forked from supranational/blst
-
Notifications
You must be signed in to change notification settings - Fork 0
/
blst_minpk.tgo
608 lines (541 loc) · 17.6 KB
/
blst_minpk.tgo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import (
"runtime"
"sync"
"sync/atomic"
)
//
// PublicKey
//
func (pk *P1Affine) From(s *Scalar) *P1Affine {
C.blst_sk_to_pk2_in_g1(nil, pk, s)
return pk
}
func (pk *P1Affine) KeyValidate() bool {
return !bool(C.blst_p1_affine_is_inf(pk)) &&
bool(C.blst_p1_affine_in_g1(pk))
}
// sigInfcheck, check for infinity, is a way to avoid going
// into resource-consuming verification. Passing 'false' is
// always cryptographically safe, but application might want
// to guard against obviously bogus individual[!] signatures.
func (sig *P2Affine) SigValidate(sigInfcheck bool) bool {
if sigInfcheck && bool(C.blst_p2_affine_is_inf(sig)) {
return false
}
return bool(C.blst_p2_affine_in_g2(sig))
}
//
// Sign
//
func (sig *P2Affine) Sign(sk *SecretKey, msg []byte, dst []byte,
optional ...interface{}) *P2Affine {
augSingle, aug, useHash, ok := parseOpts(optional...)
if !ok || len(aug) != 0 {
return nil
}
var q *P2
if useHash {
q = HashToG2(msg, dst, augSingle)
} else {
q = EncodeToG2(msg, dst, augSingle)
}
C.blst_sign_pk2_in_g1(nil, sig, q, sk)
return sig
}
//
// Signature
//
// Functions to return a signature and public key+augmentation tuple.
// This enables point decompression (if needed) to happen in parallel.
type sigGetterP2 func() *P2Affine
type pkGetterP1 func(i uint32, temp *P1Affine) (*P1Affine, []byte)
// Single verify with decompressed pk
func (sig *P2Affine) Verify(sigGroupcheck bool, pk *P1Affine, pkValidate bool,
msg Message, dst []byte,
optional ...interface{}) bool { // useHash bool, aug []byte
aug, _, useHash, ok := parseOpts(optional...)
if !ok {
return false
}
return sig.AggregateVerify(sigGroupcheck, []*P1Affine{pk}, pkValidate,
[]Message{msg}, dst, useHash, [][]byte{aug})
}
// Single verify with compressed pk
// Uses a dummy signature to get the correct type
func (dummy *P2Affine) VerifyCompressed(sig []byte, sigGroupcheck bool,
pk []byte, pkValidate bool, msg Message, dst []byte,
optional ...bool) bool { // useHash bool, usePksAsAugs bool
return dummy.AggregateVerifyCompressed(sig, sigGroupcheck,
[][]byte{pk}, pkValidate,
[]Message{msg}, dst, optional...)
}
// Aggregate verify with uncompressed signature and public keys
// Note that checking message uniqueness, if required, is left to the user.
// Not all signature schemes require it and this keeps the binding minimal
// and fast. Refer to the Uniq function for one method method of performing
// this check.
func (sig *P2Affine) AggregateVerify(sigGroupcheck bool,
pks []*P1Affine, pksVerify bool, msgs []Message, dst []byte,
optional ...interface{}) bool { // useHash bool, augs [][]byte
// sanity checks and argument parsing
n := len(pks)
if n == 0 || len(msgs) != n {
return false
}
_, augs, useHash, ok := parseOpts(optional...)
