forked from ICB-DCM/PESTO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetMultiStarts.m
642 lines (574 loc) · 29 KB
/
getMultiStarts.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
function [parameters,fh] = getMultiStarts(parameters, objective_function, varargin)
% getMultiStarts() computes the maximum a posterior estimate of the
% parameters of a user-supplied posterior function. Therefore, a
% multi-start local optimization is used. The parameters from the best
% value of the posterior function arethen used as the global optimum.
% To ensure that the found maximum is a global one, a sufficiently high
% number of multistarts must be done. Those starts can be initialized with
% either randomly sampled parameter values, following either a uniform
% distribution or a latin hypercube, or they can be sampled by a user
% provided initial function (provided as option.init_fun).
%
% Note: This function can exploit up to (n_start + 1) workers when running
% in 'parallel' mode.
%
% USAGE:
% * [...] = getMultiStarts(parameters,objective_function)
% * [...] = getMultiStarts(parameters,objective_function,options)
% * [parameters,fh] = getMultiStarts(...)
%
% getMultiStarts() uses the following PestoOptions members:
% * PestoOptions::start_index
% * PestoOptions::n_starts
% * PestoOptions::mode
% * PestoOptions::fh
% * PestoOptions::fmincon
% * PestoOptions::proposal
% * PestoOptions::save
% * PestoOptions::foldername
% * PestoOptions::trace
% * PestoOptions::comp_type
% * PestoOptions::tempsave
% * PestoOptions::resetobjective
% * PestoOptions::obj_type
% * PestoOptions::init_threshold
% * PestoOptions::plot_options
%
% Parameters:
% parameters: parameter struct
% objective_function: objective function to be optimized.
% This function should accept one input, the parameter vector.
% varargin:
% options: A PestoOptions object holding various options for the
% algorithm.
%
% Required fields of parameters:
% number: Number of parameters
% min: Lower bound for each parameter
% max: upper bound for each parameter
% name = {'name1', ...}: names of the parameters
% guess: initial guess for the parameters (Optional, will be initialized
% empty if not provided)
% init_fun: function to draw starting points for local optimization, must
% have the structure init_fun(theta_0, theta_min, theta_max).
% (Only required if proposal == 'user-supplied')
%
% Return values:
% parameters: updated parameter object
% fh: figure handle
%
% Generated fields of parameters:
% MS: information about multi-start optimization
% * par0(:,i): starting point yielding ith MAP
% * par(:,i): ith MAP
% * logPost(i): log-posterior for ith MAP
% * logPost0(i): log-posterior for starting point yielding ith MAP
% * gradient(_,i): gradient of log-posterior at ith MAP
% * hessian(:,:,i): hessian of log-posterior at ith MAP
% * n_objfun(i): # objective evaluations used to calculate ith MAP
% * n_iter(i): # iterations used to calculate ith MAP
% * t_cpu(i): CPU time for calculation of ith MAP
% * exitflag(i): exitflag the optimizer returned for ith MAP
% * par_trace(:,:,i): parameter trace for ith MAP
% (if options.trace == true)
% * fval_trace(:,i): objective function value trace for ith MAP
% (if options.trace == true)
% * time_trace(:,i): computation time trace for ith MAP
% (if options.trace == true)
%
% History:
% * 2012/05/31 Jan Hasenauer
% * 2012/07/11 Jan Hasenauer
% * 2014/06/11 Jan Hasenauer
% * 2015/07/28 Fabian Froehlich
% * 2015/11/10 Fabian Froehlich
% * 2016/06/07 Paul Stapor
% * 2016/10/04 Daniel Weindl
% * 2016/12/04 Paul Stapor
global error_count
%% Check inputs
if length(varargin) >= 1
options = handleOptionArgument(varargin{1});
else
options = PestoOptions();
end
if isempty(options.start_index)
options.start_index = 1:options.n_starts;
end
parameters = parametersSanityCheck(parameters);
if strcmp(options.localOptimizer, 'fmincon')
options.localOptimizerOptions.MaxFunEvals = 400*parameters.number;
end
%% Initialization and figure generation
fh = [];
switch options.mode
case 'visual'
if isempty(options.fh)
fh = figure('Name', 'getMultiStarts');
else
fh = figure(options.fh);
end
case 'text'
fprintf(' \nOptimization:\n=============\n');
case 'silent' % no output
% Force fmincon to be silent.
