-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathstlc_lessimpl10k.idr
13680 lines (10720 loc) · 606 KB
/
stlc_lessimpl10k.idr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Ty : Type
Ty = (Ty : Type)
-> (nat : Ty)
-> (top : Ty)
-> (bot : Ty)
-> (arr : Ty -> Ty -> Ty)
-> (prod : Ty -> Ty -> Ty)
-> (sum : Ty -> Ty -> Ty)
-> Ty
nat : Ty
nat = \ _, nat, _, _, _, _, _ => nat
top : Ty
top = \ _, _, top, _, _, _, _ => top
bot : Ty
bot = \ _, _, _, bot, _, _, _ => bot
arr : Ty-> Ty-> Ty
arr = \ a, b, ty, nat, top, bot, arr, prod, sum =>
arr (a ty nat top bot arr prod sum) (b ty nat top bot arr prod sum)
prod : Ty-> Ty-> Ty
prod = \ a, b, ty, nat, top, bot, arr, prod, sum =>
prod (a ty nat top bot arr prod sum) (b ty nat top bot arr prod sum)
sum : Ty-> Ty-> Ty
sum = \ a, b, ty, nat, top, bot, arr, prod, sum =>
sum (a ty nat top bot arr prod sum) (b ty nat top bot arr prod sum)
Con : Type
Con = (Con : Type)
-> (nil : Con)
-> (snoc : Con -> Ty-> Con)
-> Con
nil : Con
nil = \ con, nil, snoc => nil
snoc : Con -> Ty-> Con
snoc = \ g, a, con, nil, snoc => snoc (g con nil snoc) a
Var : Con -> Ty-> Type
Var = \ g, a =>
(Var : Con -> Ty-> Type)
-> (vz : (g:_)->(a:_) -> Var (snoc g a) a)
-> (vs : (g:_)->(b:_)->(a:_) -> Var g a -> Var (snoc g b) a)
-> Var g a
vz : {g:_}->{a:_} -> Var (snoc g a) a
vz = \ var, vz, vs => vz _ _
vs : {g:_}->{b:_}->{a:_} -> Var g a -> Var (snoc g b) a
vs = \ x, var, vz, vs => vs _ _ _ (x var vz vs)
Tm : Con -> Ty-> Type
Tm = \ g, a =>
(Tm : Con -> Ty-> Type)
-> (var : (g:_)->(a:_)-> Var g a -> Tm g a)
-> (lam : (g:_)->(a:_)->(b:_) -> Tm (snoc g a) b -> Tm g (arr a b))
-> (app : (g:_)->(a:_)->(b:_) -> Tm g (arr a b) -> Tm g a -> Tm g b)
-> (tt : (g:_)-> Tm g top)
-> (pair : (g:_)->(a:_)->(b:_) -> Tm g a -> Tm g b -> Tm g (prod a b))
-> (fst : (g:_)->(a:_)->(b:_) -> Tm g (prod a b) -> Tm g a)
-> (snd : (g:_)->(a:_)->(b:_) -> Tm g (prod a b) -> Tm g b)
-> (left : (g:_)->(a:_)->(b:_) -> Tm g a -> Tm g (sum a b))
-> (right : (g:_)->(a:_)->(b:_) -> Tm g b -> Tm g (sum a b))
-> (split : (g:_)->(a:_)->(b:_)-> (c:_) -> Tm g (sum a b) -> Tm g (arr a c) -> Tm g (arr b c) -> Tm g c)
-> (zero : (g:_)-> Tm g nat)
-> (suc : (g:_)-> Tm g nat -> Tm g nat)
-> (rec : (g:_)->(a:_) -> Tm g nat -> Tm g (arr nat (arr a a)) -> Tm g a -> Tm g a)
-> Tm g a
var : {g:_}->{a:_} -> Var g a -> Tm g a
var = \ x, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec => var _ _ x
lam : {g:_}->{a:_}->{b:_}-> Tm (snoc g a) b -> Tm g (arr a b)
lam = \ t, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
lam _ _ _ (t tm var lam app tt pair fst snd left right split zero suc rec)
app : {g:_}->{a:_}->{b:_} -> Tm g (arr a b) -> Tm g a -> Tm g b
app = \ t, u, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
app _ _ _ (t tm var lam app tt pair fst snd left right split zero suc rec)
(u tm var lam app tt pair fst snd left right split zero suc rec)
