forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecent-spaces.tex
2806 lines (2481 loc) · 100 KB
/
decent-spaces.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Decent Algebraic Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we talk study ``local'' properties of general
algebraic spaces, i.e., those algebraic spaces which aren't quasi-separated.
Quasi-separated algebraic spaces are studied in \cite{K}.
It turns out that essentially new phenomena happen, especially
regarding points and specializations of points, on more
general algebraic spaces. On the other hand, for most basic results
on algebraic spaces, one needn't worry about these phenomena, which is why
we have decided to have this material in a separate chapter following
the standard development of the theory.
\section{Conventions}
\label{section-conventions}
\noindent
The standing assumption is that all schemes are contained in
a big fppf site $\Sch_{fppf}$. And all rings $A$ considered
have the property that $\Spec(A)$ is (isomorphic) to an
object of this big site.
\medskip\noindent
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
In this chapter and the following we will write $X \times_S X$
for the product of $X$ with itself (in the category of algebraic
spaces over $S$), instead of $X \times X$.
\section{Universally bounded fibres}
\label{section-universally-bounded}
\noindent
We briefly discuss what it means for a morphism from a scheme to an
algebraic space to have universally bounded fibres. Please refer to
Morphisms, Section \ref{morphisms-section-universally-bounded}
for similar definitions and results on morphisms of schemes.
\begin{definition}
\label{definition-universally-bounded}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$, and
let $U$ be a scheme over $S$. Let $f : U \to X$ be a morphism over $S$.
We say the {\it fibres of $f$ are universally bounded}\footnote{This is
probably nonstandard notation.}
if there exists an integer $n$ such that for all fields
$k$ and all morphisms $\Spec(k) \to X$ the fibre
product $\Spec(k) \times_X U$ is a finite scheme over $k$
whose degree over $k$ is $\leq n$.
\end{definition}
\noindent
This definition makes sense because the fibre product
$\Spec(k) \times_Y X$ is a scheme. Moreover, if $Y$ is a scheme
we recover the notion of
Morphisms, Definition \ref{morphisms-definition-universally-bounded}
by virtue of
Morphisms, Lemma \ref{morphisms-lemma-characterize-universally-bounded}.
\begin{lemma}
\label{lemma-composition-universally-bounded}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $V \to U$ be a morphism of schemes over $S$, and let
$U \to X$ be a morphism from $U$ to $X$. If the fibres of
$V \to U$ and $U \to X$ are universally bounded, then so
are the fibres of $V \to X$.
\end{lemma}
\begin{proof}
Let $n$ be an integer which works for $V \to U$, and let $m$ be
an integer which works for $U \to X$ in
Definition \ref{definition-universally-bounded}.
Let $\Spec(k) \to X$ be a morphism, where $k$ is a field.
Consider the morphisms
$$
\Spec(k) \times_X V
\longrightarrow
\Spec(k) \times_X U
\longrightarrow
\Spec(k).
$$
By assumption the scheme $\Spec(k) \times_X U$
is finite of degree at most $m$ over $k$, and $n$ is an integer which
bounds the degree of the fibres of the first morphism. Hence by
Morphisms, Lemma \ref{morphisms-lemma-composition-universally-bounded}
we conclude that $\Spec(k) \times_X V$ is finite over $k$
of degree at most $nm$.
\end{proof}
\begin{lemma}
\label{lemma-base-change-universally-bounded}
Let $S$ be a scheme.
Let $Y \to X$ be a representable morphism of algebraic spaces over $S$.
Let $U \to X$ be a morphism from a scheme to $X$.
If the fibres of $U \to X$ are universally bounded, then the fibres
of $U \times_X Y \to Y$ are universally bounded.
\end{lemma}
\begin{proof}
This is clear from the definition, and properties of fibre products.
(Note that $U \times_X Y$ is a scheme
as we assumed $Y \to X$ representable, so the definition applies.)
\end{proof}
\begin{lemma}
\label{lemma-descent-universally-bounded}
Let $S$ be a scheme. Let $g : Y \to X$ be a representable morphism of
algebraic spaces over $S$. Let $f : U \to X$ be a morphism from a scheme
towards $X$. Let $f' : U \times_X Y \to Y$ be the base change of $f$.
If
$$
\text{Im}(|f| : |U| \to |X|) \subset \text{Im}(|g| : |Y| \to |X|)
$$
and $f'$ has universally bounded fibres, then $f$ has universally
bounded fibres.
\end{lemma}
\begin{proof}
Let $n \geq 0$ be an integer bounding the degrees of the fibre
products $\Spec(k) \times_Y (U \times_X Y)$ as in
Definition \ref{definition-universally-bounded} for the morphism $f'$.
We claim that $n$ works for $f$ also. Namely, suppose that
$x : \Spec(k) \to X$ is a morphism from the spectrum of
a field. Then either $\Spec(k) \times_X U$ is empty (and there
is nothing to prove), or $x$ is in the image of $|f|$. By
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-points-cartesian}
and the assumption of the lemma we see
that this means there exists a field extension $k \subset k'$ and a
commutative diagram
$$
\xymatrix{
\Spec(k') \ar[r] \ar[d] & Y \ar[d] \\
\Spec(k) \ar[r] & X
}
$$
Hence we see that
$$
\Spec(k') \times_Y (U \times_X Y) =
\Spec(k') \times_{\Spec(k)} (\Spec(k) \times_X U)
$$
Since the scheme $\Spec(k') \times_Y (U \times_X Y)$ is assumed finite
of degree $\leq n$ over $k'$ it follows that also $\Spec(k) \times_X U$
is finite of degree $\leq n$ over $k$ as desired. (Some details omitted.)