if strcmp(options.localOptimizer, 'fmincon')
options.localOptimizerOptions.Display = 'off';
end
end
%% Sampling of starting points
switch options.proposal
case 'latin hypercube'
% Sampling from latin hypercube
par0 = [parameters.guess,...
bsxfun(@plus,parameters.min,bsxfun(@times,parameters.max - parameters.min,...
lhsdesign(options.n_starts - size(parameters.guess,2),parameters.number,'smooth','off')'))];
case 'uniform'
% Sampling from uniform distribution
par0 = [parameters.guess,...
bsxfun(@plus,parameters.min,bsxfun(@times,parameters.max - parameters.min,...
rand(parameters.number,options.n_starts - size(parameters.guess,2))))];
case 'user-supplied'
% Sampling from user-supplied function
if (~isfield(parameters, 'init_fun') || isempty(parameters.init_fun))
if size(parameters.guess,2) < options.n_starts
error('You did not define an initial function and do not provide enough starting points in parameters.guess. Aborting.');
else
par0 = [parameters.guess(:,1:options.n_starts)];
end
else
par0 = [parameters.guess,...
parameters.init_fun(parameters.guess,parameters.min,parameters.max,options.n_starts - size(parameters.guess,2))];
end
end
parameters.MS.n_starts = options.n_starts;
parameters.MS.par0 = par0(:,options.start_index);
%% Preparation of folder
if or(options.save,options.tempsave)
if(~exist(fullfile(pwd,options.foldername),'dir'))
mkdir(fullfile(pwd,options.foldername))
end
% only save the init mat for the first start index, not every one if they are called seperately
if(and(options.save,~isempty(find(options.start_index==1))))
save([options.foldername '/init'],'parameters','-v7.3');
end
end
%% Initialization
if strcmp(options.localOptimizer, 'fmincon') || strcmp(options.localOptimizer, 'pswarm')
maxOptimSteps = options.localOptimizerOptions.MaxIter;
elseif strcmp(options.localOptimizer, 'meigo-ess') || strcmp(options.localOptimizer, 'meigo-vns')
maxOptimSteps = options.localOptimizerOptions.maxeval;
end
parameters.MS.par = nan(parameters.number,length(options.start_index));
parameters.MS.logPost0 = nan(length(options.start_index),1);
parameters.MS.logPost = nan(length(options.start_index),1);
parameters.MS.gradient = nan(parameters.number,length(options.start_index));
parameters.MS.hessian = nan(parameters.number,parameters.number,length(options.start_index));
parameters.MS.n_objfun = nan(length(options.start_index),1);
parameters.MS.n_iter = nan(length(options.start_index),1);
parameters.MS.t_cpu = nan(length(options.start_index),1);
parameters.MS.exitflag = nan(length(options.start_index),1);
parameters.MS.AIC = nan(length(options.start_index),1);
parameters.MS.BIC = nan(length(options.start_index),1);
if(options.trace)
parameters.MS.par_trace = nan(parameters.number,maxOptimSteps+1,length(options.start_index));
parameters.MS.fval_trace = nan(maxOptimSteps+1,length(options.start_index));
parameters.MS.time_trace = nan(maxOptimSteps+1,length(options.start_index));
end
% Define the negative log-posterior funtion
% (fmincon needs the neagtive log posterior for optimization)
negLogPost = setObjectiveWrapper(objective_function, options, 'negative log-posterior', [], [], true, true);
% Check, if Hessian should be used and if a Hessian function was set,
% otherwise use the third output of the objective function instead
if (strcmp(options.localOptimizer, 'fmincon') && ...
strcmp(options.localOptimizerOptions.Hessian, 'on'))
if (~isfield(options.localOptimizerOptions, 'HessFcn') ...
|| isempty(options.localOptimizerOptions.HessFcn))
% this only works for box-constraints at the moment
options.localOptimizerOptions.HessFcn = @(varargin) HessianWrap(negLogPost, varargin);
end
end
waitbarFields1 = {'logPost', 'logPost0', 'n_objfun', 'n_iter', 't_cpu', 'exitflag'};
waitbarFields2 = {'par', 'par0', 'gradient', 'fval_trace', 'time_trace'};
waitbarFields3 = {'hessian', 'par_trace'};
%% Multi-start local optimization -- SEQUENTIAL
if strcmp(options.comp_type, 'sequential')
% Matlab parallel toolbox seems to have problems with our outfun...
