-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdenovo_assembly_statistics.py
448 lines (352 loc) · 17 KB
/
denovo_assembly_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import datetime
import pandas
import seaborn
from itertools import cycle
from numpy import linspace, cumsum
from pathlib import PurePath
import os
animal, haplotype, sample, assembler = '', '', '100', ''
def get_basename():
return f'{haplotype}_{sample}_{assembler}'
def open_results(extension):
return open(f'results/{get_basename()}.{extension}','r')
def save_figure(figure,path):
figure.savefig(path)
plt.close(figure)
def plot_chromosome_scaffolds():
chromosome = 0
fig, ax = plt.subplots()
with open_results('gaps.txt') as file_in:
for line in file_in:
if 'CM' not in line:
continue
chromosome += 1
parts = line.rstrip().split()
scaffolds = [int(i) for i in parts[2].split(',')]
h_sums = [0] + list(cumsum(scaffolds))
colours = cycle(('#1b9e77','#d95f02','#7570b3','#e7298a','#66a61e','#e6ab02','#a6761d','#666666'))
for height, bottom in zip(scaffolds,h_sums):
ax.bar(chromosome,height,bottom=bottom,width=0.5,color=next(colours))
f_name = f'figures/{get_basename()}.chromosomes.png'
save_figure(fig,f_name)
return f_name
def load_auNCurves(d_type):
auN_values, metrics = [[],[]], dict()
with open_results(f'{d_type}.auN.txt') as file_in:
for line in file_in:
if line[:2] == 'NL':
x, Nx, Lx = (int(i) for i in line.rstrip().split()[1:])
auN_values[0].append(Nx)
auN_values[1].append(Lx)
if x == 50:
metrics['N50'] = Nx
metrics['L50'] = Lx
elif line[:2] != 'CC':
metrics[line[:2]] = int(line.split()[-1])
return auN_values, metrics
def plot_auNCurves():
data, metrics = load_auNCurves('contigs')
auN_data, aln_metrics = load_NGA()
fig, (ax_N,ax_L) = plt.subplots(1,2,sharex=True,figsize=(6, 4))
x_vals = linspace(0,100,len(data[0]))
ax_N.plot(x_vals,data[0],'forestgreen',label='Nx')
ax_N.plot(x_vals,auN_data[0],'darkorange',label='NGx')
ax_N.plot(x_vals,auN_data[1],'darkmagenta',label='NGAx')
ax_L.plot(x_vals,data[1],'forestgreen')
for ax in (ax_N,ax_L):
ax.set_yscale('log')
ax.set_xlabel('x',fontsize=16)
ax_N.set_title('Nx',fontsize=18)
ax_N.set_ylabel('contig length',fontsize=14)
ax_N.legend()
ax_L.set_title('Lx',fontsize=18)
ax_L.set_ylabel('number of contigs',fontsize=14)
plt.tight_layout()
save_path = f'figures/{get_basename()}_auN_curves.png'
save_figure(fig,save_path)
return metrics, aln_metrics, save_path
def load_NGA():
auN_data, data = [], dict()
with open_results('NGA50.txt') as file_in:
for line in file_in:
if line[:2] == 'NG':
try:
auN_data.append(int(line.split()[1]))
if line[:4] == 'NG50':
data['NG50'] = int(line.split()[1])
elif line[:5] == 'NGA50':
data['NGA50'] = int(line.split()[1])
except ValueError:
auN_data.append(0)
print(f'Undefined result for {line.split()[0]}')
else:
(key, value) = line.rstrip().split()
data[key] = value
return (auN_data[:len(auN_data)//2],auN_data[len(auN_data)//2:]), data
def plot_sampling_curves(df_total):
fig, axes_total = plt.subplots(3,3,sharex=True,figsize=(12,5))
for axes, hap in zip(axes_total,('asm','hap1','hap2')):
df = df_total[df_total['haplotype']==hap]
df_N50 = df[['sample','assembler','NG50','NGA50','P50']].melt(id_vars=['sample','assembler'],var_name='type',value_name='N50')
seaborn.lineplot(data=df_N50,x='sample',y='N50',ax=axes[0],hue='assembler',style='type',**{'marker':'o'})
axes[0].set_yscale('log')
seaborn.lineplot(data=df,x='sample',y='QV',ax=axes[1],hue='assembler',**{'marker':'o'})
ax1_twin = axes[1].twinx()
seaborn.lineplot(data=df,x='sample',y='completeness',ax=ax1_twin,hue='assembler',**{'marker':'o','ls':'--'})
df_busco = df[['sample','assembler','single','total']].melt(id_vars=['sample','assembler'],var_name='copy',value_name='complete')
seaborn.lineplot(data=df_busco,x='sample',y='complete',ax=axes[2],hue='assembler',style='copy',**{'marker':'o'})
