcenter{
\xymatrix{
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
\mathfrak{a} \ar[r] \ar[d] & M \ar[d] \\
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
R \ar[r] & \mathbf{M}(M).
}
}
\end{equation}
Here the top horizontal arrow maps the element $a \in \mathfrak a$
in the summand corresponding to $\varphi$ to the element $\varphi(a) \in M$.
The left vertical arrow maps $a \in \mathfrak a$ in the summand corresponding
to $\varphi$ simply to the element $a \in R$ in the summand corresponding
to $\varphi$. The fundamental properties of this construction are
formulated in the following lemma.
\begin{lemma}
\label{lemma-construction}
Let $R$ be a ring.
\begin{enumerate}
\item The construction $M \mapsto (M \to \mathbf{M}(M))$
is functorial in $M$.
\item The map $M \to \mathbf{M}(M)$ is injective.
\item For any ideal $\mathfrak{a}$ and any $R$-module map
$\varphi : \mathfrak a \to M$ there is an $R$-module map
$\varphi' : R \to \mathbf{M}(M)$ such that
$$
\xymatrix{
\mathfrak{a} \ar[d] \ar[r]_\varphi & M \ar[d] \\
R \ar[r]^{\varphi'} & \mathbf{M}(M)
}
$$
commutes.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (2) and (3) are immediate from the construction.
To see (1), let $\chi : M \to N$ be an $R$-module map. We claim there exists
a canonical commutative diagram
$$
\xymatrix{
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
\mathfrak{a} \ar[r] \ar[d] \ar[rrd] & M \ar[rrd]^\chi \\
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
R \ar[rrd] & &
\bigoplus_{\mathfrak a}
\bigoplus_{\psi \in \Hom_R(\mathfrak a, N)}
\mathfrak{a} \ar[r] \ar[d] & N \\
& & \bigoplus_{\mathfrak a}
\bigoplus_{\psi \in \Hom_R(\mathfrak a, N)}
R
}
$$
which induces the desired map $\mathbf{M}(M) \to \mathbf{M}(N)$.
The middle east-south-east arrow maps the summand $\mathfrak a$
corresponding to $\varphi$ via $\text{id}_{\mathfrak a}$ to the
summand $\mathfrak a$ corresponding to $\psi = \chi \circ \varphi$.
Similarly for the lower east-south-east arrow. Details omitted.
\end{proof}
\noindent
The idea will now be to apply the functor $\mathbf{M}$ a transfinite number
of times. We define for each ordinal $\alpha$ a functor $\mathbf{M}_\alpha$
on the category of $R$-modules, together with a natural injection $N \to
\mathbf{M}_\alpha(N)$. We do this by transfinite induction.
First, $\mathbf{M}_1 = \mathbf{M}$ is the functor defined above.
Now, suppose given an ordinal $\alpha$, and suppose $\mathbf{M}_{\alpha'}$
is defined for $\alpha' < \alpha$. If $\alpha$ has an immediate predecessor
$\widetilde{\alpha}$, we let
$$
\mathbf{M}_\alpha = \mathbf{M} \circ \mathbf{M}_{\widetilde{\alpha}}.
$$
If not, i.e., if $\alpha$ is a limit ordinal, we let
$$
\mathbf{M}_{\alpha}(N) =
\colim_{\alpha' < \alpha} \mathbf{M}_{\alpha'}(N).
$$
It is clear (e.g., inductively) that the $\mathbf{M}_{\alpha}(N)$
form an inductive system over ordinals, so this is reasonable.
\begin{theorem}
\label{theorem-baer-grothendieck}
Let $\kappa$ be the cardinality of the set of ideals in $R$, and
let $\alpha$ be an ordinal whose cofinality is greater than
$\kappa$. Then $\mathbf{M}_\alpha(N)$ is an injective $R$-module,
and $N \to \mathbf{M}_\alpha(N)$ is a functorial injective embedding.