\end{proof}
\begin{lemma}
\label{lemma-universally-bounded-permanence}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Consider a commutative diagram
$$
\xymatrix{
U \ar[rd]_g \ar[rr]_f & & V \ar[ld]^h \\
& X &
}
$$
where $U$ and $V$ are schemes. If $g$ has universally bounded fibres,
and $f$ is surjective and flat, then also $h$ has universally bounded fibres.
\end{lemma}
\begin{proof}
Assume $g$ has universally bounded fibres, and $f$ is surjective and flat.
Say $n \geq 0$ is an integer which bounds the degrees of the schemes
$\Spec(k) \times_X U$ as in
Definition \ref{definition-universally-bounded}.
We claim $n$ also works for $h$.
Let $\Spec(k) \to X$ be a morphism from the spectrum of a
field to $X$. Consider the morphism of schemes
$$
\Spec(k) \times_X V \longrightarrow \Spec(k) \times_X U
$$
It is flat and surjective. By assumption the scheme
on the left is finite of degree $\leq n$ over $\Spec(k)$.
It follows from
Morphisms, Lemma \ref{morphisms-lemma-universally-bounded-permanence}
that the degree of the scheme on the right is also bounded by $n$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-universally-bounded-finite-fibres}
Let $S$ be a scheme.
Let $X$ be an algebraic space over $S$, and let $U$ be a scheme over $S$.
Let $\varphi : U \to X$ be a morphism over $S$.
If the fibres of $\varphi$ are universally bounded, then there exists an
integer $n$ such that each fibre of $|U| \to |X|$ has at most
$n$ elements.
\end{lemma}
\begin{proof}
The integer $n$ of Definition \ref{definition-universally-bounded} works.
Namely, pick $x \in |X|$. Represent $x$ by a morphism
$x : \Spec(k) \to X$. Then we get a commutative diagram
$$
\xymatrix{
\Spec(k) \times_X U \ar[r] \ar[d] & U \ar[d] \\
\Spec(k) \ar[r]^x & X
}
$$
which shows (via
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-points-cartesian})
that the inverse image of $x$ in $|U|$ is the image of
the top horizontal arrow. Since $\Spec(k) \times_X U$ is finite
of degree $\leq n$ over $k$ it has at most $n$ points.
\end{proof}
\section{Finiteness conditions and points}
\label{section-points-monomorphisms}
\noindent
In this section we elaborate on the question of when points can be represented
by monomorphisms from spectra of fields into the space.
\begin{remark}
\label{remark-recall}
Before we give the proof of the next lemma let us recall some facts
about \'etale morphisms of schemes:
\begin{enumerate}
\item An \'etale morphism is flat and hence generalizations lift along
an \'etale morphism
(Morphisms, Lemmas \ref{morphisms-lemma-etale-flat}
and \ref{morphisms-lemma-generalizations-lift-flat}).
\item An \'etale morphism is unramified, an unramified morphism is locally
quasi-finite, hence fibres are discrete
(Morphisms, Lemmas \ref{morphisms-lemma-flat-unramified-etale},
\ref{morphisms-lemma-unramified-quasi-finite}, and
\ref{morphisms-lemma-quasi-finite-at-point-characterize}).
\item A quasi-compact \'etale morphism is quasi-finite and in particular
has finite fibres
(Morphisms, Lemmas \ref{morphisms-lemma-quasi-finite-locally-quasi-compact} and
\ref{morphisms-lemma-quasi-finite}).
\item An \'etale scheme over a field $k$ is a disjoint union of spectra
of finite separable field extension of $k$
(Morphisms, Lemma \ref{morphisms-lemma-etale-over-field}).
\end{enumerate}
For a general discussion of \'etale morphisms, please see
\'Etale Morphisms, Section \ref{etale-section-etale-morphisms}.
\end{remark}
\begin{lemma}
\label{lemma-U-finite-above-x}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $x \in |X|$. The following are equivalent:
\begin{enumerate}
\item there exists a family of schemes $U_i$ and
\'etale morphisms $\varphi_i : U_i \to X$ such that
$\coprod \varphi_i : \coprod U_i \to X$ is surjective,
and such that for each $i$ the fibre of
$|U_i| \to |X|$ over $x$ is finite, and
\item for every affine scheme $U$ and \'etale morphism $\varphi : U \to X$
the fibre of $|U| \to |X|$ over $x$ is finite.
\end{enumerate}
\end{lemma}
\begin{proof}
The implication (2) $\Rightarrow$ (1) is trivial.
Let $\varphi_i : U_i \to X$ be a family of \'etale morphisms as in (1).
Let $\varphi : U \to X$ be an \'etale morphism from an affine scheme
towards $X$. Consider the fibre product diagrams
$$
\xymatrix{
U \times_X U_i \ar[r]_-{p_i} \ar[d]_{q_i} & U_i \ar[d]^{\varphi_i} \\
U \ar[r]^\varphi & X
}
\quad \quad
\xymatrix{
\coprod U \times_X U_i \ar[r]_-{\coprod p_i} \ar[d]_{\coprod q_i} &
\coprod U_i \ar[d]^{\coprod \varphi_i} \\
U \ar[r]^\varphi & X
}
$$
Since $q_i$ is \'etale it is open (see Remark \ref{remark-recall}).