tt : {g:_} -> Tm g Main.top
tt = \ tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec => tt _
pair : {g:_}->{a:_}->{b:_} -> Tm g a -> Tm g b -> Tm g (prod a b)
pair = \ t, u, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
pair _ _ _ (t tm var lam app tt pair fst snd left right split zero suc rec)
(u tm var lam app tt pair fst snd left right split zero suc rec)
fst : {g:_}->{a:_}->{b:_}-> Tm g (prod a b) -> Tm g a
fst = \ t, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
fst _ _ _ (t tm var lam app tt pair fst snd left right split zero suc rec)
snd : {g:_}->{a:_}->{b:_} -> Tm g (prod a b) -> Tm g b
snd = \ t, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
snd _ _ _ (t tm var lam app tt pair fst snd left right split zero suc rec)
left : {g:_}->{a:_}->{b:_} -> Tm g a -> Tm g (sum a b)
left = \ t, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
left _ _ _ (t tm var lam app tt pair fst snd left right split zero suc rec)
right : {g:_}->{a:_}->{b:_} -> Tm g b -> Tm g (sum a b)
right = \ t, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
right _ _ _ (t tm var lam app tt pair fst snd left right split zero suc rec)
split : {g:_}->{a:_}->{b:_}->{c:_} -> Tm g (sum a b) -> Tm g (arr a c) -> Tm g (arr b c) -> Tm g c
split = \ t, u, v, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
split _ _ _ _
(t tm var lam app tt pair fst snd left right split zero suc rec)
(u tm var lam app tt pair fst snd left right split zero suc rec)
(v tm var lam app tt pair fst snd left right split zero suc rec)
zero : {g:_} -> Tm g Main.nat
zero = \ tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
zero _
suc : {g:_} -> Tm g Main.nat -> Tm g Main.nat
suc = \ t, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
suc _ (t tm var lam app tt pair fst snd left right split zero suc rec)
rec : {g:_}->{a:_} -> Tm g Main.nat -> Tm g (arr Main.nat (arr a a)) -> Tm g a -> Tm g a
rec = \ t, u, v, tm, var, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
rec _ _
(t tm var lam app tt pair fst snd left right split zero suc rec)
(u tm var lam app tt pair fst snd left right split zero suc rec)
(v tm var lam app tt pair fst snd left right split zero suc rec)
v0 : {g:_}->{a:_} -> Tm (snoc g a) a
v0 = var vz
v1 : {g:_}->{a:_}->{b:_} -> Tm (snoc (snoc g a) b) a
v1 = var (vs vz)
v2 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm (snoc (snoc (snoc g a) b) c) a
v2 = var (vs (vs vz))
v3 : {g:_}->{a:_}->{b:_}->{c:_}->{d:_} -> Tm (snoc (snoc (snoc (snoc g a) b) c) d) a
v3 = var (vs (vs (vs vz)))
tbool : Ty
tbool = sum top top
ttrue : {g:_} -> Tm g Main.tbool
ttrue = left tt
tfalse : {g:_} -> Tm g Main.tbool
tfalse = right tt
ifthenelse : {g:_}->{a:_} -> Tm g (arr Main.tbool (arr a (arr a a)))
ifthenelse = lam (lam (lam (split v2 (lam v2) (lam v1))))
times4 : {g:_}->{a:_} -> Tm g (arr (arr a a) (arr a a))
times4 = lam (lam (app v1 (app v1 (app v1 (app v1 v0)))))