\end{theorem}
\begin{proof}
By Baer's criterion
Lemma \ref{lemma-criterion-baer},
it suffices to show that if $\mathfrak{a} \subset R$ is an ideal, then
any map $f : \mathfrak{a} \to \mathbf{M}_\alpha(N)$ extends to
$R \to \mathbf{M}_\alpha(N)$. However, we know since $\alpha$ is a limit
ordinal that
$$
\mathbf{M}_{\alpha}(N) =
\colim_{\beta < \alpha} \mathbf{M}_{\beta}(N),
$$
so by
Proposition \ref{proposition-modules-are-small},
we find that
$$
\Hom_R(\mathfrak{a}, \mathbf{M}_{\alpha}(N)) =
\colim_{\beta < \alpha} \Hom_R(\mathfrak a, \mathbf{M}_{\beta}(N)).
$$
This means in particular that there is some $\beta' < \alpha$
such that $f$ factors through the submodule $\mathbf{M}_{\beta'}(N)$, as
$$
f : \mathfrak{a} \to \mathbf{M}_{\beta'}(N) \to
\mathbf{M}_{\alpha}(N).
$$
However, by the fundamental property of the functor $\mathbf{M}$,
see Lemma \ref{lemma-construction} part (3),
we know that the map $\mathfrak{a} \to \mathbf{M}_{\beta'}(N)$
can be extended to
$$
R \to \mathbf{M}( \mathbf{M}_{\beta'}(N)) =
\mathbf{M}_{\beta' + 1}(N),
$$
and the last object imbeds in $\mathbf{M}_{\alpha}(N)$ (as
$\beta' + 1 < \alpha$ since $\alpha$ is a limit ordinal).
In particular, $f$ can be extended to $\mathbf{M}_{\alpha}(N)$.
\end{proof}
\section{G-modules}
\label{section-G-modules}
\noindent
We will see later
(Differential Graded Algebra, Section \ref{dga-section-modules-noncommutative})
that the category of modules over an algebra has
functorial injective embeddings. The construction is exactly the same
as the construction in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.
\begin{lemma}
\label{lemma-G-modules}
Let $G$ be a topological group.
The category $\textit{Mod}_G$ of discrete $G$-modules, see
\'Etale Cohomology, Definition
\ref{etale-cohomology-definition-G-module-continuous}
has functorial injective hulls.
\end{lemma}
\begin{proof}
By the remark above the lemma the category $\text{Mod}_{\mathbf{Z}[G]}$
has functorial injective embeddings.
Consider the forgetful functor
$v : \textit{Mod}_G \to \text{Mod}_{\mathbf{Z}[G]}$.
This functor is fully faithful, transforms injective maps into
injective maps and has a right adjoint, namely
$$
u : M \mapsto u(M) = \{x \in M \mid \text{stabilizer of }x\text{ is open}\}
$$
Since it is true that $v(M) = 0 \Rightarrow M = 0$ we conclude by
Homology, Lemma \ref{homology-lemma-adjoint-functorial-injectives}.
\end{proof}
\section{Abelian sheaves on a space}
\label{section-abelian-sheaves-space}
\begin{lemma}
\label{lemma-abelian-sheaves-space}
Let $X$ be a topological space.
The category of abelian sheaves on $X$ has enough injectives.
In fact it has functorial injective embeddings.
\end{lemma}
\begin{proof}
For an abelian group $A$ we denote $j : A \to J(A)$ the functorial
injective embedding constructed in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.
Let $\mathcal{F}$ be an abelian sheaf on $X$.
By Sheaves, Example \ref{sheaves-example-sheaf-product-pointwise}
the assignment
$$
\mathcal{I} : U \mapsto
\mathcal{I}(U) = \prod\nolimits_{x\in U} J(\mathcal{F}_x)
$$
is an abelian sheaf. There is a canonical map $\mathcal{F} \to \mathcal{I}$
given by mapping $s \in \mathcal{F}(U)$ to $\prod_{x \in U} j(s_x)$
where $s_x \in \mathcal{F}_x$ denotes the germ of $s$ at $x$.