Moreover, the morphism $\coprod q_i$ is surjective.
Hence there exist finitely many indices $i_1, \ldots, i_n$ and
a quasi-compact opens $W_{i_j} \subset U \times_X U_{i_j}$
which surject onto $U$.
The morphism $p_i$ is \'etale, hence locally quasi-finite (see remark on
\'etale morphisms above). Thus we may apply
Morphisms, Lemma
\ref{morphisms-lemma-locally-quasi-finite-qc-source-universally-bounded}
to see the fibres of $p_{i_j}|_{W_{i_j}} : W_{i_j} \to U_i$ are finite.
Hence by
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-points-cartesian}
and the assumption on $\varphi_i$ we conclude that the fibre
of $\varphi$ over $x$ is finite. In other words (2) holds.
\end{proof}
\begin{lemma}
\label{lemma-R-finite-above-x}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $x \in |X|$. The following are equivalent:
\begin{enumerate}
\item there exists a scheme $U$, an \'etale morphism
$\varphi : U \to X$, and points $u, u' \in U$ mapping to
$x$ such that setting $R = U \times_X U$ the fibre of
$$
|R| \to |U| \times_{|X|} |U|
$$
over $(u, u')$ is finite,
\item for every scheme $U$, \'etale morphism $\varphi : U \to X$ and
any points $u, u' \in U$ mapping to
$x$ setting $R = U \times_X U$ the fibre of
$$
|R| \to |U| \times_{|X|} |U|
$$
over $(u, u')$ is finite,
\item there exists a morphism $\Spec(k) \to X$ with $k$ a field
in the equivalence class of $x$ such that the projections
$\Spec(k) \times_X \Spec(k) \to \Spec(k)$ are
\'etale and quasi-compact, and
\item there exists a monomorphism $\Spec(k) \to X$ with $k$ a field
in the equivalence class of $x$.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1), i.e., let $\varphi : U \to X$ be an \'etale morphism from a scheme
towards $X$, and let $u, u'$ be points of $U$ lying over $x$
such that the fibre of $|R| \to |U| \times_{|X|} |U|$ over $(u, u')$
is a finite set. In this proof we think of a point $u = \Spec(\kappa(u))$
as a scheme. Note that $u \to U$, $u' \to U$ are monomorphisms (see
Schemes, Lemma \ref{schemes-lemma-injective-points-surjective-stalks}),
hence $u \times_X u' \to R = U \times_X U$ is a monomorphism.
In this language the assumption really means that
$u \times_X u'$ is a scheme whose underlying topological space has
finitely many points.
Let $\psi : W \to X$ be an \'etale morphism from a scheme towards $X$.
Let $w, w' \in W$ be points of $W$ mapping to $x$.
We have to show that $w \times_X w'$ is a scheme whose underlying topological
space has finitely many points.
Consider the fibre product diagram
$$
\xymatrix{
W \times_X U \ar[r]_p \ar[d]_q & U \ar[d]^\varphi \\
W \ar[r]^\psi & X
}
$$
As $x$ is the image of $u$ and $u'$ we may pick points
$\tilde w, \tilde w'$ in $W \times_X U$ with $q(\tilde w) = w$,
$q(\tilde w') = w'$, $u = p(\tilde w)$ and $u' = p(\tilde w')$, see
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-points-cartesian}.
As $p$, $q$ are \'etale the field extensions
$\kappa(w) \subset \kappa(\tilde w) \supset \kappa(u)$ and
$\kappa(w') \subset \kappa(\tilde w') \supset \kappa(u')$ are
finite separable, see Remark \ref{remark-recall}.
Then we get a commutative diagram
$$
\xymatrix{
w \times_X w' \ar[d] &
\tilde w \times_X \tilde w' \ar[l] \ar[d] \ar[r] &
u \times_X u' \ar[d] \\
w \times_X w' &
\tilde w \times_S \tilde w' \ar[l] \ar[r] &
u \times_S u'
}
$$
where the squares are fibre product squares. The lower horizontal
morphisms are \'etale and quasi-compact, as any scheme of the form
$\Spec(k) \times_S \Spec(k')$ is affine, and by our
observations about the field extensions above.
Thus we see that the top horizontal arrows are \'etale and quasi-compact
and hence have finite fibres.
We have seen above that $|u \times_X u'|$ is finite, so we conclude that
$|w \times_X w'|$ is finite. In other words, (2) holds.
