-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgetEphysAndWalkingActivity.py
59 lines (46 loc) · 2.85 KB
/
getEphysAndWalkingActivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tools.extractSaveData as extractSaveData
import tools.dataAnalysis as dataAnalysis
import numpy as np
import pdb
import tools.createVisualizations as createVisualizations
import scipy
mouse = '180201_f48'
expDate = '180314'
wheelCircumsphere = 79.796 # in cm
eSD = extractSaveData.extractSaveData(mouse,expDate)
(foldersRecordings,dataFolders) = eSD.getRecordingsList(mouse) # get recordings for specific mouse and date
cV = createVisualizations.createVisualizations(eSD.figureLocation,mouse)
# loop over all recording folders
#pdb.set_trace()
for f in range(len(foldersRecordings)):
print f, foldersRecordings[f][1]
for r in range(len(foldersRecordings[f][1])):
(existenceRot, fileHandleRot) = eSD.checkIfDeviceWasRecorded(foldersRecordings[f][0],foldersRecordings[f][1][r], 'RotaryEncoder')
(existenceEphys, fileHandleEphys) = eSD.checkIfDeviceWasRecorded(foldersRecordings[f][0],foldersRecordings[f][1][r], 'AxoPatch200_2')
#print existenceRot, existenceEphys
#tracks = []
if existenceRot and existenceEphys:
(angles, aTimes,timeStamp,monitor) = eSD.readRawData(foldersRecordings[f][0],foldersRecordings[f][1][r],'RotaryEncoder',fileHandleRot)
(angularSpeed, linearSpeed, sTimes) = dataAnalysis.getSpeed(angles,aTimes,wheelCircumsphere)
#
(current, ephysTimes) = eSD.readRawData(foldersRecordings[f][0], foldersRecordings[f][1][r], 'AxoPatch200_2', fileHandleEphys)
#eSD.saveWalkingActivity(angularSpeed, linearSpeed, sTimes,timeStamp,monitor, [dataFolder,rec,'walking_activity']) # save motion corrected image stack
dt = np.mean(ephysTimes[1:]-ephysTimes[:-1])
rate = 1./dt
print 'rate', rate
highpassfreq = 150.
currentHP = dataAnalysis.butter_highpass(current,highpassfreq,rate,order=4)
spikeT = dataAnalysis.detectSpikeTimes(2.E-11,currentHP,ephysTimes,positive=True)
binWidth = 1.E-3 # in sec
spikecountwindow = 0.05
tbins = np.linspace(0.,len(ephysTimes)*dt,int(len(ephysTimes)*dt/binWidth)+1)
nspikecountwindow = spikecountwindow/binWidth
np.save('currentHP.npy',np.column_stack((ephysTimes,currentHP)))
np.save('tempScriptOutput/spikeTimes.npy', spikeT)
binnedspikes, _ = np.histogram(spikeT, tbins)
spikesconv = scipy.ndimage.filters.gaussian_filter1d(np.array(binnedspikes, float), sigma=nspikecountwindow)
# convert the convolved spike trains to units of spikes/sec
spikesconv *= 1. / binWidth
cV.generateWalkEphysFigure(foldersRecordings[f][0], foldersRecordings[f][1][r], currentHP, ephysTimes , angularSpeed, linearSpeed, sTimes, timeStamp, monitor, spikesconv, binnedspikes, binWidth) # plot fluorescent traces of rois
pdb.set_trace()
del eSD