if strcmp(options.localOptimizer, 'fmincon')
options.localOptimizerOptions.OutputFcn = @outfun_fmincon;
end
% initialize the waitbar
if(strcmp(options.mode,'visual'))
waitBar = waitbar(0, '1', 'name', 'Parameter estimation in process, please wait...', 'CreateCancelBtn', 'setappdata(gcbf, ''canceling'', 1)');
stringTimePrediction = updateWaitBar(nan);
waitbar(0, waitBar, stringTimePrediction);
C = onCleanup(@() delete(waitBar));
end
% Loop: Multi-starts
for iMS = 1 : length(options.start_index)
% reset the objective function
if(options.resetobjective)
fun = functions(objective_function);
s_start = strfind(fun.function,')')+1;
s_end = strfind(fun.function,'(')-1;
clear(fun.function(s_start(1):s_end(2)));
end
% Reset error count
error_count = 0;
% Test evaluation of objective function at starting point
% Only for multi-start local, since other optimizers use a
% different initialization
if (strcmp(options.localOptimizer, 'fmincon'))
if (strcmp(options.localOptimizerOptions.Hessian, 'on'))
% Depending on the algorithm, the Hessian gets called
% seperately (IP) or with the objective function (TR), so
% different cases have to be checked.
if strcmp(options.localOptimizerOptions.Algorithm, 'interior-point')
[J_0,~] = negLogPost(parameters.MS.par0(:,iMS));
else
[J_0,~,~] = negLogPost(parameters.MS.par0(:,iMS));
end
elseif (strcmp(options.localOptimizerOptions.GradObj, 'on'))
[J_0,~] = negLogPost(parameters.MS.par0(:,iMS));
else
J_0 = negLogPost(parameters.MS.par0(:,iMS));
end
parameters.MS.logPost0(iMS) = -J_0;
else
J_0 = [];
end
% Optimization
startTimeLocalOptimization = cputime;
if (isempty(J_0) || (J_0 < -options.init_threshold))
if strcmp(options.localOptimizer, 'fmincon')
%% fmincon as local optimizer
% Optimization using fmincon
[theta,J_opt,parameters.MS.exitflag(iMS),results_fmincon,~,gradient_opt,hessian_opt] = ...
fmincon(negLogPost,... % negative log-likelihood function
parameters.MS.par0(:,iMS),... % initial parameter
parameters.constraints.A ,parameters.constraints.b ,... % linear inequality constraints
parameters.constraints.Aeq,parameters.constraints.beq,... % linear equality constraints
parameters.min,... % lower bound
parameters.max,... % upper bound
[],options.localOptimizerOptions); % options
% Assignment of results
parameters.MS.logPost0(1, iMS) = -J_0;
parameters.MS.logPost(iMS) = -J_opt;
parameters.MS.par(:,iMS) = theta;
parameters.MS.gradient(:,iMS) = gradient_opt;
if isempty(hessian_opt)
if strcmp(options.localOptimizerOptions.Hessian,'on')
[~,~,hessian_opt] = negLogPost(theta); % objectiveWrap(theta,objective_function,options.obj_type,options.objOutNumber);
end
elseif max(hessian_opt(:)) == 0
if strcmp(options.localOptimizerOptions.Hessian,'on')
[~,~,hessian_opt] = negLogPost(theta); % objectiveWrap(theta,objective_function,options.obj_type,options.objOutNumber);
end
end
parameters.MS.n_objfun(iMS) = results_fmincon.funcCount;
parameters.MS.n_iter(iMS) = results_fmincon.iterations;
parameters.MS.AIC(iMS) = 2*parameters.number + 2*J_opt;
if ~isempty(options.nDatapoints)
parameters.MS.BIC(iMS) = log(options.nDatapoints)*parameters.number + 2*J_opt;
end
try
parameters.MS.hessian(:,:,iMS) = full(hessian_opt);
catch err_msg
warning(['Error in assigning final Hessian matrix. Original errror message: ' err_msg.message]);
end
elseif strcmp(options.localOptimizer, 'meigo-ess') || strcmp(options.localOptimizer, 'meigo-vns')
%% Use MEIGO as local optimizer
if ~exist('MEIGO', 'file')
error('MEIGO not found. This feature requires the "MEIGO" toolbox to be installed. See http://gingproc.iim.csic.es/meigo.html for download and installation instructions.');