add : {g:_} -> Tm g (arr Main.nat (arr Main.nat Main.nat))
add = lam (rec v0
(lam (lam (lam (suc (app v1 v0)))))
(lam v0))
mul : {g:_} -> Tm g (arr Main.nat (arr Main.nat Main.nat))
mul = lam (rec v0
(lam (lam (lam (app (app add (app v1 v0)) v0))))
(lam zero))
fact : {g:_} -> Tm g (arr Main.nat Main.nat)
fact = lam (rec v0 (lam (lam (app (app mul (suc v1)) v0)))
(suc zero))
Ty1 : Type
Ty1 = (Ty : Type)
-> (nat : Ty)
-> (top : Ty)
-> (bot : Ty)
-> (arr : Ty -> Ty -> Ty)
-> (prod : Ty -> Ty -> Ty)
-> (sum : Ty -> Ty -> Ty)
-> Ty
nat1 : Ty1
nat1 = \ _, nat1, _, _, _, _, _ => nat1
top1 : Ty1
top1 = \ _, _, top1, _, _, _, _ => top1
bot1 : Ty1
bot1 = \ _, _, _, bot1, _, _, _ => bot1
arr1 : Ty1-> Ty1-> Ty1
arr1 = \ a, b, ty, nat1, top1, bot1, arr1, prod, sum =>
arr1 (a ty nat1 top1 bot1 arr1 prod sum) (b ty nat1 top1 bot1 arr1 prod sum)
prod1 : Ty1-> Ty1-> Ty1
prod1 = \ a, b, ty, nat1, top1, bot1, arr1, prod1, sum =>
prod1 (a ty nat1 top1 bot1 arr1 prod1 sum) (b ty nat1 top1 bot1 arr1 prod1 sum)
sum1 : Ty1-> Ty1-> Ty1
sum1 = \ a, b, ty, nat1, top1, bot1, arr1, prod1, sum1 =>
sum1 (a ty nat1 top1 bot1 arr1 prod1 sum1) (b ty nat1 top1 bot1 arr1 prod1 sum1)
Con1 : Type
Con1 = (Con1 : Type)
-> (nil : Con1)
-> (snoc : Con1 -> Ty1-> Con1)
-> Con1
nil1 : Con1
nil1 = \ con, nil1, snoc => nil1
snoc1 : Con1 -> Ty1-> Con1
snoc1 = \ g, a, con, nil1, snoc1 => snoc1 (g con nil1 snoc1) a
Var1 : Con1 -> Ty1-> Type
Var1 = \ g, a =>
(Var1 : Con1 -> Ty1-> Type)
-> (vz : (g:_)->(a:_) -> Var1 (snoc1 g a) a)
-> (vs : (g:_)->(b:_)->(a:_) -> Var1 g a -> Var1 (snoc1 g b) a)
-> Var1 g a
vz1 : {g:_}->{a:_} -> Var1 (snoc1 g a) a
vz1 = \ var, vz1, vs => vz1 _ _
vs1 : {g:_}->{b:_}->{a:_} -> Var1 g a -> Var1 (snoc1 g b) a
vs1 = \ x, var, vz1, vs1 => vs1 _ _ _ (x var vz1 vs1)
Tm1 : Con1 -> Ty1-> Type
Tm1 = \ g, a =>
(Tm1 : Con1 -> Ty1-> Type)
-> (var : (g:_)->(a:_)-> Var1 g a -> Tm1 g a)
-> (lam : (g:_)->(a:_)->(b:_) -> Tm1 (snoc1 g a) b -> Tm1 g (arr1 a b))
-> (app : (g:_)->(a:_)->(b:_) -> Tm1 g (arr1 a b) -> Tm1 g a -> Tm1 g b)
-> (tt : (g:_)-> Tm1 g top1)
-> (pair : (g:_)->(a:_)->(b:_) -> Tm1 g a -> Tm1 g b -> Tm1 g (prod1 a b))
-> (fst : (g:_)->(a:_)->(b:_) -> Tm1 g (prod1 a b) -> Tm1 g a)
-> (snd : (g:_)->(a:_)->(b:_) -> Tm1 g (prod1 a b) -> Tm1 g b)
-> (left : (g:_)->(a:_)->(b:_) -> Tm1 g a -> Tm1 g (sum1 a b))
-> (right : (g:_)->(a:_)->(b:_) -> Tm1 g b -> Tm1 g (sum1 a b))
-> (split : (g:_)->(a:_)->(b:_)-> (c:_) -> Tm1 g (sum1 a b) -> Tm1 g (arr1 a c) -> Tm1 g (arr1 b c) -> Tm1 g c)
-> (zero : (g:_)-> Tm1 g nat1)
-> (suc : (g:_)-> Tm1 g nat1 -> Tm1 g nat1)
-> (rec : (g:_)->(a:_) -> Tm1 g nat1 -> Tm1 g (arr1 nat1 (arr1 a a)) -> Tm1 g a -> Tm1 g a)
-> Tm1 g a
var1 : {g:_}->{a:_} -> Var1 g a -> Tm1 g a
var1 = \ x, tm, var1, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec => var1 _ _ x
lam1 : {g:_}->{a:_}->{b:_}-> Tm1 (snoc1 g a) b -> Tm1 g (arr1 a b)