This map is injective, see
Sheaves, Lemma \ref{sheaves-lemma-sheaf-subset-stalks}
for example.
\medskip\noindent
It remains to prove the following: Given a rule
$x \mapsto I_x$ which assigns to each point $x \in X$ an injective
abelian group the sheaf $\mathcal{I} : U \mapsto \prod_{x \in U} I_x$
is injective. Note that
$$
\mathcal{I} = \prod\nolimits_{x \in X} i_{x, *}I_x
$$
is the product of the skyscraper sheaves $i_{x, *}I_x$ (see
Sheaves, Section \ref{sheaves-section-skyscraper-sheaves} for notation.)
We have
$$
\Mor_{\textit{Ab}}(\mathcal{F}_x, I_x)
=
\Mor_{\textit{Ab}(X)}(\mathcal{F}, i_{x, *}I_x).
$$
see Sheaves, Lemma \ref{sheaves-lemma-stalk-skyscraper-adjoint}. Hence it is
clear that each $i_{x, *}I_x$ is injective. Hence the injectivity of
$\mathcal{I}$ follows from
Homology, Lemma \ref{homology-lemma-product-injectives}.
\end{proof}
\section{Sheaves of modules on a ringed space}
\label{section-sheaves-modules-space}
\begin{lemma}
\label{lemma-sheaves-modules-space}
Let $(X, \mathcal{O}_X)$ be a ringed space, see
Sheaves, Section \ref{sheaves-section-ringed-spaces}.
The category of sheaves of $\mathcal{O}_X$-modules on $X$
has enough injectives. In fact it has functorial injective embeddings.
\end{lemma}
\begin{proof}
For any ring $R$ and any $R$-module $M$ we denote
$j : M \to J_R(M)$ the functorial
injective embedding constructed in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules on $X$.
By Sheaves, Examples \ref{sheaves-example-sheaf-product-pointwise}
and \ref{sheaves-example-sheaf-product-pointwise-algebraic-structure}
the assignment
$$
\mathcal{I} : U \mapsto
\mathcal{I}(U) = \prod\nolimits_{x\in U} J_{\mathcal{O}_{X, x}}(\mathcal{F}_x)
$$
is an abelian sheaf.
There is a canonical map $\mathcal{F} \to \mathcal{I}$
given by mapping $s \in \mathcal{F}(U)$ to $\prod_{x \in U} j(s_x)$
where $s_x \in \mathcal{F}_x$ denotes the germ of $s$ at $x$.
This map is injective, see
Sheaves, Lemma \ref{sheaves-lemma-sheaf-subset-stalks}
for example.
\medskip\noindent
It remains to prove the following: Given a rule
$x \mapsto I_x$ which assigns to each point $x \in X$ an injective
$\mathcal{O}_{X, x}$-module
the sheaf $\mathcal{I} : U \mapsto \prod_{x \in U} I_x$
is injective. Note that
$$
\mathcal{I} = \prod\nolimits_{x \in X} i_{x, *}I_x
$$
is the product of the skyscraper sheaves $i_{x, *}I_x$ (see
Sheaves, Section \ref{sheaves-section-skyscraper-sheaves} for notation.)
We have
$$
\Hom_{\mathcal{O}_{X, x}}(\mathcal{F}_x, I_x)
=
\Hom_{\mathcal{O}_X}(\mathcal{F}, i_{x, *}I_x).
$$
see Sheaves, Lemma \ref{sheaves-lemma-stalk-skyscraper-adjoint}. Hence it is
clear that each $i_{x, *}I_x$ is an injective $\mathcal{O}_X$-module
(see Homology, Lemma \ref{homology-lemma-adjoint-preserve-injectives} or argue
directly). Hence the injectivity of $\mathcal{I}$ follows from
Homology, Lemma \ref{homology-lemma-product-injectives}.