end
problem.f = 'meigoDummy';
problem.x_L = parameters.min;
problem.x_U = parameters.max;
problem.x_0 = parameters.MS.par0(:,iMS);
meigoAlgo = 'ESS';
if strcmp(options.localOptimizer, 'meigo-vns')
meigoAlgo = 'VNS';
end
objFunHandle = @(theta) negLogPost(theta');
Results = MEIGO(problem, options.localOptimizerOptions, meigoAlgo, objFunHandle);
%TODO
% parameters.constraints.A ,parameters.constraints.b ,... % linear inequality constraints
% parameters.constraints.Aeq,parameters.constraints.beq,... % linear equality constraints
parameters.MS.logPost0(1, iMS) = nan;
parameters.MS.logPost(iMS) = -Results.fbest;
parameters.MS.par(:,iMS) = Results.xbest;
parameters.MS.n_objfun(iMS) = Results.numeval;
parameters.MS.n_iter(iMS) = size(Results.neval, 2);
parameters.MS.AIC(iMS) = 2*parameters.number + 2*J_opt;
if ~isempty(options.nDatapoints)
parameters.MS.BIC(iMS) = log(options.nDatapoints)*parameters.number + 2*J_opt;
end
[~, G_opt, H_opt] = negLogPost(parameters.MS.par(:,iMS),objective_function,options.obj_type,options.objOutNumber);
parameters.MS.hessian(:,:,iMS) = H_opt;
parameters.MS.gradient(:,iMS) = G_opt;
%% Output
switch options.mode
case {'visual','text'}, disp(['-> Optimization FINISHED (MEIGO exit code: ' num2str(Results.end_crit) ').']);
case 'silent' % no output
end
elseif strcmp(options.localOptimizer, 'pswarm')
%% Use PSwarm as local optimizer
if ~exist('PSwarm', 'file')
error('PSwarm not found. This feature requires the "PSwarm" toolbox to be installed. See http://www.norg.uminho.pt/aivaz/pswarm/ for download and installation instructions.');
end
problem = struct();
problem.ObjFunction= 'meigoDummy';
problem.LB = parameters.min;
problem.UB = parameters.max;
problem.A = parameters.constraints.A;
problem.b = parameters.constraints.b;
objFunHandle = @(theta) negLogPost(theta);
[theta,bestLogPost,RunData] = PSwarm(problem, struct('x', parameters.MS.par0(:,iMS)), options.localOptimizerOptions, objFunHandle);
parameters.MS.logPost0(1, iMS) = nan;
parameters.MS.logPost(iMS) = -bestLogPost;
parameters.MS.par(:,iMS) = theta;
parameters.MS.n_objfun(iMS) = RunData.ObjFunCounter;
parameters.MS.n_iter(iMS) = RunData.IterCounter;
parameters.MS.AIC(iMS) = 2*parameters.number + 2*J_opt;
if ~isempty(options.nDatapoints)
parameters.MS.BIC(iMS) = log(options.nDatapoints)*parameters.number + 2*J_opt;
end
[~, G_opt, H_opt] = negLogPost(parameters.MS.par(:,iMS),objective_function,options.obj_type,options.objOutNumber);
parameters.MS.hessian(:,:,iMS) = H_opt;
parameters.MS.gradient(:,iMS) = G_opt;
end
end
parameters.MS.t_cpu(iMS) = cputime - startTimeLocalOptimization;
% Save
if options.save
saveResults(parameters,options,iMS)
end
% Output
switch options.mode
case 'visual', fh = plotMultiStarts(parameters,fh,options.plot_options);
case 'text', disp([' ' num2str(iMS,'%d') '/' num2str(length(options.start_index),'%d')]);
case 'silent' % no output
end
% Abort the calculation if the waitbar is cancelled
if(strcmp(options.mode,'visual'))
if getappdata(waitBar, 'canceling')
parameters.MS.n_starts = iMS;
for iWaitbarField = 1:6
parameters.MS.(waitbarFields1{iWaitbarField}) = ...
parameters.MS.(waitbarFields1{iWaitbarField})(1:iMS, :);
end
for iWaitbarField = 1:5
if (isfield(parameters.MS, waitbarFields2{iWaitbarField}))
parameters.MS.(waitbarFields2{iWaitbarField}) = ...
parameters.MS.(waitbarFields2{iWaitbarField})(:, 1:iMS);
end
end
for iWaitbarField = 1:2
if (isfield(parameters.MS, waitbarFields3{iWaitbarField}))
parameters.MS.(waitbarFields3{iWaitbarField}) = ...
