-
Notifications
You must be signed in to change notification settings - Fork 28
/
Unification.hs
414 lines (338 loc) · 14.6 KB
/
Unification.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
module Unification (unify, solve, unifySp) where
import qualified Data.Array.FM as AFM
import qualified Data.Ref.F as RF
import IO
import GHC.Exts
import qualified MetaCxt as MC
import qualified LvlSet as LS
import Common
import CoreTypes
import Evaluation
import Exceptions
--------------------------------------------------------------------------------
-- | Forcing depending on conversion state.
forceCS :: MetaCxt -> ConvState -> Val -> IO Val
forceCS cxt cs v = case cs of
Full -> forceAll cxt v
_ -> force cxt v
{-# inline forceCS #-}
-- PARTIAL RENAMINGS
--------------------------------------------------------------------------------
data PartialRenaming = PRen {
occ :: MetaVar -- ^ Occurring meta to be checked.
, dom :: Lvl -- ^ Domain context size (context of output term)
, cod :: Lvl -- ^ Codomain context size (context of input value)
, ren :: AFM.Array Lvl -- ^ Partial mapping from cod vars to dom vars,
-- (-1) denotes an undefined value. Indices above the
-- array length are considered to be mapped to themselves.
}
instance Show PartialRenaming where
show (PRen occ dom cod ren) = runIO do
ren <- AFM.unsafeFreeze ren
pure $! show (occ, dom, cod, ren)
-- | Lift a renaming over a bound variable. The new var is mapped to itself.
lift :: PartialRenaming -> PartialRenaming
lift (PRen m dom cod ren) = PRen m (dom + 1) (cod + 1) ren
{-# inline lift #-}
-- SOLUTION QUOTATION
--------------------------------------------------------------------------------
approxOccursInSolution :: MetaCxt -> MetaVar -> MetaVar -> MetaVar -> IO UBool
approxOccursInSolution ms frz occ x
| x < frz = pure UTrue
| otherwise = MC.read ms x >>= \case
Unsolved _ | occ == x -> pure UFalse
| otherwise -> pure UTrue
Solved cache _ t _ -> do
cached <- RF.read cache
if cached == occ then
pure UTrue
else do
res <- approxOccurs ms frz occ t
when (res == UTrue) (RF.write cache occ)
pure res
approxOccurs :: MetaCxt -> MetaVar -> MetaVar -> Tm -> IO UBool
approxOccurs ms frz occ t = let
go = approxOccurs ms frz occ; {-# inline go #-}
in case t of
LocalVar x -> pure UTrue
TopVar x _ -> pure UTrue
Let x a t u -> (\x y z -> x &&# y &&# z) <$> go a <*> go t <*> go u
App t u i -> (&&#) <$> go t <*> go u
Lam _ t -> go t
InsertedMeta x -> approxOccursInSolution ms frz occ x
Meta x -> approxOccursInSolution ms frz occ x
Pi _ a b -> (&&#) <$> go a <*> go b
Irrelevant -> pure UTrue
U -> pure UTrue
rigidQuoteSp :: MetaCxt -> MetaVar -> PartialRenaming -> Tm -> Spine -> IO Tm
rigidQuoteSp ms frz pren hd = \case
SId -> pure hd
SApp sp t i -> App <$> rigidQuoteSp ms frz pren hd sp
<*> rigidQuote ms frz pren t
<*> pure i
rigidQuote :: MetaCxt -> MetaVar -> PartialRenaming -> Val -> IO Tm
rigidQuote ms frz pren t = let
go = rigidQuote ms frz pren; {-# inline go #-}
goSp = rigidQuoteSp ms frz pren; {-# inline goSp #-}
goSpFlex = flexQuoteSp ms frz pren; {-# inline goSpFlex #-}
goBind t = rigidQuote ms frz (lift pren) (appCl' ms t (VLocalVar (cod pren) SId))
{-# inline goBind #-}
in force ms t >>= \case
VLocalVar x sp
| x < coerce (AFM.size (ren pren)) ->
(AFM.read (ren pren) (coerce x)) >>= \case
(-1) -> throw $ UnifyEx Conversion -- scope check
y -> goSp (LocalVar (lvlToIx (dom pren) y)) sp
| otherwise ->
-- TODO: simplify arith expr here (LocalVar (cod pren - x - 1))