\end{proof}
\section{Abelian presheaves on a category}
\label{section-injectives-presheaves}
\noindent
Let $\mathcal{C}$ be a category. Recall that this means that
$\Ob(\mathcal{C})$ is a set. On the one hand, consider abelian
presheaves on $\mathcal{C}$, see
Sites, Section \ref{sites-section-presheaves}.
On the other hand, consider families of abelian groups
indexed by elements of $\Ob(\mathcal{C})$; in other
words presheaves on the discrete category with underlying set
of objects $\Ob(\mathcal{C})$. Let us denote this
discrete category simply $\Ob(\mathcal{C})$.
There is a natural functor
$$
i : \Ob(\mathcal{C}) \longrightarrow \mathcal{C}
$$
and hence there is a natural restriction or forgetful functor
$$
v = i^p :
\textit{PAb}(\mathcal{C})
\longrightarrow
\textit{PAb}(\Ob(\mathcal{C}))
$$
compare Sites, Section \ref{sites-section-functoriality-PSh}.
We will denote presheaves
on $\mathcal{C}$ by $B$ and presheaves on
$\Ob(\mathcal{C})$ by $A$.
\medskip\noindent
There are also two functors, namely $i_p$ and ${}_pi$
which assign an abelian presheaf on $\mathcal{C}$
to an abelian presheaf on $\Ob(\mathcal{C})$, see
Sites, Sections \ref{sites-section-functoriality-PSh} and
\ref{sites-section-more-functoriality-PSh}.
Here we will use $u = {}_pi$ which is defined (in the case at hand)
as follows:
$$
uA(U) = \prod\nolimits_{U' \to U} A(U').
$$
So an element is a family $(a_\phi)_\phi$ with $\phi$
ranging through all morphisms in $\mathcal{C}$ with target $U$.
The restriction map on $uA$ corresponding to $g : V \to U$
maps our element $(a_\phi)_\phi$ to the element
$(a_{g \circ \psi})_\psi$.
\medskip\noindent
There is a canonical surjective map $vuA \to A$ and a canonical
injective map $B \to uvB$. We leave it to the reader to show that
$$
\Mor_{\textit{PAb}(\Ob(\mathcal{C}))}(B, uA)
=
\Mor_{\textit{PAb}(\mathcal{C})}(vB, A).
$$
in this simple case; the general case is in
Sites, Section \ref{sites-section-functoriality-PSh}.
Thus the pair $(u, v)$ is an example of a pair of adjoint
functors, see
Categories, Section \ref{categories-section-adjoint}.
\medskip\noindent
At this point we can list the following facts
about the situation above.
\begin{enumerate}
\item The functors $u$ and $v$ are exact. This follows from
the explicit description of these functors given above.
\item In particular the functor $v$ transforms injective maps
into injective maps.
\item The category $\textit{PAb}(\Ob(\mathcal{C}))$
has enough injectives.
\item In fact there is a functorial injective embedding
$A \mapsto \big(A \to J(A)\big)$ as in
Homology, Definition \ref{homology-definition-functorial-injective-embedding}.
Namely, we can take $J(A)$ to be the
presheaf $U\mapsto J(A(U))$, where
$J(-)$ is the functor constructed in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}
for the ring $\mathbf{Z}$.
\end{enumerate}
Putting all of this together gives us the following procedure
for embedding objects $B$ of $\textit{PAb}(\mathcal{C}))$ into
an injective object: $B \to uJ(vB)$. See
Homology, Lemma \ref{homology-lemma-adjoint-functorial-injectives}.
\begin{proposition}
\label{proposition-presheaves-injectives}
For abelian presheaves on a category there is a functorial injective
embedding.
\end{proposition}
\begin{proof}
See discussion above.
\end{proof}
\section{Abelian Sheaves on a site}
\label{section-injectives-sheaves}
\noindent
Let $\mathcal{C}$ be a site. In this section we prove that there are
enough injectives for abelian sheaves on $\mathcal{C}$.