\medskip\noindent
Assume (2). Let $U \to X$ be an \'etale morphism from a scheme $U$
such that $x$ is in the image of $|U| \to |X|$. Let $u \in U$ be
a point mapping to $x$. Then we have seen in the previous
paragraph that $u = \Spec(\kappa(u)) \to X$ has the property that
$u \times_X u$ has a finite underlying topological space. On the other
hand, the projection maps $u \times_X u \to u$ are the composition
$$
u \times_X u \longrightarrow
u \times_X U \longrightarrow
u \times_X X = u,
$$
i.e., the composition of a monomorphism (the base change of the monomorphism
$u \to U$) by an \'etale morphism (the base change of the \'etale morphism
$U \to X$). Hence $u \times_X U$ is a disjoint union of spectra of fields
finite separable over $\kappa(u)$ (see
Remark \ref{remark-recall}). Since $u \times_X u$ is finite the image
of it in $u \times_X U$ is a finite disjoint union of spectra of fields
finite separable over $\kappa(u)$. By
Schemes, Lemma \ref{schemes-lemma-mono-towards-spec-field}
we conclude that $u \times_X u$ is a finite disjoint union of spectra
of fields finite separable over $\kappa(u)$. In other words, we see that
$u \times_X u \to u$ is quasi-compact and \'etale. This means that (3) holds.
\medskip\noindent
Let us prove that (3) implies (4). Let $\Spec(k) \to X$ be a morphism
from the spectrum of a field into $X$, in the equivalence class of $x$
such that the two projections
$t, s : R = \Spec(k) \times_X \Spec(k) \to \Spec(k)$
are quasi-compact and \'etale.
This means in particular
that $R$ is an \'etale equivalence relation on $\Spec(k)$.
By Spaces, Theorem \ref{spaces-theorem-presentation}
we know that the quotient sheaf
$X' = \Spec(k)/R$ is an algebraic space. By
Groupoids, Lemma \ref{groupoids-lemma-quotient-groupoid-restrict}
the map $X' \to X$ is a monomorphism.
Since $s, t$ are quasi-compact, we see that $R$ is quasi-compact and hence
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-point-like-spaces}
applies to $X'$, and we see that
$X' = \Spec(k')$ for some field $k'$. Hence we get a factorization
$$
\Spec(k) \longrightarrow
\Spec(k') \longrightarrow X
$$
which shows that $\Spec(k') \to X$ is a monomorphism mapping
to $x \in |X|$. In other words (4) holds.
\medskip\noindent
Finally, we prove that (4) implies (1). Let $\Spec(k) \to X$
be a monomorphism with $k$ a field in the equivalence class of $x$.
Let $U \to X$ be a surjective \'etale morphism from a scheme $U$ to $X$.
Let $u \in U$ be a point over $x$. Since $\Spec(k) \times_X u$
is nonempty, and since $\Spec(k) \times_X u \to u$ is a monomorphism
we conclude that $\Spec(k) \times_X u = u$ (see
Schemes, Lemma \ref{schemes-lemma-mono-towards-spec-field}).
Hence $u \to U \to X$ factors through $\Spec(k) \to X$, here is
a picture
$$
\xymatrix{
u \ar[r] \ar[d] & U \ar[d] \\
\Spec(k) \ar[r] & X
}
$$
Since the right vertical arrow is \'etale this implies that
$k \subset \kappa(u)$ is a finite separable extension. Hence we conclude that
$$
u \times_X u = u \times_{\Spec(k)} u
$$
is a finite scheme, and we win by the discussion of the meaning of property
(1) in the first paragraph of this proof.
\end{proof}
\begin{lemma}
\label{lemma-weak-UR-finite-above-x}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $x \in |X|$.
Let $U$ be a scheme and let $\varphi : U \to X$ be an \'etale morphism.
The following are equivalent:
\begin{enumerate}
\item $x$ is in the image of $|U| \to |X|$, and
setting $R = U \times_X U$ the fibres of both
$$
|U| \longrightarrow |X|
\quad\text{and}\quad
|R| \longrightarrow |X|
$$
over $x$ are finite,
\item there exists a monomorphism $\Spec(k) \to X$ with $k$ a field
in the equivalence class of $x$, and
the fibre product $\Spec(k) \times_X U$ is
a finite nonempty scheme over $k$.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1). This clearly implies the first condition of
Lemma \ref{lemma-R-finite-above-x} and hence we obtain a monomorphism
$\Spec(k) \to X$ in the class of $x$. Taking the fibre product
we see that $\Spec(k) \times_X U \to \Spec(k)$ is a scheme
\'etale over $\Spec(k)$ with finitely many points, hence a finite
nonempty scheme over $k$, i.e., (2) holds.
\medskip\noindent
Assume (2). By assumption $x$ is in the image of
$|U| \to |X|$. The finiteness of the fibre of
$|U| \to |X|$ over $x$ is clear since this fibre is equal to
$|\Spec(k) \times_X U|$ by
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-points-cartesian}.
The finiteness of the fibre of $|R| \to |X|$ above $x$ is also clear
since it is equal to the set underlying the scheme
$$
(\Spec(k) \times_X U) \times_{\Spec(k)} (\Spec(k) \times_X U)
$$
which is finite over $k$. Thus (1) holds.
\end{proof}
\begin{lemma}
\label{lemma-UR-finite-above-x}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $x \in |X|$. The following are equivalent:
\begin{enumerate}
\item for every affine scheme $U$, any \'etale morphism
$\varphi : U \to X$ setting $R = U \times_X U$ the fibres of both
$$
|U| \longrightarrow |X|
\quad\text{and}\quad
|R| \longrightarrow |X|
$$
over $x$ are finite,
\item there exist schemes $U_i$ and \'etale morphisms
$U_i \to X$ such that $\coprod U_i \to X$ is surjective and for each
$i$, setting $R_i = U_i \times_X U_i$ the fibres of both
$$
|U_i| \longrightarrow |X|
\quad\text{and}\quad
|R_i| \longrightarrow |X|
$$
over $x$ are finite,
\item there exists a monomorphism $\Spec(k) \to X$ with $k$ a field
in the equivalence class of $x$, and for any affine scheme $U$ and \'etale
morphism $U \to X$ the fibre product $\Spec(k) \times_X U$ is
a finite scheme over $k$, and
\item there exists a quasi-compact monomorphism $\Spec(k) \to X$
with $k$ a field in the equivalence class of $x$.