parameters.MS.(waitbarFields3{iWaitbarField})(:, :, 1:iMS);
end
end
break;
end
end
% update the waitbar
if(strcmp(options.mode,'visual'))
stringTimePrediction = updateWaitBar(nanmedian(parameters.MS.t_cpu(1:iMS)) * (length(options.start_index) - iMS));
waitbar(iMS / length(options.start_index), waitBar, stringTimePrediction);
end
end
% Assignment
parameters = sortMultiStarts(parameters);
end
%% Multi-start local optimization -- PARALLEL
if strcmp(options.comp_type,'parallel')
% Initialization
par = nan(parameters.number,length(options.start_index));
logPost0 = nan(length(options.start_index),1);
logPost = nan(length(options.start_index),1);
gradient = nan(parameters.number,length(options.start_index));
hessian = nan(parameters.number,parameters.number,length(options.start_index));
n_objfun = nan(length(options.start_index),1);
n_iter = nan(length(options.start_index),1);
t_cpu = nan(length(options.start_index),1);
exitflag = nan(length(options.start_index),1);
% reset the objective function
if(options.resetobjective)
fun = functions(objective_function);
s_start = strfind(fun.function,')')+1;
s_end = strfind(fun.function,'(')-1;
clear(fun.function(s_start(1):s_end(2)));
end
% Loop: Mutli-starts
parfor iMS = options.start_index
% Evaluation of objective function at starting point
if (~strcmp(options.localOptimizerOptions.GradObj, 'on'))
J_0 = objectiveWrap(parameters.MS.par0(:,iMS),objective_function,options.obj_type,options.objOutNumber);
elseif (strcmp(options.localOptimizerOptions.GradObj, 'on') && ~strcmp(options.localOptimizerOptions.Hessian,'on'))
[J_0,grad_J_0] = objectiveWrap(parameters.MS.par0(:,iMS),objective_function,options.obj_type,options.objOutNumber);
else
[J_0,grad_J_0,H_J_0] = objectiveWrap(parameters.MS.par0(:,iMS),objective_function,options.obj_type,options.objOutNumber);
end
logPost0(iMS) = -J_0;
% Optimization
startTimeLocalOptimization = cputime;
if J_0 < -options.init_threshold
% Optimization using fmincon
[theta,J_opt,exitflag(iMS),results_fmincon,~,gradient_opt,hessian_opt] = ...
fmincon(@(theta) objectiveWrap(theta,objective_function,options.obj_type,options.objOutNumber),... % negative log-posterior function
parameters.MS.par0(:,iMS),... % initial parameter
parameters.constraints.A ,parameters.constraints.b ,... % linear inequality constraints
parameters.constraints.Aeq,parameters.constraints.beq,... % linear equality constraints
parameters.min,... % lower bound
parameters.max,... % upper bound
[],options.localOptimizerOptions); % options
% Assignment
logPost(iMS) = -J_opt;
par(:,iMS) = theta;
gradient(:,iMS) = gradient_opt;
if isempty(hessian_opt)
if strcmp(options.localOptimizerOptions.Hessian,'on')
[~,~,hessian_opt] = objectiveWrap(theta,objective_function,options.obj_type,options.objOutNumber);
end
elseif max(abs(hessian_opt(:))) == 0
if strcmp(options.localOptimizerOptions.Hessian,'on')
[~,~,hessian_opt] = objectiveWrap(theta,objective_function,options.obj_type,options.objOutNumber);
end
end
hessian(:,:,iMS) = full(hessian_opt);
n_objfun(iMS) = results_fmincon.funcCount;
n_iter(iMS) = results_fmincon.iterations;
end
t_cpu(iMS) = cputime - startTimeLocalOptimization;
% Save
if options.save
saveResults(parameters,options,iMS)
end
% Output
switch options.mode
case 'text', disp([' ' num2str(iMS,'%d') '/' num2str(length(options.start_index),'%d')]);
case {'silent','visual'} % no output
end
end
% Assignment
parameters.MS.par0 = par0;
parameters.MS.par = par;
parameters.MS.logPost0 = logPost0;
parameters.MS.logPost = logPost;
parameters.MS.gradient = gradient;
parameters.MS.hessian = hessian;
parameters.MS.n_objfun = n_objfun;
parameters.MS.n_iter = n_iter;
parameters.MS.t_cpu = t_cpu;
parameters.MS.exitflag = exitflag;
parameters = sortMultiStarts(parameters);
% Output
switch options.mode
case 'visual', fh = plotMultiStarts(parameters,fh,options.plot_options);
case {'text','silent'} % no output
end
end
%% Output
switch options.mode
case {'visual','text'}, disp('-> Multi-start optimization FINISHED.');
case 'silent' % no output
end
% Clear Output Function
options.localOptimizerOptions.OutputFcn = [];
%% Nested function for storing of objective function and parameter values
function stop = outfun_fmincon(x,optimValues,state)
switch state
case 'init'
% do nothing
case 'interrupt'
% do nothing
case 'iter'
if(options.trace)
parameters.MS.par_trace(:,optimValues.iteration+1,iMS) = x;
parameters.MS.fval_trace(optimValues.iteration+1,iMS) = optimValues.fval;
parameters.MS.time_trace(optimValues.iteration+1,iMS) = cputime - startTimeLocalOptimization;
end
if(options.tempsave)
if optimValues.iteration>0
if(mod(optimValues.iteration,10) == 0)
saveResults(parameters,options,iMS);
end
end
end
case 'done'
% do nothing
end
if error_count <= 20
stop = false;
else
warning('Too many failed objective function evaluations.')