useAugs := len(augs) != 0
if !ok || (useAugs && len(augs) != n) {
return false
}
sigFn := func() *P2Affine {
return sig
}
pkFn := func(i uint32, _ *P1Affine) (*P1Affine, []byte) {
if useAugs {
return pks[i], augs[i]
}
return pks[i], nil
}
return coreAggregateVerifyPkInG1(sigFn, sigGroupcheck, pkFn, pksVerify,
msgs, dst, useHash)
}
// Aggregate verify with compressed signature and public keys
// Uses a dummy signature to get the correct type
func (dummy *P2Affine) AggregateVerifyCompressed(sig []byte, sigGroupcheck bool,
pks [][]byte, pksVerify bool, msgs []Message, dst []byte,
optional ...bool) bool { // useHash bool, usePksAsAugs bool
// sanity checks and argument parsing
if len(pks) != len(msgs) {
return false
}
useHash := true
if len(optional) > 0 {
useHash = optional[0]
}
usePksAsAugs := false
if len(optional) > 1 {
usePksAsAugs = optional[1]
}
sigFn := func() *P2Affine {
sigP := new(P2Affine)
if sigP.Uncompress(sig) == nil {
return nil
}
return sigP
}
pkFn := func(i uint32, pk *P1Affine) (*P1Affine, []byte) {
bytes := pks[i]
if len(bytes) == BLST_P1_SERIALIZE_BYTES && (bytes[0] & 0x80) == 0 {
// Not compressed
if pk.Deserialize(bytes) == nil {
return nil, nil
}
} else if len(bytes) == BLST_P1_COMPRESS_BYTES && (bytes[0] & 0x80) != 0 {
if pk.Uncompress(bytes) == nil {
return nil, nil
}
} else {
return nil, nil
}
if usePksAsAugs {
return pk, bytes
}
return pk, nil
}
return coreAggregateVerifyPkInG1(sigFn, sigGroupcheck, pkFn, pksVerify,
msgs, dst, useHash)
}
func coreAggregateVerifyPkInG1(sigFn sigGetterP2, sigGroupcheck bool,
pkFn pkGetterP1, pkValidate bool, msgs []Message, dst []byte,
optional ...bool) bool { // useHash
n := len(msgs)
if n == 0 {
return false
}
useHash := true
if len(optional) > 0 {
useHash = optional[0]
}
numCores := runtime.GOMAXPROCS(0)
numThreads := maxProcs
if numThreads > numCores {
numThreads = numCores
}
if numThreads > n {
numThreads = n
}
// Each thread will determine next message to process by atomically
// incrementing curItem, process corresponding pk,msg[,aug] tuple and
// repeat until n is exceeded. The resulting accumulations will be
// fed into the msgsCh channel.
msgsCh := make(chan Pairing, numThreads)
valid := int32(1)
curItem := uint32(0)
mutex := sync.Mutex{}
mutex.Lock()
for tid := 0; tid < numThreads; tid++ {
go func() {
pairing := PairingCtx(useHash, dst)
var temp P1Affine
for atomic.LoadInt32(&valid) > 0 {
// Get a work item
work := atomic.AddUint32(&curItem, 1) - 1
if work >= uint32(n) {
break
} else if work == 0 && maxProcs == numCores-1 &&
numThreads == maxProcs {
// Avoid consuming all cores by waiting until the
// main thread has completed its miller loop before
// proceeding.
mutex.Lock()
mutex.Unlock() // nolint:staticcheck
}
// Pull Public Key and augmentation blob
curPk, aug := pkFn(work, &temp)
if curPk == nil {
atomic.StoreInt32(&valid, 0)
break
}
// Pairing and accumulate
ret := PairingAggregatePkInG1(pairing, curPk, pkValidate,
nil, false, msgs[work], aug)
if ret != C.BLST_SUCCESS {
atomic.StoreInt32(&valid, 0)
break
}
// application might have some async work to do
runtime.Gosched()
}
if atomic.LoadInt32(&valid) > 0 {
PairingCommit(pairing)
msgsCh <- pairing
} else {
msgsCh <- nil
}
}()
}
// Uncompress and check signature
var gtsig Fp12
sig := sigFn()
if sig == nil {
atomic.StoreInt32(&valid, 0)
}
if atomic.LoadInt32(&valid) > 0 && sigGroupcheck &&
!sig.SigValidate(false) {
atomic.StoreInt32(&valid, 0)
}
if atomic.LoadInt32(&valid) > 0 {
C.blst_aggregated_in_g2(>sig, sig)
}
mutex.Unlock()
// Accumulate the thread results
var pairings Pairing
for i := 0; i < numThreads; i++ {
msg := <-msgsCh
if msg != nil {
if pairings == nil {
pairings = msg
} else {
ret := PairingMerge(pairings, msg)
if ret != C.BLST_SUCCESS {
atomic.StoreInt32(&valid, 0)
}
}
}
}
if atomic.LoadInt32(&valid) == 0 || pairings == nil {
return false
}
return PairingFinalVerify(pairings, >sig)
}
func CoreVerifyPkInG1(pk *P1Affine, sig *P2Affine, hash_or_encode bool,
msg Message, dst []byte, optional ...[]byte) int {
var aug []byte
if len(optional) > 0 {
aug = optional[0]
}
if runtime.NumGoroutine() < maxProcs {
sigFn := func() *P2Affine {
return sig
}
pkFn := func(_ uint32, _ *P1Affine) (*P1Affine, []byte) {
return pk, aug
}
if !coreAggregateVerifyPkInG1(sigFn, true, pkFn, true, []Message{msg},
dst, hash_or_encode) {
return C.BLST_VERIFY_FAIL
}
return C.BLST_SUCCESS
}
return int(C.blst_core_verify_pk_in_g1(pk, sig, C.bool(hash_or_encode),
ptrOrNil(msg), C.size_t(len(msg)),
ptrOrNil(dst), C.size_t(len(dst)),
ptrOrNil(aug), C.size_t(len(aug))))
}
// pks are assumed to be verified for proof of possession,
// which implies that they are already group-checked
func (sig *P2Affine) FastAggregateVerify(sigGroupcheck bool,
pks []*P1Affine, msg Message, dst []byte,
optional ...interface{}) bool { // pass-through to Verify
n := len(pks)
// TODO: return value for length zero?