lam1 = \ t, tm, var1, lam1, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
lam1 _ _ _ (t tm var1 lam1 app tt pair fst snd left right split zero suc rec)
app1 : {g:_}->{a:_}->{b:_} -> Tm1 g (arr1 a b) -> Tm1 g a -> Tm1 g b
app1 = \ t, u, tm, var1, lam1, app1, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
app1 _ _ _ (t tm var1 lam1 app1 tt pair fst snd left right split zero suc rec)
(u tm var1 lam1 app1 tt pair fst snd left right split zero suc rec)
tt1 : {g:_} -> Tm1 g Main.top1
tt1 = \ tm, var1, lam1, app1, tt1, pair, fst, snd, left, right, split, zero, suc, rec => tt1 _
pair1 : {g:_}->{a:_}->{b:_} -> Tm1 g a -> Tm1 g b -> Tm1 g (prod1 a b)
pair1 = \ t, u, tm, var1, lam1, app1, tt1, pair1, fst, snd, left, right, split, zero, suc, rec =>
pair1 _ _ _ (t tm var1 lam1 app1 tt1 pair1 fst snd left right split zero suc rec)
(u tm var1 lam1 app1 tt1 pair1 fst snd left right split zero suc rec)
fst1 : {g:_}->{a:_}->{b:_}-> Tm1 g (prod1 a b) -> Tm1 g a
fst1 = \ t, tm, var1, lam1, app1, tt1, pair1, fst1, snd, left, right, split, zero, suc, rec =>
fst1 _ _ _ (t tm var1 lam1 app1 tt1 pair1 fst1 snd left right split zero suc rec)
snd1 : {g:_}->{a:_}->{b:_} -> Tm1 g (prod1 a b) -> Tm1 g b
snd1 = \ t, tm, var1, lam1, app1, tt1, pair1, fst1, snd1, left, right, split, zero, suc, rec =>
snd1 _ _ _ (t tm var1 lam1 app1 tt1 pair1 fst1 snd1 left right split zero suc rec)
left1 : {g:_}->{a:_}->{b:_} -> Tm1 g a -> Tm1 g (sum1 a b)
left1 = \ t, tm, var1, lam1, app1, tt1, pair1, fst1, snd1, left1, right, split, zero, suc, rec =>
left1 _ _ _ (t tm var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right split zero suc rec)
right1 : {g:_}->{a:_}->{b:_} -> Tm1 g b -> Tm1 g (sum1 a b)
right1 = \ t, tm, var1, lam1, app1, tt1, pair1, fst1, snd1, left1, right1, split, zero, suc, rec =>
right1 _ _ _ (t tm var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 split zero suc rec)
split1 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm1 g (sum1 a b) -> Tm1 g (arr1 a c) -> Tm1 g (arr1 b c) -> Tm1 g c
split1 = \ t, u, v, tm, var1, lam1, app1, tt1, pair1, fst1, snd1, left1, right1, split1, zero, suc, rec =>
split1 _ _ _ _
(t tm var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 split1 zero suc rec)
(u tm var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 split1 zero suc rec)
(v tm var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 split1 zero suc rec)
zero1 : {g:_} -> Tm1 g Main.nat1
zero1 = \ tm, var1, lam1, app1, tt1, pair1, fst1, snd1, left1, right1, split1, zero1, suc, rec =>
zero1 _
suc1 : {g:_} -> Tm1 g Main.nat1 -> Tm1 g Main.nat1
suc1 = \ t, tm, var1, lam1, app1, tt1, pair1, fst1, snd1, left1, right1, split1, zero1, suc1, rec =>
suc1 _ (t tm var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 split1 zero1 suc1 rec)
rec1 : {g:_}->{a:_} -> Tm1 g Main.nat1 -> Tm1 g (arr1 Main.nat1 (arr1 a a)) -> Tm1 g a -> Tm1 g a