\medskip\noindent
Denote
$i : \textit{Ab}(\mathcal{C}) \longrightarrow \textit{PAb}(\mathcal{C})$
the forgetful functor from abelian sheaves to abelian presheaves.
Let
${}^\# : \textit{PAb}(\mathcal{C}) \longrightarrow \textit{Ab}(\mathcal{C})$
denote the sheafification functor. Recall that ${}^\#$ is a left adjoint
to $i$, that ${}^\#$ is exact, and that $i\mathcal{F}^\# = \mathcal{F}$
for any abelian sheaf $\mathcal{F}$. Finally, let
$\mathcal{G} \to J(\mathcal{G})$ denote the canonical
embedding into an injective presheaf we found in
Section \ref{section-injectives-presheaves}.
\medskip\noindent
For any sheaf $\mathcal{F}$ in $\textit{Ab}(\mathcal{C})$ and
any ordinal $\beta$ we define a sheaf
$J_\beta(\mathcal{F})$ by transfinite induction.
We set $J_0(\mathcal{F}) = \mathcal{F}$.
We define $J_1(\mathcal{F}) = J(i\mathcal{F})^\#$.
Sheafification of the canonical map $i\mathcal{F} \to J(i\mathcal{F})$
gives a functorial map
$$
\mathcal{F} \longrightarrow J_1(\mathcal{F})
$$
which is injective as $\#$ is exact. We set
$J_{\alpha + 1}(\mathcal{F}) = J_1(J_\alpha(\mathcal{F}))$.
So that there are canonical injective maps
$J_\alpha(\mathcal{F}) \to J_{\alpha + 1}(\mathcal{F})$.
For a limit ordinal $\beta$, we define
$$
J_\beta(\mathcal{F}) = \colim_{\alpha < \beta} J_\alpha(\mathcal{F}).
$$
Note that this is a directed colimit. Hence for any ordinals $\alpha < \beta$
we have an injective map $J_\alpha(\mathcal{F}) \to J_\beta(\mathcal{F})$.
\begin{lemma}
\label{lemma-map-into-next-one}
With notation as above.
Suppose that $\mathcal{G}_1 \to \mathcal{G}_2$ is an injective
map of abelian sheaves on $\mathcal{C}$. Let $\alpha$ be an ordinal
and let $\mathcal{G}_1 \to J_\alpha(\mathcal{F})$ be a morphism
of sheaves. There exists a morphism $\mathcal{G}_2 \to
J_{\alpha + 1}(\mathcal{F})$ such that the following diagram commutes
$$
\xymatrix{
\mathcal{G}_1 \ar[d] \ar[r] & \mathcal{G}_2 \ar[d] \\
J_{\alpha}(\mathcal{F}) \ar[r] & J_{\alpha + 1}(\mathcal{F}) }
$$
\end{lemma}
\begin{proof}
This is because the map $i\mathcal{G}_1 \to i\mathcal{G}_2$ is injective
and hence $i\mathcal{G}_1 \to iJ_\alpha(\mathcal{F})$ extends to
$i\mathcal{G}_2 \to J(iJ_\alpha(\mathcal{F}))$ which gives the
desired map after applying the sheafification functor.
\end{proof}
\noindent
This lemma says that somehow the system $\{J_{\alpha}(\mathcal{F})\}$
is an injective embedding of $\mathcal{F}$. Of course
we cannot take the limit over all $\alpha$ because they form a class
and not a set. However, the idea is now that you don't have to check
injectivity on all injections $\mathcal{G}_1 \to \mathcal{G}_2$, plus
the following lemma.
\begin{lemma}
\label{lemma-map-into-smaller}
Suppose that $\mathcal{G}_i$, $i\in I$ is set of abelian sheaves
on $\mathcal{C}$. There exists an ordinal $\beta$ such that
for any sheaf $\mathcal{F}$, any $i\in I$, and any map
$\varphi : \mathcal{G}_i \to J_\beta(\mathcal{F})$ there exists an
$\alpha < \beta$ such that $ \varphi $ factors through
$J_\alpha(\mathcal{F})$.