goSp (LocalVar (lvlToIx (dom pren) (x - (cod pren - dom pren)))) sp
VFlex x sp
| occ pren == x -> throw $ UnifyEx Conversion -- occurs check
| otherwise -> goSp (Meta x) sp
topt@(VUnfold h sp t) -> do
(t, tValid) <- case h of -- WARNING: Core was fine here, but should be checked on ghc change
UHTopVar x v -> do
goSpFlex (TopVar x (coerce v) // UTrue) sp
UHSolved x -> do
xValid <- approxOccursInSolution ms frz (occ pren) x
goSpFlex (Meta x // xValid) sp
when (tValid == UFalse) $
fullCheckRhs ms frz pren topt
pure t
VLam xi t -> Lam xi <$> goBind t
VPi xi a b -> Pi xi <$> go a <*> goBind b
VU -> pure U
VIrrelevant -> pure Irrelevant
flexQuoteSp :: MetaCxt -> MetaVar -> PartialRenaming -> (Tm, UBool) -> Spine -> IO (Tm, UBool)
flexQuoteSp ms frz pren hd@(t, !tValid) = \case
SId -> pure hd
SApp sp t i -> do
(sp, spValid) <- flexQuoteSp ms frz pren hd sp
(t, tValid) <- flexQuote ms frz pren t
pure $! (App sp t i // spValid &&# tValid)
flexQuote :: MetaCxt -> MetaVar -> PartialRenaming -> Val -> IO (Tm, UBool)
flexQuote ms frz pren t = let
go = flexQuote ms frz pren; {-# inline go #-}
goSp = flexQuoteSp ms frz pren; {-# inline goSp #-}
goBind t = flexQuote ms frz (lift pren) (appCl' ms t (VLocalVar (cod pren) SId))
{-# inline goBind #-}
in force ms t >>= \case
VLocalVar x sp
| x < coerce (AFM.size (ren pren)) ->
(AFM.read (ren pren) (coerce x)) >>= \case
(-1) -> pure (Irrelevant, UFalse)
y -> goSp (LocalVar (lvlToIx (dom pren) y) // UTrue) sp
| otherwise ->
-- TODO: simplify arith expr here (LocalVar (cod pren - x - 1))
goSp (LocalVar (lvlToIx (dom pren) (x - (cod pren - dom pren))) // UTrue) sp
VFlex x sp
| occ pren == x -> pure (Irrelevant, UFalse)
| otherwise -> goSp (Meta x // UTrue) sp
topt@(VUnfold h sp t) -> do
(t, tf) <- case h of -- WARNING: Core was fine here, but should be checked on ghc change
UHTopVar x v -> do
goSp (TopVar x (coerce v) // UTrue) sp
UHSolved x -> do
xf <- approxOccursInSolution ms frz (occ pren) x
goSp (Meta x // xf) sp
when (tf == UFalse) $
fullCheckRhs ms frz pren topt
pure $! (t // UTrue)
VLam xi t -> do
(!t, !tValid) <- goBind t
pure $! (Lam xi t // tValid)
VPi xi a b -> do
(a, aValid) <- go a
(b, bValid) <- goBind b
pure $! (Pi xi a b // aValid &&# bValid)
VU -> pure (U // UTrue)
VIrrelevant -> pure (Irrelevant // UTrue)
fullCheckSp :: MetaCxt -> MetaVar -> PartialRenaming -> Spine -> IO ()
fullCheckSp ms frz pren = \case
SId -> pure ()
SApp sp t i -> fullCheckSp ms frz pren sp >> fullCheckRhs ms frz pren t
fullCheckRhs :: MetaCxt -> MetaVar -> PartialRenaming -> Val -> IO ()
fullCheckRhs ms frz pren v = do
let go = fullCheckRhs ms frz pren; {-# inline go #-}
goSp = fullCheckSp ms frz pren; {-# inline goSp #-}
goBind t = fullCheckRhs ms frz (lift pren)
(appCl' ms t (VLocalVar (cod pren) SId))
{-# inline goBind #-}
forceAll ms v >>= \case
VFlex m' sp | occ pren == m' -> throw $ UnifyEx Conversion -- occurs check
| otherwise -> goSp sp
VLocalVar x sp
| x < coerce (AFM.size (ren pren)) ->
(AFM.read (ren pren) (coerce x)) >>= \case
(-1) -> throw $ UnifyEx Conversion -- scope check
y -> goSp sp
| otherwise ->
goSp sp
VLam _ t -> goBind t
VPi _ a b -> go a >> goBind b
VUnfold{} -> impossible
VU -> pure ()
VIrrelevant -> pure ()
-- UNIFICATION
--------------------------------------------------------------------------------
-- | Invert a spine, producing a partial renaming. The "trim" argument is the
-- set of vars that we already dropped by eta-contracting the two sides.