for ax in axes:
ax.get_legend().remove()
fig.tight_layout()
save_figure(fig,'figures/sampling_curves.png')
return 'figures/sampling_curves.png'
def load_key_pair_file(fname):
return {key:value for (key,*value) in (line.rstrip().split() for line in open_results(fname))}
def kmer_QV(run_type='txt'):
return {k:v[0] for (k,v) in load_key_pair_file(f'merqury.{run_type}.stats').items()}
def load_mumSV(reference='ref',key='chrm'):
return {v[0]:v[1:] for (k,*v) in [line.rstrip().split() for line in open_results(f'{reference}.mumSV.txt')] if k == key}
def load_asmgene(threshold=97):
table = [[],[],[]]
with open_results(f'asmgene.{threshold}.txt') as file_in:
for line in file_in:
if line[0] != 'X':
continue
parts = line.rstrip().split()
for i, p in enumerate(parts[1:]):
table[i].append(p)
return table
def busco_report():
with open_results('BUSCO.txt') as file_in:
for line in file_in:
if 'lineage dataset' in line:
LD_set = line.split()[5]
if 'C:' in line:
return LD_set, line.strip().rstrip()
def load_resource_benchmark(animal,assembler,sample):
info_calls = {'CPU time':'cputime', 'Run time':'walltime', 'Max Memory':'max_mem', 'Average Memory':'mean_mem', 'Delta Memory':'delta_mem'}
data = dict()
reached_resources = False
with open(f'logs/assembler_{assembler}/sample-{sample}.animal-{animal}.out','r') as benchmark:
for line in benchmark:
if not reached_resources:
reached_resources = 'Resource usage summary:' in line
elif len(data) == len(info_calls):
return data
elif len(line) > 1:
code, raw_val = line.strip().split(' :')
if code not in info_calls:
continue
val = int(float(raw_val.strip().split()[0]))
data[info_calls[code]] = val
#default values
data = {code:0 for code in info_calls.values()}
data['walltime'] = 1
return data
def img_sizer(width,dpi=96):
full_width = (8.25-1) * dpi #A4 size - margin
if isinstance(width,float):
width = int(width*full_width)
return f'style="object-fit:cover;width:{width}px;height:100%;"'
def IMAGE(path,scale):
return f'<img src="{path}" {img_sizer(scale)} />'
def generate_markdown_reads():
build_str = f'Animal ID: **{animal}**\n\n' \
f'Sampled at: {sample}\n\n' \
f'Time of report generation: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n\n'
df = pandas.read_csv(f'data/offspring.{sample}.QC.txt')
stats = df.describe().transpose()
build_str += '## read metrics \n' \
f'Total reads: {len(df):,}\n\n'
build_str += f'| | {" | ".join(stats.columns[1:])} |\n' + \
' -- '.join('|'*(len(stats.columns)+1)) +'\n'
for row in ('length',' quality'):
build_str += f'| {row} | {" | ".join(map("{:.2f}".format,stats.loc[row][1:]))} |\n'
build_str += '\n'
seaborn.jointplot(data=df,x='length',y=' quality',kind='hex',joint_kws={'bins':'log'}).savefig(f'figures/offspring.{sample}.QC.png')
build_str += IMAGE(f'figures/offspring.{sample}.QC.png',.6) + '\n\n'
return build_str
def emph_haplotype(haplotype):
if haplotype == 'asm':
return f'<span style="color:blue"> **asm** </span>'
else:
return haplotype
def generate_csv_summary(assemblers,haplotypes):
summary_str = ''
for asm, hap in product(assemblers,haplotypes):
global assembler
assembler = asm
global haplotype
hap = haplotype
asm_metrics = load_auNCurves('contigs')[1]
aln_metrics = load_NGA()[1]
scaff_metrics = load_auNCurves('scaffolds')[1]
lineage, busco_string = busco_report()
kmer_stats = kmer_QV('full' if haplotype in ('asm','hap1','hap2') else 'simple')
QV = f'{float(kmer_stats["QV"]):.1f}'
summary_str += ','.join((assembler,haplotype,f'{asm_metrics["SZ"]/1e9:.2f}',f'{asm_metrics["NN"]:,}',f'{asm_metrics["N50"]/1e6:.2f}',kmer_stats['phased'].replace(',',''),QV,busco_string[2:7])) + '\n'
return summary_str
def generate_markdown_string(summary_str,build_str=None):
asm_metrics = load_auNCurves('contigs')[1]
aln_metrics = load_NGA()[1]
scaff_metrics = load_auNCurves('scaffolds')[1]