\end{enumerate}
\end{lemma}
\begin{proof}
The equivalence of (1) and (3) follows on applying
Lemma \ref{lemma-weak-UR-finite-above-x}
to every \'etale morphism $U \to X$ with $U$ affine.
It is clear that (3) implies (2).
Assume $U_i \to X$ and $R_i$ are as in (2). We conclude from
Lemma \ref{lemma-U-finite-above-x}
that for any affine scheme $U$ and \'etale morphism $U \to X$
the fibre of $|U| \to |X|$ over $x$ is finite.
Say this fibre is $\{u_1, \ldots, u_n\}$. Then, as
Lemma \ref{lemma-R-finite-above-x} (1)
applies to $U_i \to X$ for some $i$ such that $x$ is in the image of
$|U_i| \to |X|$, we see that the fibre of
$|R = U \times_X U| \to |U| \times_{|X|} |U|$
is finite over $(u_a, u_b)$, $a, b \in \{1, \ldots, n\}$.
Hence the fibre of $|R| \to |X|$ over $x$ is finite.
In this way we see that (1) holds. At this point we know that
(1), (2), and (3) are equivalent.
\medskip\noindent
If (4) holds, then for any affine scheme $U$ and \'etale morphism
$U \to X$ the scheme $\Spec(k) \times_X U$ is on the one hand
\'etale over $k$ (hence a disjoint union of spectra of finite separable
extensions of $k$ by
Remark \ref{remark-recall})
and on the other hand quasi-compact over $U$ (hence quasi-compact).
Thus we see that (3) holds.
Conversely, if $U_i \to X$ is as in (2) and $\Spec(k) \to X$
is a monomorphism as in (3), then
$$
\coprod \Spec(k) \times_X U_i
\longrightarrow
\coprod U_i
$$
is quasi-compact (because over each $U_i$ we see that
$\Spec(k) \times_X U_i$ is a finite disjoint union spectra of fields).
Thus $\Spec(k) \to X$ is quasi-compact by
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-quasi-compact-local}.
\end{proof}
\begin{lemma}
\label{lemma-U-universally-bounded}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
The following are equivalent:
\begin{enumerate}
\item there exist schemes $U_i$ and \'etale morphisms
$U_i \to X$ such that $\coprod U_i \to X$ is surjective and
each $U_i \to X$ has universally bounded fibres, and
\item for every affine scheme $U$ and \'etale morphism $\varphi : U \to X$
the fibres of $U \to X$ are universally bounded.
\end{enumerate}
\end{lemma}
\begin{proof}
The implication (2) $\Rightarrow$ (1) is trivial.
Assume (1). Let $(\varphi_i : U_i \to X)_{i \in I}$ be a collection of
\'etale morphisms from schemes towards $X$, covering $X$, such that
each $\varphi_i$ has universally bounded fibres.
Let $\psi : U \to X$ be an \'etale morphism from an affine scheme towards $X$.
For each $i$ consider the fibre product diagram
$$
\xymatrix{
U \times_X U_i \ar[r]_{p_i} \ar[d]_{q_i} & U_i \ar[d]^{\varphi_i} \\
U \ar[r]^\psi & X
}
$$
Since $q_i$ is \'etale it is open (see Remark \ref{remark-recall}).
Moreover, we have $U = \bigcup \text{Im}(q_i)$, since the family
$(\varphi_i)_{i \in I}$ is surjective. Since $U$ is affine, hence quasi-compact
we can finite finitely many $i_1, \ldots, i_n \in I$ and quasi-compact
opens $W_j \subset U \times_X U_{i_j}$ such that
$U = \bigcup p_{i_j}(W_j)$.
The morphism $p_{i_j}$ is \'etale, hence locally quasi-finite
(see remark on \'etale morphisms above). Thus we may apply
Morphisms, Lemma
\ref{morphisms-lemma-locally-quasi-finite-qc-source-universally-bounded}
to see the fibres of $p_{i_j}|_{W_j} : W_j \to U_{i_j}$ are universally
bounded. Hence by
Lemma \ref{lemma-composition-universally-bounded}
we see that the fibres of $W_j \to X$ are universally bounded.
Thus also $\coprod_{j = 1, \ldots, n} W_j \to X$ has universally
bounded fibres. Since $\coprod_{j = 1, \ldots, n} W_j \to X$ factors
through the surjective \'etale map
$\coprod q_{i_j}|_{W_j} : \coprod_{j = 1, \ldots, n} W_j \to U$ we
see that the fibres of $U \to X$ are universally bounded by
Lemma \ref{lemma-universally-bounded-permanence}.
In other words (2) holds.
\end{proof}
\begin{lemma}
\label{lemma-characterize-very-reasonable}
Let $S$ be a scheme.
Let $X$ be an algebraic space over $S$.