invertSp :: MetaCxt -> Lvl -> MetaVar -> Spine -> LS.LvlSet -> IO PartialRenaming
invertSp ms gamma m sp trim = do
ren <- AFM.new @Lvl (coerce gamma)
AFM.set ren (-1)
let go :: MetaCxt -> AFM.Array Lvl -> LS.LvlSet -> Spine -> IO Lvl
go ms ren trim = \case
SId -> pure 0
SApp sp t _ -> do
dom <- go ms ren trim sp
forceAll ms t >>= \case
VLocalVar x SId -> do
-- non-linear: variable was previously trimmed by eta-contraction
when (LS.member x trim) (throw $ UnifyEx Conversion)
y <- AFM.read ren (coerce x)
case y of
(-1) -> do
AFM.write ren (coerce x) dom
pure $! (dom + 1)
-- non-linear: variable already mapped
y -> throw $ UnifyEx Conversion
_ ->
throw $ UnifyEx Conversion -- non-var in spine
dom <- go ms ren trim sp
pure (PRen m dom gamma ren)
lams :: Spine -> Tm -> Tm
lams SId acc = acc
lams (SApp sp t i) acc = lams sp (Lam (NI NX i) acc)
data SSLS = SSLS Spine Spine LS.LvlSet
-- | Try to eta contract both sides, bind trimmed lhs, rhs, and the set of
-- variables that were trimmed.
etaContract :: Spine -> Val -> (Spine -> Val -> LS.LvlSet -> IO a) -> IO a
etaContract sp rhs cont = let
go :: Spine -> Spine -> LS.LvlSet -> IO SSLS
go sp sp' trim = case (sp, sp') of
(left@(SApp sp (VLocalVar x SId) i), right@(SApp sp' (VLocalVar x' SId) i')) -> do
when (LS.member x trim) (throw $ UnifyEx Conversion) -- non-linear spine
if x == x' then go sp sp' (LS.insert x trim)
else pure (SSLS left right trim)
(sp, sp') -> pure (SSLS sp sp' trim)
in case rhs of
VFlex x sp' -> go sp sp' mempty >>= \case
SSLS sp sp' trim -> cont sp (VFlex x sp') trim
VLocalVar x sp' -> go sp sp' mempty >>= \case
SSLS sp sp' trim -> cont sp (VLocalVar x sp') trim
VUnfold h sp' v -> go sp sp' mempty >>= \case
SSLS sp sp' trim -> cont sp (VUnfold h sp' v) trim
_ -> cont sp rhs mempty
{-# inline etaContract #-}
solve :: MetaCxt -> Lvl -> MetaVar -> MetaVar -> Spine -> Val -> IO ()
solve ms l frz x ~sp ~rhs = do
-- debug ["attempt solve", show (VFlex x sp), show rhs]
when (x < frz) $ throw $ UnifyEx $ FrozenSolution x
-- TURN OFF eta-contraction here
etaContract sp rhs \sp rhs trim -> do
-- do
-- let trim = mempty
pren <- invertSp ms l x sp trim
rhs <- lams sp <$> rigidQuote ms frz pren rhs
debug ["renamed", show rhs]
debug ["solve", show x, show pren, show rhs]
MC.solve ms x rhs (eval ms ENil rhs)
-- | Try to solve a meta, but fully eta-expand sides.