if n == 0 {
return false
}
aggregator := new(P1Aggregate)
if !aggregator.Aggregate(pks, false) {
return false
}
pkAff := aggregator.ToAffine()
// Verify
return sig.Verify(sigGroupcheck, pkAff, false, msg, dst, optional...)
}
func (dummy *P2Affine) MultipleAggregateVerify(sigs []*P2Affine,
sigsGroupcheck bool, pks []*P1Affine, pksVerify bool,
msgs []Message, dst []byte, randFn func(*Scalar), randBits int,
optional ...interface{}) bool { // useHash
// Sanity checks and argument parsing
n := len(pks)
if n == 0 || len(msgs) != n || len(sigs) != n {
return false
}
_, augs, useHash, ok := parseOpts(optional...)
useAugs := len(augs) != 0
if !ok || (useAugs && len(augs) != n) {
return false
}
paramsFn :=
func(work uint32, sig *P2Affine, pk *P1Affine, rand *Scalar) (
*P2Affine, *P1Affine, *Scalar, []byte) {
randFn(rand)
var aug []byte
if useAugs {
aug = augs[work]
}
return sigs[work], pks[work], rand, aug
}
return multipleAggregateVerifyPkInG1(paramsFn, sigsGroupcheck, pksVerify,
msgs, dst, randBits, useHash)
}
type mulAggGetterPkInG1 func(work uint32, sig *P2Affine, pk *P1Affine,
rand *Scalar) (*P2Affine, *P1Affine, *Scalar, []byte)
func multipleAggregateVerifyPkInG1(paramsFn mulAggGetterPkInG1,
sigsGroupcheck bool, pksVerify bool, msgs []Message,
dst []byte, randBits int,
optional ...bool) bool { // useHash
n := len(msgs)
if n == 0 {
return false
}
useHash := true
if len(optional) > 0 {
useHash = optional[0]
}
numCores := runtime.GOMAXPROCS(0)
numThreads := maxProcs
if numThreads > numCores {
numThreads = numCores
}
if numThreads > n {
numThreads = n
}
// Each thread will determine next message to process by atomically
// incrementing curItem, process corresponding pk,msg[,aug] tuple and
// repeat until n is exceeded. The resulting accumulations will be
// fed into the msgsCh channel.