\end{lemma}
\begin{proof}
This reduces to the case of a single sheaf $\mathcal{G}$
by taking the direct sum of all the $\mathcal{G}_i$.
\medskip\noindent
Consider the sets
$$
S = \coprod\nolimits_{U \in \Ob(\mathcal{C})} \mathcal{G}(U).
$$
and
$$
T_\beta
=
\coprod\nolimits_{U \in \Ob(\mathcal{C})} J_\beta(\mathcal{F})(U)
$$
Then $T_\beta = \colim_{\alpha < \beta} T_\alpha$
with injective transition maps.
A morphism $\mathcal{G} \to J_\beta(\mathcal{F})$ factors
through $J_\alpha(\mathcal{F})$ if and only if
the associated map $S \to T_\beta$ factors through $T_\alpha$.
By
Sets, Lemma \ref{sets-lemma-map-from-set-lifts}
the cofinality of $\beta$ is bigger than the cardinality
of $S$, then the result of the lemma is true. Hence the lemma
follows from the fact that there are ordinals with arbitrarily
large cofinality, see
Sets, Proposition \ref{sets-proposition-exist-ordinals-large-cofinality}.
\end{proof}
\noindent
Recall that for an object $X$ of $\mathcal{C}$ we denote $\mathbf{Z}_X$
the presheaf of abelian groups $\Gamma(U, \mathbf{Z}_X) =
\oplus_{U \to X} \mathbf{Z}$, see
Modules on Sites, Section \ref{sites-modules-section-free-abelian-presheaf}.
The sheaf associated to this presheaf
is denoted $\mathbf{Z}_X^\#$, see
Modules on Sites, Section \ref{sites-modules-section-free-abelian-sheaf}.
It can be characterized by
the property
\begin{equation}
\label{equation-free-sheaf-on}
\Mor_{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_X^\#, \mathcal{G})
=
\mathcal{G}(X)
\end{equation}
where the element $\varphi$ of the left hand side is mapped
to $\varphi(1 \cdot \text{id}_X)$ in the right hand side. We can use these
sheaves to characterize injective abelian sheaves.
\begin{lemma}
\label{lemma-characterize-injectives}
Suppose $\mathcal{J}$ is a sheaf of abelian groups with the following
property: For all $X\in \Ob(\mathcal{C})$, for any abelian subsheaf
$\mathcal{S} \subset \mathbf{Z}_X^\#$ and any morphism
$\varphi : \mathcal{S} \to \mathcal{J}$, there exists a morphism
$\mathbf{Z}_X^\# \to \mathcal{J}$ extending $\varphi$.
Then $\mathcal{J}$ is an injective sheaf of abelian groups.
\end{lemma}
\begin{proof}
Let $\mathcal{F} \to \mathcal{G}$ be an injective map
of abelian sheaves. Suppose $\varphi : \mathcal{F} \to \mathcal{J}$
is a morphism. Arguing as in the proof of
More on Algebra, Lemma \ref{more-algebra-lemma-injective-abelian}
we see that it suffices
to prove that if $\mathcal{F} \not = \mathcal{G}$, then we
can find an abelian sheaf $\mathcal{F}'$,
$\mathcal{F} \subset \mathcal{F}' \subset \mathcal{G}$
such that (a) the inclusion $\mathcal{F} \subset \mathcal{F}'$ is strict,
and (b) $\varphi$ can be extended to $\mathcal{F}'$.
To find $\mathcal{F}'$, let $X$ be an object of $\mathcal{C}$ such
that the inclusion $\mathcal{F}(X) \subset \mathcal{G}(X)$
is strict. Pick $s \in \mathcal{G}(X)$, $s \not \in \mathcal{F}(X)$.