rec1 = \ t, u, v, tm, var1, lam1, app1, tt1, pair1, fst1, snd1, left1, right1, split1, zero1, suc1, rec1 =>
rec1 _ _
(t tm var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 split1 zero1 suc1 rec1)
(u tm var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 split1 zero1 suc1 rec1)
(v tm var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 split1 zero1 suc1 rec1)
v01 : {g:_}->{a:_} -> Tm1 (snoc1 g a) a
v01 = var1 vz1
v11 : {g:_}->{a:_}->{b:_} -> Tm1 (snoc1 (snoc1 g a) b) a
v11 = var1 (vs1 vz1)
v21 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm1 (snoc1 (snoc1 (snoc1 g a) b) c) a
v21 = var1 (vs1 (vs1 vz1))
v31 : {g:_}->{a:_}->{b:_}->{c:_}->{d:_} -> Tm1 (snoc1 (snoc1 (snoc1 (snoc1 g a) b) c) d) a
v31 = var1 (vs1 (vs1 (vs1 vz1)))
tbool1 : Ty1
tbool1 = sum1 top1 top1
ttrue1 : {g:_} -> Tm1 g Main.tbool1
ttrue1 = left1 tt1
tfalse1 : {g:_} -> Tm1 g Main.tbool1
tfalse1 = right1 tt1
ifthenelse1 : {g:_}->{a:_} -> Tm1 g (arr1 Main.tbool1 (arr1 a (arr1 a a)))
ifthenelse1 = lam1 (lam1 (lam1 (split1 v21 (lam1 v21) (lam1 v11))))
times41 : {g:_}->{a:_} -> Tm1 g (arr1 (arr1 a a) (arr1 a a))
times41 = lam1 (lam1 (app1 v11 (app1 v11 (app1 v11 (app1 v11 v01)))))
add1 : {g:_} -> Tm1 g (arr1 Main.nat1 (arr1 Main.nat1 Main.nat1))
add1 = lam1 (rec1 v01
(lam1 (lam1 (lam1 (suc1 (app1 v11 v01)))))
(lam1 v01))
mul1 : {g:_} -> Tm1 g (arr1 Main.nat1 (arr1 Main.nat1 Main.nat1))
mul1 = lam1 (rec1 v01
(lam1 (lam1 (lam1 (app1 (app1 add1 (app1 v11 v01)) v01))))
(lam1 zero1))
fact1 : {g:_} -> Tm1 g (arr1 Main.nat1 Main.nat1)
fact1 = lam1 (rec1 v01 (lam1 (lam1 (app1 (app1 mul1 (suc1 v11)) v01)))
(suc1 zero1))
Ty2 : Type
Ty2 = (Ty : Type)
-> (nat : Ty)
-> (top : Ty)
-> (bot : Ty)
-> (arr : Ty -> Ty -> Ty)
-> (prod : Ty -> Ty -> Ty)
-> (sum : Ty -> Ty -> Ty)
-> Ty
nat2 : Ty2
nat2 = \ _, nat2, _, _, _, _, _ => nat2
top2 : Ty2
top2 = \ _, _, top2, _, _, _, _ => top2
bot2 : Ty2
bot2 = \ _, _, _, bot2, _, _, _ => bot2
arr2 : Ty2-> Ty2-> Ty2
arr2 = \ a, b, ty, nat2, top2, bot2, arr2, prod, sum =>
arr2 (a ty nat2 top2 bot2 arr2 prod sum) (b ty nat2 top2 bot2 arr2 prod sum)
prod2 : Ty2-> Ty2-> Ty2
prod2 = \ a, b, ty, nat2, top2, bot2, arr2, prod2, sum =>
prod2 (a ty nat2 top2 bot2 arr2 prod2 sum) (b ty nat2 top2 bot2 arr2 prod2 sum)
sum2 : Ty2-> Ty2-> Ty2
sum2 = \ a, b, ty, nat2, top2, bot2, arr2, prod2, sum2 =>
sum2 (a ty nat2 top2 bot2 arr2 prod2 sum2) (b ty nat2 top2 bot2 arr2 prod2 sum2)
Con2 : Type
Con2 = (Con2 : Type)
-> (nil : Con2)
-> (snoc : Con2 -> Ty2-> Con2)
-> Con2
nil2 : Con2
nil2 = \ con, nil2, snoc => nil2
snoc2 : Con2 -> Ty2-> Con2
snoc2 = \ g, a, con, nil2, snoc2 => snoc2 (g con nil2 snoc2) a
Var2 : Con2 -> Ty2-> Type
Var2 = \ g, a =>
(Var2 : Con2 -> Ty2-> Type)
-> (vz : (g:_)->(a:_) -> Var2 (snoc2 g a) a)
-> (vs : (g:_)->(b:_)->(a:_) -> Var2 g a -> Var2 (snoc2 g b) a)
-> Var2 g a
vz2 : {g:_}->{a:_} -> Var2 (snoc2 g a) a
vz2 = \ var, vz2, vs => vz2 _ _
vs2 : {g:_}->{b:_}->{a:_} -> Var2 g a -> Var2 (snoc2 g b) a