solveLong :: MetaCxt -> Lvl -> MetaVar -> MetaVar -> Spine -> Val -> IO ()
solveLong ms l frz x sp rhs = forceAll ms rhs >>= \case
VLam (NI _ i) t ->
let v = VLocalVar l SId
in solveLong ms (l + 1) frz x (SApp sp v i) (appCl' ms t v)
VFlex x' sp' | x == x' -> unifySp ms l frz Full sp sp'
| otherwise -> flexFlex ms l frz (VFlex x sp) x sp rhs x' sp'
_ ->
solve ms l frz x sp rhs
flexFlex :: MetaCxt -> Lvl -> MetaVar -> Val -> MetaVar -> Spine -> Val -> MetaVar -> Spine -> IO ()
flexFlex ms l frz t x ~sp t' x' ~sp' =
solve ms l frz x sp t' `catch` \_ ->
solve ms l frz x' sp' t
unifySp :: MetaCxt -> Lvl -> MetaVar -> ConvState -> Spine -> Spine -> IO ()
unifySp ms l frz cs sp sp' = case (sp, sp') of
(SId, SId ) -> pure ()
(SApp sp t _, SApp sp' t' _) -> unifySp ms l frz cs sp sp' >>
unify ms l frz cs (gjoin t) (gjoin t')
_ -> throw $ UnifyEx Conversion
unify :: MetaCxt -> Lvl -> MetaVar -> ConvState -> G -> G -> IO ()
unify ms l frz cs (G topt ftopt) (G topt' ftopt') = let
go = unify ms l frz cs; {-# inline go #-}
go' t t' = go (gjoin t) (gjoin t'); {-# inline go' #-}
err = throw (UnifyEx Conversion); {-# inline err #-}
goBind t t' =
let v = VLocalVar l SId
in unify ms (l + 1) frz cs (gjoin $! appCl' ms t v)
(gjoin $! appCl' ms t' v)
{-# inline goBind #-}
guardCS cs = when (cs == Flex) $ throw $ UnifyEx FlexSolution
{-# inline guardCS #-}
in do
-- turn off speculative conversion here:
-- t <- forceAll ms ftopt
-- t' <- forceAll ms ftopt'
t <- forceCS ms cs ftopt
t' <- forceCS ms cs ftopt'
case (t, t') of
-- rigid, canonical
(VLocalVar x sp , VLocalVar x' sp' ) | x == x' -> unifySp ms l frz cs sp sp'
(VLam _ t , VLam _ t' ) -> goBind t t'
(VPi (NI _ i) a b, VPi (NI _ i') a' b') | i == i' -> go' a a' >> goBind b b'
(VU , VU ) -> pure ()
(VFlex x sp, VFlex x' sp')
| x == x' -> unifySp ms l frz cs sp sp'
| otherwise -> guardCS cs >> flexFlex ms l frz topt x sp topt' x' sp'
(VUnfold h sp t, VUnfold h' sp' t') -> case cs of
Rigid | eqUH h h' -> unifySp ms l frz Flex sp sp'
`catch` \_ -> unify ms l frz Full (G topt t) (G topt' t')
| otherwise -> unify ms l frz Rigid (G topt t) (G topt' t')
Flex | eqUH h h' -> unifySp ms l frz Flex sp sp'
| otherwise -> err
_ -> impossible
(VFlex x sp, t') -> do
guardCS cs
solve ms l frz x sp topt' `catch` \_ ->
solveLong ms l frz x sp t'
(t, VFlex x' sp') -> do
guardCS cs
solve ms l frz x' sp' topt `catch` \_ ->
solveLong ms l frz x' sp' t
(VUnfold h sp t, t') -> case cs of
Rigid -> go (G topt t) (G topt' t')
Flex -> err
_ -> impossible
(t, VUnfold h' sp' t') -> case cs of
Rigid -> go (G topt t) (G topt' t')
Flex -> err
_ -> impossible
(t, t') -> unifyCold ms l frz cs t t'
-- | Function factored out to handle `Irrelevant` values and eta-conversion
-- cases. These are quite rare, so it seems to be a good idea to remove them
-- from hot code.
unifyCold :: MetaCxt -> Lvl -> MetaVar -> ConvState -> Val -> Val -> IO ()
unifyCold ms l frz cs ~t ~t' = case (t, t') of
(VIrrelevant, _ ) -> pure ()
(_ , VIrrelevant) -> pure ()
(VLocalVar x sp, VLam (NI _ i) t') ->
let v = VLocalVar l SId
in unifySpCold ms (l + 1) frz cs x (SApp sp v i) (appCl' ms t' v)
(VLam (NI _ i) t, VLocalVar x' sp') ->
let v = VLocalVar l SId
in unifySpCold ms (l + 1) frz cs x' (SApp sp' v i) (appCl' ms t v)
_ ->
throw (UnifyEx Conversion)
{-# noinline unifyCold #-}
unifySpCold :: MetaCxt -> Lvl -> MetaVar -> ConvState -> Lvl -> Spine -> Val -> IO ()
unifySpCold ms l frz cs x sp v = forceCS ms cs v >>= \case
VIrrelevant ->
pure ()
VLam (NI _ i) t' ->
let v = VLocalVar l SId
in unifySpCold ms (l + 1) frz cs x (SApp sp v i) (appCl' ms t' v)
VLocalVar x' sp' | x == x' ->
unifySp ms l frz cs sp sp'
_ ->
throw (UnifyEx Conversion)