lineage, busco_string = busco_report()
try:
kmer_stats = kmer_QV('full' if haplotype in ('asm','hap1','hap2') else 'simple')
QV = f'{float(kmer_stats["QV"]):.1f}'
except:
QV = '-'
summary_str += f'| {assembler} | {emph_haplotype(haplotype) if build_str is not None else sample} | {asm_metrics["SZ"]/1e9:.2f} | {asm_metrics["NN"]:,} | ' \
f'{asm_metrics["N50"]/1e6:.2f} | {asm_metrics["L50"]} | {scaff_metrics["N50"]/1e6:.2f} | {busco_string[2:7]} | {QV} |\n'
if build_str is None:
return summary_str#, {'NGA50':aln_metrics['NGA50'],'NG50':asm_metrics['N50'],'QV':kmer_stats['QV'],'P50':kmer_stats['phased'].replace(',',''),'completeness':kmer_stats['completeness'],'total':busco_string[2:6],'single':busco_string[10:14]}
build_str += '\n\n---\n\n' \
f'# assembler: *{assembler}*, haplotype: {haplotype} \n'
asm_metrics, aln_metrics, auN_plot = plot_auNCurves()
build_str += '## assembly metrics\n'
build_str += f'Genome length: {asm_metrics["SZ"]/1e9:.4f} gb\n\n' \
f'Total contigs: {asm_metrics["NN"]:,}\n\n'
build_str += '### scaffolded chromosomes\n' + \
IMAGE(plot_chromosome_scaffolds(),.5) + '\n\n'
build_str += f'Contig length and quantity\n\n' \
f'**N50**: {asm_metrics["N50"]/1e6:.2f} mb\n\n' \
f'auN value: {asm_metrics["AU"]}\n\n' + \
IMAGE(auN_plot,.8) + '\n\n'
if assembler == 'canu':
build_str += 'Purged coverage:\n\n' + \
IMAGE(f'{assembler}_{sample}/{haplotype}.contigs_raw.spectra.png',.4) + \
IMAGE(f'{assembler}_{sample}/{haplotype}.purged.spectra.png',.4) + '\n\n'
build_str += '### reference metrics\n' \
'* Coverage\n' \
f' * Rcov: {aln_metrics["Rcov"]}\n' \
f' * Rdup: {aln_metrics["Rdup"]}\n' \
f' * Qcov: {aln_metrics["Qcov"]}\n' \
'* Contigs\n' \
f' * breaks: {aln_metrics["#breaks"]}\n' \
f' * auNGA: {aln_metrics["AUNGA"]}\n\n' + \
IMAGE(f'results/{get_basename()}.dot.png',.7) + '\n\n'
build_str += '## validation results\n\n'
build_str += '### merqury k-mers\n' \
f'Coverage: {float(kmer_stats["completeness"])/100:.1%}\n\n' \
f'QV: {kmer_stats["QV"]}\n\n' + \
IMAGE(f'{assembler}_{sample}/{haplotype}.spectra-cn.ln.png',.4) + \
IMAGE(f'{assembler}_{sample}/{haplotype}.spectra-asm.ln.png',.4) + '\n\n'
if haplotype not in ('dam','sire'):
build_str += f'Switch error: {kmer_stats["switches"]}\n\n' \
f'dam: {kmer_stats["dam"]}\n\n' \
f'sire: {kmer_stats["sire"]}\n\n' + \
IMAGE(f'{assembler}_{sample}/{haplotype}.{haplotype}.contigs.block.NG.png',.45) + \
IMAGE(f'{assembler}_{sample}/{haplotype}.{haplotype}.contigs.continuity.NG.png',.45) + '\n\n'
build_str += '### BUSCO \n' \
f'Lineage: **{lineage}**\n\nAnalysis: {busco_string}\n\n'
mumsv = load_mumSV('ref')
build_str += '### structural variants\n' + \
'\n\n'.join(f'variant: {variant}, count: {count}, total size: {int(size)/1e6:.1f} mB' for (variant, (count, size)) in mumsv.items()) + '\n\n'
build_str += '### repeat content\n' \
'work coming soon\n\n'
build_str += '### asmgene\n'
gene_map = load_asmgene()
build_str += f'| | {" | ".join(gene_map[0])} |\n' \
'| -- | -- | -- |\n'
for row, values in zip(('ref','asm'),gene_map[1:]):
build_str += f'| {row} | {" | ".join(values)} |\n'
return summary_str, build_str
import argparse
from pathlib import Path
from markdown2 import markdown
from weasyprint import HTML, CSS
from shutil import rmtree
from itertools import product
def custom_PDF_writer(output,prepend_str,md_content,css):
header = markdown(prepend_str,extras=['tables'])
raw_html = markdown(md_content, extras={'tables':{},'header_ids':{},'toc':{'depth':2},'code-friendly':{},'cuddled-lists':{}})
full_html = header + raw_html.toc_html + raw_html
html = HTML(string=full_html,base_url=str(Path().cwd()))
if css:
html.write_pdf(output,stylesheets=[CSS(filename=css)])
else:
html.write_pdf(output)
def main(direct_input=None):
Path('figures').mkdir(exist_ok=True)
parser = argparse.ArgumentParser(description='Produce assembly report.')