msgsCh := make(chan Pairing, numThreads)
valid := int32(1)
curItem := uint32(0)
for tid := 0; tid < numThreads; tid++ {
go func() {
pairing := PairingCtx(useHash, dst)
var tempRand Scalar
var tempPk P1Affine
var tempSig P2Affine
for atomic.LoadInt32(&valid) > 0 {
// Get a work item
work := atomic.AddUint32(&curItem, 1) - 1
if work >= uint32(n) {
break
}
curSig, curPk, curRand, aug := paramsFn(work, &tempSig,
&tempPk, &tempRand)
if PairingMulNAggregatePkInG1(pairing, curPk, pksVerify,
curSig, sigsGroupcheck, curRand,
randBits, msgs[work], aug) !=
C.BLST_SUCCESS {
atomic.StoreInt32(&valid, 0)
break
}
// application might have some async work to do
runtime.Gosched()
}
if atomic.LoadInt32(&valid) > 0 {
PairingCommit(pairing)
msgsCh <- pairing
} else {
msgsCh <- nil
}
}()
}
// Accumulate the thread results
var pairings Pairing
for i := 0; i < numThreads; i++ {
msg := <-msgsCh
if msg != nil {
if pairings == nil {
pairings = msg
} else {
ret := PairingMerge(pairings, msg)
if ret != C.BLST_SUCCESS {
atomic.StoreInt32(&valid, 0)
}
}
}
}
if atomic.LoadInt32(&valid) == 0 || pairings == nil {
return false
}
return PairingFinalVerify(pairings, nil)
}
//
// Aggregate P2
//
type aggGetterP2 func(i uint32, temp *P2Affine) *P2Affine
type P2Aggregate struct {
v *P2
}
// Aggregate uncompressed elements
func (agg *P2Aggregate) Aggregate(elmts []*P2Affine,
groupcheck bool) bool {
if len(elmts) == 0 {
return true
}
getter := func(i uint32, _ *P2Affine) *P2Affine { return elmts[i] }
return agg.aggregate(getter, groupcheck, len(elmts))
}
// Aggregate compressed elements
func (agg *P2Aggregate) AggregateCompressed(elmts [][]byte,
groupcheck bool) bool {
if len(elmts) == 0 {
return true
}
getter := func(i uint32, p *P2Affine) *P2Affine {
bytes := elmts[i]
if p.Uncompress(bytes) == nil {
return nil
}
return p
}
return agg.aggregate(getter, groupcheck, len(elmts))
}
func (agg *P2Aggregate) AddAggregate(other *P2Aggregate) {
if other.v == nil {
// do nothing
} else if agg.v == nil {
agg.v = other.v
} else {
C.blst_p2_add_or_double(agg.v, agg.v, other.v)
}
}
func (agg *P2Aggregate) Add(elmt *P2Affine, groupcheck bool) bool {
if groupcheck && !bool(C.blst_p2_affine_in_g2(elmt)) {
return false
}
if agg.v == nil {
agg.v = new(P2)
C.blst_p2_from_affine(agg.v, elmt)
} else {
C.blst_p2_add_or_double_affine(agg.v, agg.v, elmt)
}
return true
}
func (agg *P2Aggregate) ToAffine() *P2Affine {
if agg.v == nil {
return new(P2Affine)
}
return agg.v.ToAffine()
}
func (agg *P2Aggregate) aggregate(getter aggGetterP2, groupcheck bool,
n int) bool {
if n == 0 {
return true
}
// operations are considered short enough for not to care about
// keeping one core free...
numThreads := runtime.GOMAXPROCS(0)
if numThreads > n {
numThreads = n
}
valid := int32(1)
type result struct {
agg *P2
empty bool
}
msgs := make(chan result, numThreads)
curItem := uint32(0)
for tid := 0; tid < numThreads; tid++ {
go func() {
first := true
var agg P2
var temp P2Affine
for atomic.LoadInt32(&valid) > 0 {
// Get a work item
work := atomic.AddUint32(&curItem, 1) - 1
if work >= uint32(n) {
break
}
// Signature validate
curElmt := getter(work, &temp)
if curElmt == nil {
atomic.StoreInt32(&valid, 0)
break
}
if groupcheck && !bool(C.blst_p2_affine_in_g2(curElmt)) {
atomic.StoreInt32(&valid, 0)
break
}
if first {
C.blst_p2_from_affine(&agg, curElmt)
first = false
} else {
C.blst_p2_add_or_double_affine(&agg, &agg, curElmt)
}
// application might have some async work to do
runtime.Gosched()
}
if first {
msgs <- result{nil, true}
} else if atomic.LoadInt32(&valid) > 0 {
msgs <- result{&agg, false}
} else {
msgs <- result{nil, false}
}
}()
}
// Accumulate the thread results
first := agg.v == nil
validLocal := true
for i := 0; i < numThreads; i++ {
msg := <-msgs
if !validLocal || msg.empty {
// do nothing
} else if msg.agg == nil {
validLocal = false
// This should be unnecessary but seems safer
atomic.StoreInt32(&valid, 0)
} else {
if first {
agg.v = msg.agg
first = false
} else {
C.blst_p2_add_or_double(agg.v, agg.v, msg.agg)
}
}
}
if atomic.LoadInt32(&valid) == 0 {
agg.v = nil
return false
}
return true
}