The following are equivalent:
\begin{enumerate}
\item there exists a Zariski covering $X = \bigcup X_i$ and for
each $i$ a scheme $U_i$ and a quasi-compact surjective \'etale
morphism $U_i \to X_i$, and
\item there exist schemes $U_i$ and \'etale morphisms $U_i \to X$
such that the projections $U_i \times_X U_i \to U_i$ are quasi-compact
and $\coprod U_i \to X$ is surjective.
\end{enumerate}
\end{lemma}
\begin{proof}
If (1) holds then the morphisms $U_i \to X_i \to X$ are \'etale (combine
Morphisms, Lemma \ref{morphisms-lemma-composition-etale}
and
Spaces, Lemmas
\ref{spaces-lemma-composition-representable-transformations-property} and
\ref{spaces-lemma-morphism-schemes-gives-representable-transformation-property}
).
Moreover, as $U_i \times_X U_i = U_i \times_{X_i} U_i$,
both projections $U_i \times_X U_i \to U_i$ are quasi-compact.
\medskip\noindent
If (2) holds then let $X_i \subset X$ be the open subspace corresponding
to the image of the open map $|U_i| \to |X|$, see
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-etale-image-open}.
The morphisms $U_i \to X_i$ are surjective.
Hence $U_i \to X_i$ is surjective \'etale, and the projections
$U_i \times_{X_i} U_i \to U_i$ are quasi-compact, because
$U_i \times_{X_i} U_i = U_i \times_X U_i$. Thus by
Spaces, Lemma \ref{spaces-lemma-representable-morphisms-spaces-property}
the morphisms $U_i \to X_i$ are quasi-compact.
\end{proof}
\section{Conditions on algebraic spaces}
\label{section-conditions}
\noindent
In this section we discuss the relationship between various natural
conditions on algebraic spaces we have seen above. Please read
Section \ref{section-reasonable-decent}
to get a feeling for the meaning of these conditions.
\begin{lemma}
\label{lemma-bounded-fibres}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Consider the following conditions on $X$:
\begin{enumerate}
\item[$(\alpha)$] For every $x \in |X|$, the equivalent conditions of
Lemma \ref{lemma-U-finite-above-x}
hold.
\item[$(\beta)$] For every $x \in |X|$, the equivalent conditions of
Lemma \ref{lemma-R-finite-above-x}
hold.
\item[$(\gamma)$] For every $x \in |X|$, the equivalent conditions of
Lemma \ref{lemma-UR-finite-above-x}
hold.
\item[$(\delta)$] The equivalent conditions of
Lemma \ref{lemma-U-universally-bounded}
hold.
\item[$(\epsilon)$] The equivalent conditions of
Lemma \ref{lemma-characterize-very-reasonable}
hold.
\item[$(\zeta)$] The space $X$ is Zariski locally quasi-separated.
\item[$(\eta)$] The space $X$ is quasi-separated
\item[$(\theta)$] The space $X$ is representable, i.e., $X$ is a scheme.
\item[$(\iota)$] The space $X$ is a quasi-separated scheme.
\end{enumerate}
We have
$$
\xymatrix{
& (\theta) \ar@{=>}[rd] & & & & \\
(\iota) \ar@{=>}[ru] \ar@{=>}[rd] & &
(\zeta) \ar@{=>}[r] &
(\epsilon) \ar@{=>}[r] &
(\delta) \ar@{=>}[r] &
(\gamma) \ar@{<=>}[r] & (\alpha) + (\beta) \\
& (\eta) \ar@{=>}[ru] & & & &
}
$$
\end{lemma}
\begin{proof}
The implication $(\gamma) \Leftrightarrow (\alpha) + (\beta)$ is immediate.
The implications in the diamond on the left are clear from the
definitions.
\medskip\noindent
Assume $(\zeta)$, i.e., that $X$ is Zariski locally quasi-separated.
Then $(\epsilon)$ holds by
Properties of Spaces, Lemma
\ref{spaces-properties-lemma-quasi-separated-quasi-compact-pieces}.
\medskip\noindent
Assume $(\epsilon)$. By
Lemma \ref{lemma-characterize-very-reasonable}
there exists
a Zariski open covering $X = \bigcup X_i$ such that for each $i$
there exists a scheme $U_i$ and a quasi-compact surjective \'etale morphism
$U_i \to X_i$. Choose an $i$ and an affine open subscheme $W \subset U_i$.
It suffices to show that $W \to X$ has universally bounded fibres, since then
the family of all these morphisms $W \to X$ covers $X$.
To do this we consider the diagram
$$
\xymatrix{
W \times_X U_i \ar[r]_-p \ar[d]_q & U_i \ar[d] \\
W \ar[r] & X
}
$$
Since $W \to X$ factors through $X_i$ we see that
$W \times_X U_i = W \times_{X_i} U_i$, and hence $q$ is quasi-compact.
Since $W$ is affine this implies that the scheme $W \times_X U_i$
is quasi-compact. Thus we may apply
Morphisms, Lemma
\ref{morphisms-lemma-locally-quasi-finite-qc-source-universally-bounded}
and we conclude that $p$ has universally bounded fibres. From
Lemma \ref{lemma-descent-universally-bounded}
we conclude that $W \to X$ has universally bounded fibres as well.