Let $\psi : \mathbf{Z}_X^\# \to \mathcal{G}$ be the morphism corresponding
to the section $s$ via (\ref{equation-free-sheaf-on}). Set
$\mathcal{S} = \psi^{-1}(\mathcal{F})$. By assumption the morphism
$$
\mathcal{S} \xrightarrow{\psi} \mathcal{F} \xrightarrow{\varphi} \mathcal{J}
$$
can be extended to a morphism $\varphi' : \mathbf{Z}_X^\# \to \mathcal{J}$.
Note that $\varphi'$ annihilates the kernel of $\psi$ (as this is true
for $\varphi$). Thus $\varphi'$ gives rise to a morphism
$\varphi'' : \text{Im}(\psi) \to \mathcal{J}$
which agrees with $\varphi$ on the intersection
$\mathcal{F} \cap \text{Im}(\psi)$ by construction.
Thus $\varphi$ and $\varphi''$ glue to give an extension
of $\varphi$ to the strictly bigger subsheaf
$\mathcal{F}' = \mathcal{F} + \text{Im}(\psi)$.
\end{proof}
\begin{theorem}
\label{theorem-sheaves-injectives}
The category of sheaves of abelian groups on a
site has enough injectives. In fact there exists
a functorial injective embedding, see
Homology, Definition \ref{homology-definition-functorial-injective-embedding}.
\end{theorem}
\begin{proof}
Let $\mathcal{G}_i$, $i \in I$ be a set of abelian
sheaves such that every subsheaf of every $\mathbf{Z}_X^\#$
occurs as one of the $\mathcal{G}_i$. Apply
Lemma \ref{lemma-map-into-smaller} to this collection to
get an ordinal $\beta$. We claim that for any sheaf of abelian
groups $\mathcal{F}$ the map $\mathcal{F} \to J_\beta(\mathcal{F})$
is an injection of $\mathcal{F}$ into an injective.
Note that by construction the assingment
$\mathcal{F} \mapsto \big(\mathcal{F} \to J_\beta(\mathcal{F})\big)$
is indeed functorial.
\medskip\noindent
The proof of the claim comes from the fact that by
Lemma \ref{lemma-characterize-injectives} it suffices to extend any
morphism $\gamma : \mathcal{G} \to J_\beta(\mathcal{F})$
from a subsheaf $\mathcal{G}$ of some $\mathbf{Z}_X^\#$ to all of
$\mathbf{Z}_X^\#$. Then by Lemma \ref{lemma-map-into-smaller} the
map $\gamma$ lifts into $J_\alpha(\mathcal{F})$ for some
$\alpha < \beta$. Finally, we apply Lemma \ref{lemma-map-into-next-one}
to get the desired extension of $\gamma$ to a morphism
into $J_{\alpha + 1}(\mathcal{F}) \to J_\beta(\mathcal{F})$.
\end{proof}
\section{Modules on a ringed site}
\label{section-sheaves-modules}
\noindent
Let $\mathcal{C}$ be a site.
Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$.
By analogy with
More on Algebra, Section \ref{more-algebra-section-injectives-modules}
let us try to prove that there are enough injective
$\mathcal{O}$-modules. First of all, we pick an injective
embedding
$$
\bigoplus\nolimits_{U, \mathcal{I}}
j_{U!}\mathcal{O}_U/\mathcal{I}
\longrightarrow
\mathcal{J}
$$
where $\mathcal{J}$ is an injective abelian sheaf (which
exists by the previous section). Here the direct sum is
over all objects $U$ of $\mathcal{C}$ and over all
$\mathcal{O}$-submodules $\mathcal{I} \subset j_{U!}\mathcal{O}_U$.
Please see
Modules on Sites, Section \ref{sites-modules-section-localize}
to read about the functors restriction and
extension by $0$ for the localization functor
$j_U : \mathcal{C}/U \to \mathcal{C}$.