vs2 = \ x, var, vz2, vs2 => vs2 _ _ _ (x var vz2 vs2)
Tm2 : Con2 -> Ty2-> Type
Tm2 = \ g, a =>
(Tm2 : Con2 -> Ty2-> Type)
-> (var : (g:_)->(a:_)-> Var2 g a -> Tm2 g a)
-> (lam : (g:_)->(a:_)->(b:_) -> Tm2 (snoc2 g a) b -> Tm2 g (arr2 a b))
-> (app : (g:_)->(a:_)->(b:_) -> Tm2 g (arr2 a b) -> Tm2 g a -> Tm2 g b)
-> (tt : (g:_)-> Tm2 g top2)
-> (pair : (g:_)->(a:_)->(b:_) -> Tm2 g a -> Tm2 g b -> Tm2 g (prod2 a b))
-> (fst : (g:_)->(a:_)->(b:_) -> Tm2 g (prod2 a b) -> Tm2 g a)
-> (snd : (g:_)->(a:_)->(b:_) -> Tm2 g (prod2 a b) -> Tm2 g b)
-> (left : (g:_)->(a:_)->(b:_) -> Tm2 g a -> Tm2 g (sum2 a b))
-> (right : (g:_)->(a:_)->(b:_) -> Tm2 g b -> Tm2 g (sum2 a b))
-> (split : (g:_)->(a:_)->(b:_)-> (c:_) -> Tm2 g (sum2 a b) -> Tm2 g (arr2 a c) -> Tm2 g (arr2 b c) -> Tm2 g c)
-> (zero : (g:_)-> Tm2 g nat2)
-> (suc : (g:_)-> Tm2 g nat2 -> Tm2 g nat2)
-> (rec : (g:_)->(a:_) -> Tm2 g nat2 -> Tm2 g (arr2 nat2 (arr2 a a)) -> Tm2 g a -> Tm2 g a)
-> Tm2 g a
var2 : {g:_}->{a:_} -> Var2 g a -> Tm2 g a
var2 = \ x, tm, var2, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec => var2 _ _ x
lam2 : {g:_}->{a:_}->{b:_}-> Tm2 (snoc2 g a) b -> Tm2 g (arr2 a b)
lam2 = \ t, tm, var2, lam2, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
lam2 _ _ _ (t tm var2 lam2 app tt pair fst snd left right split zero suc rec)
app2 : {g:_}->{a:_}->{b:_} -> Tm2 g (arr2 a b) -> Tm2 g a -> Tm2 g b
app2 = \ t, u, tm, var2, lam2, app2, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
app2 _ _ _ (t tm var2 lam2 app2 tt pair fst snd left right split zero suc rec)
(u tm var2 lam2 app2 tt pair fst snd left right split zero suc rec)
tt2 : {g:_} -> Tm2 g Main.top2
tt2 = \ tm, var2, lam2, app2, tt2, pair, fst, snd, left, right, split, zero, suc, rec => tt2 _
pair2 : {g:_}->{a:_}->{b:_} -> Tm2 g a -> Tm2 g b -> Tm2 g (prod2 a b)
pair2 = \ t, u, tm, var2, lam2, app2, tt2, pair2, fst, snd, left, right, split, zero, suc, rec =>
pair2 _ _ _ (t tm var2 lam2 app2 tt2 pair2 fst snd left right split zero suc rec)
(u tm var2 lam2 app2 tt2 pair2 fst snd left right split zero suc rec)
fst2 : {g:_}->{a:_}->{b:_}-> Tm2 g (prod2 a b) -> Tm2 g a
fst2 = \ t, tm, var2, lam2, app2, tt2, pair2, fst2, snd, left, right, split, zero, suc, rec =>
fst2 _ _ _ (t tm var2 lam2 app2 tt2 pair2 fst2 snd left right split zero suc rec)
snd2 : {g:_}->{a:_}->{b:_} -> Tm2 g (prod2 a b) -> Tm2 g b
snd2 = \ t, tm, var2, lam2, app2, tt2, pair2, fst2, snd2, left, right, split, zero, suc, rec =>
snd2 _ _ _ (t tm var2 lam2 app2 tt2 pair2 fst2 snd2 left right split zero suc rec)
left2 : {g:_}->{a:_}->{b:_} -> Tm2 g a -> Tm2 g (sum2 a b)
left2 = \ t, tm, var2, lam2, app2, tt2, pair2, fst2, snd2, left2, right, split, zero, suc, rec =>
left2 _ _ _ (t tm var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right split zero suc rec)
right2 : {g:_}->{a:_}->{b:_} -> Tm2 g b -> Tm2 g (sum2 a b)