parser.add_argument('--animal', nargs='+', required=True)
parser.add_argument('--samples', nargs='+', required=True)
parser.add_argument('--input', nargs='+', required=True)
parser.add_argument('--outfile', default='assembly_report.pdf', type=str)
parser.add_argument('--keepfig', action='store_true')
parser.add_argument('--css', default='report.css', type=str)
parser.add_argument('--multi', action='store_true')
parser.add_argument('--summary', action='store_true')
args = parser.parse_args(direct_input)
css_path = args.css if Path(args.css).is_file() else None
if args.summary:
summary_str = generate_csv_summary(args.samples,['hap1','hap2'])
with open(args.outfile,'w') as fout:
fout.write('assembler,haplotype,size,contigs,NG50,P50,QV,BUSCO\n')
fout.write(summary_str)
return
if args.multi:
summary_str = generate_multiple_statistics(args)
custom_PDF_writer(args.outfile,'',summary_str,css_path)
return
global animal
animal = args.animal
prepend_str = generate_markdown_reads() + \
'# table of contents'
md_string = ''
summary_string = '# summary \n' \
'| assembler | haplotype | size | contigs | N50 | L50 | S50 | BUSCO | QV |\n' \
'| --------- | --------- | ---- | ------- | --- | --- | --- | ----- | -- |\n'
sample_string = summary_string.replace('# summary ','# downsampling ').replace('haplotype','sample rate')
contig_files = [PurePath(f).name.split('.')[0] for f in args.input if '.contigs.auN.txt' in f]
haplotypes = sorted({ctg.split('_')[0] for ctg in contig_files})
assemblers = sorted({ctg.split('_')[-1] for ctg in contig_files})
global haplotype
global assembler
for haplotype_t, assembler_t in product(haplotypes,assemblers):
haplotype = haplotype_t
assembler = assembler_t
summary_string, md_string = generate_markdown_string(summary_string,md_string)
md_string = summary_string + md_string
global sample
row_data = []
if len(args.samples) > 1:
haplotype = 'asm'
for sample_t, assembler_t, haplotype_t in product(args.samples,assemblers,haplotypes):
sample = sample_t
assembler = assembler_t
haplotype = haplotype_t
try:
summary_string, new_row = generate_markdown_string(summary_string)
except:
print(f'Error generating summary for {haplotype_t} @ {sample_t}% coverage with {assembler_t}.')
continue
new_row = {k: float(v) for k,v in new_row.items()}
new_row.update({'sample':sample_t,'assembler':assembler_t,'haplotype':haplotype_t})
row_data.append(new_row)
md_string += summary_string
sample_dataframe = pandas.DataFrame(row_data)
md_string += '\n' + IMAGE(plot_sampling_curves(sample_dataframe),.8) + '\n\n'
custom_PDF_writer(args.outfile,prepend_str,md_string,css_path)
if not args.keepfig:
rmtree('figures')
def generate_multiple_statistics(args):
summary_string = '# summary \n' \
'| animal | haplotype | size | contigs | N50 | L50 | S50 | BUSCO | QV |\n' \
'| --------- | --------- | ---- | ------- | --- | --- | --- | ----- | -- |\n'
global haplotype
global assembler
global animal
assembler = 'hifiasm'
for (animal_t,haplotype_t,name) in zip(args.animal,args.samples,args.input):
animal = animal_t
haplotype = haplotype_t
os.chdir(animal)
summary_string = generate_markdown_string(summary_string).replace('hifiasm',animal_t).replace('100',name)
os.chdir('..')
return summary_string
if __name__ == "__main__":
main()