\medskip\noindent
Assume $(\delta)$. Let $U$ be an affine scheme, and let $U \to X$ be an \'etale
morphism. By assumption the fibres of the morphism $U \to X$ are universally
bounded. Thus also the fibres of both projections $R = U \times_X U \to U$
are universally bounded, see
Lemma \ref{lemma-base-change-universally-bounded}.
And by
Lemma \ref{lemma-composition-universally-bounded}
also the fibres of $R \to X$ are universally bounded.
Hence for any $x \in X$ the fibres of $|U| \to |X|$ and $|R| \to |X|$
over $x$ are finite, see
Lemma \ref{lemma-universally-bounded-finite-fibres}.
In other words, the equivalent conditions of
Lemma \ref{lemma-UR-finite-above-x}
hold. This proves that $(\delta) \Rightarrow (\gamma)$.
\end{proof}
\begin{lemma}
\label{lemma-properties-local}
Let $S$ be a scheme.
Let $\mathcal{P}$ be one of the properties
$(\alpha)$, $(\beta)$, $(\gamma)$, $(\delta)$, $(\epsilon)$, $(\zeta)$, or
$(\theta)$ of algebraic spaces listed in
Lemma \ref{lemma-bounded-fibres}.
Then if $X$ is an algebraic space over $S$, and $X = \bigcup X_i$ is a
Zariski open covering such that each $X_i$ has $\mathcal{P}$,
then $X$ has $\mathcal{P}$.
\end{lemma}
\begin{proof}
Let $X$ be an algebraic space over $S$, and let $X = \bigcup X_i$ is a
Zariski open covering such that each $X_i$ has $\mathcal{P}$.
\medskip\noindent
The case $\mathcal{P} = (\alpha)$. The condition $(\alpha)$ for $X_i$
means that for every $x \in |X_i|$ and every affine scheme $U$, and
\'etale morphism $\varphi : U \to X_i$ the fibre of $\varphi : |U| \to |X_i|$
over $x$ is finite. Consider $x \in X$, an affine scheme $U$ and
an \'etale morphism $U \to X$. Since $X = \bigcup X_i$ is a
Zariski open covering there exits a finite affine open covering
$U = U_1 \cup \ldots \cup U_n$ such that each $U_j \to X$ factors through
some $X_{i_j}$. By assumption the fibres of $|U_j | \to |X_{i_j}|$
over $x$ are finite for $j = 1, \ldots, n$. Clearly this means that
the fibre of $|U| \to |X|$ over $x$ is finite.
This proves the result for $(\alpha)$.
\medskip\noindent
The case $\mathcal{P} = (\beta)$. The condition $(\beta)$ for $X_i$ means
that every $x \in |X_i|$ is represented by a monomorphism from the
spectrum of a field towards $X_i$. Hence the same follows for $X$
as $X_i \to X$ is a monomorphism and $X = \bigcup X_i$.
\medskip\noindent
The case $\mathcal{P} = (\gamma)$.
Note that $(\gamma) = (\alpha) + (\beta)$ by
Lemma \ref{lemma-bounded-fibres}
hence the lemma for $(\gamma)$ follows from the cases treated above.
\medskip\noindent
The case $\mathcal{P} = (\delta)$. The condition $(\delta)$ for $X_i$ means
there exist schemes $U_{ij}$ and \'etale morphisms $U_{ij} \to X_i$ with
universally bounded fibres which cover $X_i$. These schemes also give an
\'etale surjective morphism $\coprod U_{ij} \to X$ and $U_{ij} \to X$
still has universally bounded fibres.
\medskip\noindent
The case $\mathcal{P} = (\epsilon)$. The condition $(\epsilon)$ for $X_i$ means
we can find a set $J_i$ and morphisms
$\varphi_{ij} : U_{ij} \to X_i$ such that each $\varphi_{ij}$
is \'etale, both projections $U_{ij} \times_{X_i} U_{ij} \to U_{ij}$
are quasi-compact, and $\coprod_{j \in J_i} U_{ij} \to X_i$ is surjective.
In this case the compositions $U_{ij} \to X_i \to X$ are \'etale
(combine
Morphisms, Lemmas
\ref{morphisms-lemma-composition-etale} and
\ref{morphisms-lemma-open-immersion-etale}
and
Spaces, Lemmas
\ref{spaces-lemma-composition-representable-transformations-property} and
\ref{spaces-lemma-morphism-schemes-gives-representable-transformation-property}
).
Since $X_i \subset X$ is a subspace we see that
$U_{ij} \times_{X_i} U_{ij} = U_{ij} \times_X U_{ij}$, and hence the
condition on fibre products is preserved. And clearly
$\coprod_{i, j} U_{ij} \to X$ is surjective. Hence $X$
satisfies $(\epsilon)$.
\medskip\noindent
The case $\mathcal{P} = (\zeta)$. The condition $(\zeta)$ for $X_i$
means that $X_i$ is Zariski locally quasi-separated. It is immediately
clear that this means $X$ is Zariski locally quasi-separated.
\medskip\noindent
For $(\theta)$, see
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-subscheme}.
\end{proof}
\begin{lemma}
\label{lemma-representable-properties}
Let $S$ be a scheme. Let $\mathcal{P}$ be one of the properties
$(\beta)$, $(\gamma)$, $(\delta)$, $(\epsilon)$, or
$(\theta)$ of algebraic spaces listed in
Lemma \ref{lemma-bounded-fibres}.