right2 = \ t, tm, var2, lam2, app2, tt2, pair2, fst2, snd2, left2, right2, split, zero, suc, rec =>
right2 _ _ _ (t tm var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 split zero suc rec)
split2 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm2 g (sum2 a b) -> Tm2 g (arr2 a c) -> Tm2 g (arr2 b c) -> Tm2 g c
split2 = \ t, u, v, tm, var2, lam2, app2, tt2, pair2, fst2, snd2, left2, right2, split2, zero, suc, rec =>
split2 _ _ _ _
(t tm var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 split2 zero suc rec)
(u tm var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 split2 zero suc rec)
(v tm var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 split2 zero suc rec)
zero2 : {g:_} -> Tm2 g Main.nat2
zero2 = \ tm, var2, lam2, app2, tt2, pair2, fst2, snd2, left2, right2, split2, zero2, suc, rec =>
zero2 _
suc2 : {g:_} -> Tm2 g Main.nat2 -> Tm2 g Main.nat2
suc2 = \ t, tm, var2, lam2, app2, tt2, pair2, fst2, snd2, left2, right2, split2, zero2, suc2, rec =>
suc2 _ (t tm var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 split2 zero2 suc2 rec)
rec2 : {g:_}->{a:_} -> Tm2 g Main.nat2 -> Tm2 g (arr2 Main.nat2 (arr2 a a)) -> Tm2 g a -> Tm2 g a
rec2 = \ t, u, v, tm, var2, lam2, app2, tt2, pair2, fst2, snd2, left2, right2, split2, zero2, suc2, rec2 =>
rec2 _ _
(t tm var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 split2 zero2 suc2 rec2)
(u tm var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 split2 zero2 suc2 rec2)
(v tm var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 split2 zero2 suc2 rec2)
v02 : {g:_}->{a:_} -> Tm2 (snoc2 g a) a
v02 = var2 vz2
v12 : {g:_}->{a:_}->{b:_} -> Tm2 (snoc2 (snoc2 g a) b) a
v12 = var2 (vs2 vz2)
v22 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm2 (snoc2 (snoc2 (snoc2 g a) b) c) a
v22 = var2 (vs2 (vs2 vz2))
v32 : {g:_}->{a:_}->{b:_}->{c:_}->{d:_} -> Tm2 (snoc2 (snoc2 (snoc2 (snoc2 g a) b) c) d) a
v32 = var2 (vs2 (vs2 (vs2 vz2)))
tbool2 : Ty2
tbool2 = sum2 top2 top2
ttrue2 : {g:_} -> Tm2 g Main.tbool2
ttrue2 = left2 tt2
tfalse2 : {g:_} -> Tm2 g Main.tbool2
tfalse2 = right2 tt2
ifthenelse2 : {g:_}->{a:_} -> Tm2 g (arr2 Main.tbool2 (arr2 a (arr2 a a)))
ifthenelse2 = lam2 (lam2 (lam2 (split2 v22 (lam2 v22) (lam2 v12))))
times42 : {g:_}->{a:_} -> Tm2 g (arr2 (arr2 a a) (arr2 a a))
times42 = lam2 (lam2 (app2 v12 (app2 v12 (app2 v12 (app2 v12 v02)))))
add2 : {g:_} -> Tm2 g (arr2 Main.nat2 (arr2 Main.nat2 Main.nat2))
add2 = lam2 (rec2 v02
(lam2 (lam2 (lam2 (suc2 (app2 v12 v02)))))
(lam2 v02))
mul2 : {g:_} -> Tm2 g (arr2 Main.nat2 (arr2 Main.nat2 Main.nat2))
mul2 = lam2 (rec2 v02
(lam2 (lam2 (lam2 (app2 (app2 add2 (app2 v12 v02)) v02))))
(lam2 zero2))
fact2 : {g:_} -> Tm2 g (arr2 Main.nat2 Main.nat2)
fact2 = lam2 (rec2 v02 (lam2 (lam2 (app2 (app2 mul2 (suc2 v12)) v02)))
(suc2 zero2))
Ty3 : Type
Ty3 = (Ty : Type)
-> (nat : Ty)
-> (top : Ty)
-> (bot : Ty)
-> (arr : Ty -> Ty -> Ty)
-> (prod : Ty -> Ty -> Ty)