stop = true;
end
end
end
%% Waitbar Update
function stringTimePrediction = updateWaitBar(timePredicted)
% stringTimePrediction estimates the remaining time to display in the waitbar
%
% Parameters:
% timePredicted: Predicted time in seconds
%
% Return values:
% stringTimePrediction: String, Updating Message
if isnan(timePredicted)
stringTimePrediction = 'Unknown.';
elseif (timePredicted < 60)
stringTimePrediction = 'One minute or less...';
elseif (timePredicted >= 60 && timePredicted < 3600)
stringTimePrediction = ['About ' num2str(round(timePredicted/60)) + 1 ' minutes'];
elseif (timePredicted >= 3600 && timePredicted < 72000)
hours = floor(timePredicted/3600);
minutes = round((timePredicted - 3600*hours) / 600) * 10;
if (hours == 1)
stringTimePrediction = ['About 1 hour'];
else
stringTimePrediction = ['About ' num2str(hours) ' hours'];
end
if (minutes == 0)
stringTimePrediction = strcat(stringTimePrediction, '...');
else
stringTimePrediction = strcat(stringTimePrediction, [' and ' num2str(minutes) ' minutes...']);
end
elseif (timePredicted >= 72000 && timePredicted < 36 * 3600)
stringTimePrediction = 'Roughly 1 day...';
elseif (timePredicted >= 36 * 3600 && timePredicted < 2 * 365 * 24 * 3600)
stringTimePrediction = ['About ' num2str(round(timePredicted / 24 * 3600)) ' days...'];
elseif (timePredicted >= 2 * 365 * 24 * 3600 && timePredicted < 100 * 365 * 24 * 3600)
stringTimePrediction = ['Oh boy! Quite some years... Maybe about ' num2str(round(timePredicted / 365 * 24 * 3600)) ' of them...'];
elseif (timePredicted >= 100 * 365 * 24 * 3600 && timePredicted < 1e7 * 365 * 24 * 3600)
stringTimePrediction = 'Well... Maybe your children, or grand-children... No, not evem them...';
else
stringTimePrediction = 'Kingdoms will rise, civilization will decline, stars will fade - but your calculation...(!) ;)';
end
stringTimePrediction = ['Predicted remaining waiting time: ', stringTimePrediction];
end
%% Saving results
function saveResults(parameters,options,i)
% saveResults saves Multi-start results to disk
%
% Parameters:
% parameters: Parameter struct passed to getMultiStarts
% options: getMultiStarts options
% i: multi-start index
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__logPost.csv']),parameters.MS.logPost(i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__logPost0.csv']),parameters.MS.logPost0(i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__par.csv']),parameters.MS.par(:,i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__par0.csv']),parameters.MS.par0(:,i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__gradient.csv']),parameters.MS.gradient(:,i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__hessian.csv']),parameters.MS.hessian(:,:,i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__t_cpu.csv']),parameters.MS.t_cpu(i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__n_objfun.csv']),parameters.MS.n_objfun(i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__n_iter.csv']),parameters.MS.n_iter(i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__exitflag.csv']),parameters.MS.exitflag(i),'delimiter',',','precision',12);
if(options.trace)
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__par_trace.csv']),parameters.MS.par_trace(:,:,i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__fval_trace.csv']),parameters.MS.fval_trace(:,i),'delimiter',',','precision',12);
dlmwrite(fullfile(pwd,options.foldername ,['MS' num2str(options.start_index(i),'%d') '__time_trace.csv']),parameters.MS.time_trace(:,i),'delimiter',',','precision',12);
end
end