\medskip\noindent
For any sheaf of $\mathcal{O}$-modules $\mathcal{F}$ denote
$$
\mathcal{F}^\vee
=
\SheafHom(\mathcal{F}, \mathcal{J})
$$
with its natural $\mathcal{O}$-module structure.
Insert here future reference to internal hom.
We will also need
a canonical flat resolution of a sheaf of $\mathcal{O}$-modules.
This we can do as follows: For any $\mathcal{O}$-module
$\mathcal{F}$ we denote
$$
F(\mathcal{F})
=
\bigoplus\nolimits_{U \in \Ob(\mathcal{C}), s \in \mathcal{F}(U)}
j_{U!}\mathcal{O}_U.
$$
This is a flat sheaf of $\mathcal{O}$-modules which comes equipped
with a canonical surjection $F(\mathcal{F}) \to \mathcal{F}$, see
Modules on Sites, Lemma \ref{sites-modules-lemma-module-quotient-flat}.
Moreover the construction $\mathcal{F} \mapsto F(\mathcal{F})$
is functorial in $\mathcal{F}$.
\begin{lemma}
\label{lemma-vee-exact-sheaves}
The functor $\mathcal{F} \mapsto \mathcal{F}^\vee$ is exact.
\end{lemma}
\begin{proof}
This because $\mathcal{J}$ is an injective abelian sheaf.
\end{proof}
\noindent
There is a canonical map $ev : \mathcal{F} \to (\mathcal{F}^\vee)^\vee$
given by evaluation: given $x \in \mathcal{F}(U)$ we let
$ev(x) \in (\mathcal{F}^\vee)^\vee =
\SheafHom(\mathcal{F}^\vee, \mathcal{J})$
be the map $\varphi \mapsto \varphi(x)$.
\begin{lemma}
\label{lemma-ev-injective-sheaves}
For any $\mathcal{O}$-module $\mathcal{F}$ the evaluation map
$ev : \mathcal{F} \to (\mathcal{F}^\vee)^\vee$ is injective.
\end{lemma}
\begin{proof}
You can check this using the definition of $\mathcal{J}$.
Namely, if $s \in \mathcal{F}(U)$ is not zero, then let
$j_{U!}\mathcal{O}_U \to \mathcal{F}$ be the map of
$\mathcal{O}$-modules it corresponds to via adjunction.
Let $\mathcal{I}$ be the kernel of this map. There exists
a nonzero map $\mathcal{F} \supset j_{U!}\mathcal{O}_U/\mathcal{I}
\to \mathcal{J}$ which does not annihilate $s$. As $\mathcal{J}$ is
an injective $\mathcal{O}$-module, this extends to a map
$\varphi : \mathcal{F} \to \mathcal{J}$.
Then $ev(s)(\varphi) = \varphi(s) \not = 0$ which is what we had to prove.
\end{proof}
\noindent
The canonical surjection
$F(\mathcal{F}) \to \mathcal{F}$ of $\mathcal{O}$-modules turns into a
a canonical injection, see above, of $\mathcal{O}$-modules
$$
(\mathcal{F}^\vee)^\vee \longrightarrow (F(\mathcal{F}^\vee))^\vee.
$$
Set $J(\mathcal{F}) = (F(\mathcal{F}^\vee))^\vee$.
The composition of $ev$ with this
the displayed map gives
$\mathcal{F} \to J(\mathcal{F})$ functorially in $\mathcal{F}$.
\begin{lemma}
\label{lemma-JM-injective-sheaves}
Let $\mathcal{O}$ be a sheaf of rings.
For every $\mathcal{O}$-module $\mathcal{F}$ the
$\mathcal{O}$-module $J(\mathcal{F})$ is injective.
\end{lemma}
\begin{proof}
We have to show that the functor
$\Hom_\mathcal{O}(\mathcal{G}, J(\mathcal{F}))$
is exact. Note that
\begin{eqnarray*}
\Hom_\mathcal{O}(\mathcal{G}, J(\mathcal{F}))