Let $X$, $Y$ be algebraic spaces over $S$.
Let $X \to Y$ be a representable morphism.
If $Y$ has property $\mathcal{P}$, so does $X$.
\end{lemma}
\begin{proof}
Assume $f : X \to Y$ is a representable morphism of algebraic spaces,
and assume that $Y$ has $\mathcal{P}$. Let $x \in |X|$, and set
$y = f(x) \in |Y|$.
\medskip\noindent
The case $\mathcal{P} = (\beta)$. Condition $(\beta)$ for $Y$ means
there exists a monomorphism $\Spec(k) \to Y$ representing $y$.
The fibre product $X_y = \Spec(k) \times_Y X$ is a scheme, and
$x$ corresponds to a point of $X_y$, i.e., to a monomorphism
$\Spec(k') \to X_y$. As $X_y \to X$ is a monomorphism also we see
that $x$ is represented by the monomorphism $\Spec(k') \to X_y \to X$.
In other words $(\beta)$ holds for $X$.
\medskip\noindent
The case $\mathcal{P} = (\gamma)$. Since $(\gamma) \Rightarrow (\beta)$
we have seen in the preceding paragraph that $y$ and $x$ can be represented
by monomorphisms as in the following diagram
$$
\xymatrix{
\Spec(k') \ar[r]_-x \ar[d] & X \ar[d] \\
\Spec(k) \ar[r]^-y & Y
}
$$
Also, by definition of property $(\gamma)$ via
Lemma \ref{lemma-UR-finite-above-x} (2)
there exist schemes
$V_i$ and \'etale morphisms $V_i \to Y$ such that $\coprod V_i \to Y$
is surjective and for each $i$, setting $R_i = V_i \times_Y V_i$
the fibres of both
$$
|V_i| \longrightarrow |Y|
\quad\text{and}\quad
|R_i| \longrightarrow |Y|
$$
over $y$ are finite. This means that the schemes
$(V_i)_y$ and $(R_i)_y$ are finite schemes over $y = \Spec(k)$.
As $X \to Y$ is representable, the fibre products $U_i = V_i \times_Y X$
are schemes. The morphisms $U_i \to X$ are \'etale, and
$\coprod U_i \to X$ is surjective. Finally, for each $i$ we have
$$
(U_i)_x =
(V_i \times_Y X)_x =
(V_i)_y \times_{\Spec(k)} \Spec(k')
$$
and
$$
(U_i \times_X U_i)_x =
\left((V_i \times_Y X) \times_X (V_i \times_Y X)\right)_x =
(R_i)_y \times_{\Spec(k)} \Spec(k')
$$
hence these are finite over $k'$ as base changes of the finite
schemes $(V_i)_y$ and $(R_i)_y$. This implies that $(\gamma)$ holds for $X$,
again via the second condition of
Lemma \ref{lemma-UR-finite-above-x}.
\medskip\noindent
The case $\mathcal{P} = (\delta)$. Let $V \to Y$ be an \'etale morphism with
$V$ an affine scheme. Since $Y$ has property $(\delta)$ this morphism has
universally bounded fibres. By
Lemma \ref{lemma-base-change-universally-bounded}
the base change $V \times_Y X \to X$ also has universally bounded fibres.
Hence the first part of
Lemma \ref{lemma-U-universally-bounded}
applies and we see that $Y$ also has property $(\delta)$.
\medskip\noindent
The case $\mathcal{P} = (\epsilon)$. We will repeatedly use
Spaces, Lemma
\ref{spaces-lemma-base-change-representable-transformations-property}.
Let $V_i \to Y$ be as in
Lemma \ref{lemma-characterize-very-reasonable} (2).
Set $U_i = X \times_Y V_i$. The morphisms $U_i \to X$ are \'etale,
and $\coprod U_i \to X$ is surjective. Because
$U_i \times_X U_i = X \times_Y (V_i \times_Y V_i)$ we see
that the projections $U_i \times_Y U_i \to U_i$ are
base changes of the projections $V_i \times_Y V_i \to V_i$, and so
quasi-compact as well. Hence $X$ satisfies
Lemma \ref{lemma-characterize-very-reasonable} (2).
\medskip\noindent
The case $\mathcal{P} = (\theta)$. In this case the result is
Categories, Lemma \ref{categories-lemma-representable-over-representable}.
\end{proof}
\section{Reasonable and decent algebraic spaces}
\label{section-reasonable-decent}
\noindent
In
Lemma \ref{lemma-bounded-fibres}
we have seen a number of conditions on algebraic spaces related to
the behaviour of \'etale morphisms from affine schemes into $X$
and related to the existence of special \'etale coverings of $X$ by
schemes. We tabulate the different types of conditions here:
$$
\fbox{
$
\begin{matrix}
(\alpha) & \text{fibres of etale morphisms from affines are finite}
\hfill \\
(\beta) & \text{points come from monomorphisms of spectra of fields}
\hfill \\
(\gamma) & \text{points come from quasi-compact monomorphisms of
spectra of fields}
\hfill \\
(\delta) & \text{fibres of etale morphisms from affines are universally
bounded}
\hfill \\
(\epsilon) & \text{cover by etale morphisms from schemes quasi-compact
onto their image} \hfill
\end{matrix}
$
}
$$