-> (sum : Ty -> Ty -> Ty)
-> Ty
nat3 : Ty3
nat3 = \ _, nat3, _, _, _, _, _ => nat3
top3 : Ty3
top3 = \ _, _, top3, _, _, _, _ => top3
bot3 : Ty3
bot3 = \ _, _, _, bot3, _, _, _ => bot3
arr3 : Ty3-> Ty3-> Ty3
arr3 = \ a, b, ty, nat3, top3, bot3, arr3, prod, sum =>
arr3 (a ty nat3 top3 bot3 arr3 prod sum) (b ty nat3 top3 bot3 arr3 prod sum)
prod3 : Ty3-> Ty3-> Ty3
prod3 = \ a, b, ty, nat3, top3, bot3, arr3, prod3, sum =>
prod3 (a ty nat3 top3 bot3 arr3 prod3 sum) (b ty nat3 top3 bot3 arr3 prod3 sum)
sum3 : Ty3-> Ty3-> Ty3
sum3 = \ a, b, ty, nat3, top3, bot3, arr3, prod3, sum3 =>
sum3 (a ty nat3 top3 bot3 arr3 prod3 sum3) (b ty nat3 top3 bot3 arr3 prod3 sum3)
Con3 : Type
Con3 = (Con3 : Type)
-> (nil : Con3)
-> (snoc : Con3 -> Ty3-> Con3)
-> Con3
nil3 : Con3
nil3 = \ con, nil3, snoc => nil3
snoc3 : Con3 -> Ty3-> Con3
snoc3 = \ g, a, con, nil3, snoc3 => snoc3 (g con nil3 snoc3) a
Var3 : Con3 -> Ty3-> Type
Var3 = \ g, a =>
(Var3 : Con3 -> Ty3-> Type)
-> (vz : (g:_)->(a:_) -> Var3 (snoc3 g a) a)
-> (vs : (g:_)->(b:_)->(a:_) -> Var3 g a -> Var3 (snoc3 g b) a)
-> Var3 g a
vz3 : {g:_}->{a:_} -> Var3 (snoc3 g a) a
vz3 = \ var, vz3, vs => vz3 _ _
vs3 : {g:_}->{b:_}->{a:_} -> Var3 g a -> Var3 (snoc3 g b) a
vs3 = \ x, var, vz3, vs3 => vs3 _ _ _ (x var vz3 vs3)
Tm3 : Con3 -> Ty3-> Type
Tm3 = \ g, a =>
(Tm3 : Con3 -> Ty3-> Type)
-> (var : (g:_)->(a:_)-> Var3 g a -> Tm3 g a)
-> (lam : (g:_)->(a:_)->(b:_) -> Tm3 (snoc3 g a) b -> Tm3 g (arr3 a b))
-> (app : (g:_)->(a:_)->(b:_) -> Tm3 g (arr3 a b) -> Tm3 g a -> Tm3 g b)
-> (tt : (g:_)-> Tm3 g top3)
-> (pair : (g:_)->(a:_)->(b:_) -> Tm3 g a -> Tm3 g b -> Tm3 g (prod3 a b))
-> (fst : (g:_)->(a:_)->(b:_) -> Tm3 g (prod3 a b) -> Tm3 g a)
-> (snd : (g:_)->(a:_)->(b:_) -> Tm3 g (prod3 a b) -> Tm3 g b)
-> (left : (g:_)->(a:_)->(b:_) -> Tm3 g a -> Tm3 g (sum3 a b))
-> (right : (g:_)->(a:_)->(b:_) -> Tm3 g b -> Tm3 g (sum3 a b))
-> (split : (g:_)->(a:_)->(b:_)-> (c:_) -> Tm3 g (sum3 a b) -> Tm3 g (arr3 a c) -> Tm3 g (arr3 b c) -> Tm3 g c)
-> (zero : (g:_)-> Tm3 g nat3)
-> (suc : (g:_)-> Tm3 g nat3 -> Tm3 g nat3)
-> (rec : (g:_)->(a:_) -> Tm3 g nat3 -> Tm3 g (arr3 nat3 (arr3 a a)) -> Tm3 g a -> Tm3 g a)
-> Tm3 g a
var3 : {g:_}->{a:_} -> Var3 g a -> Tm3 g a
var3 = \ x, tm, var3, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec => var3 _ _ x
lam3 : {g:_}->{a:_}->{b:_}-> Tm3 (snoc3 g a) b -> Tm3 g (arr3 a b)
lam3 = \ t, tm, var3, lam3, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
lam3 _ _ _ (t tm var3 lam3 app tt pair fst snd left right split zero suc rec)
app3 : {g:_}->{a:_}->{b:_} -> Tm3 g (arr3 a b) -> Tm3 g a -> Tm3 g b
app3 = \ t, u, tm, var3, lam3, app3, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
app3 _ _ _ (t tm var3 lam3 app3 tt pair fst snd left right split zero suc rec)
(u tm var3 lam3 app3 tt pair fst snd left right split zero suc rec)
tt3 : {g:_} -> Tm3 g Main.top3
tt3 = \ tm, var3, lam3, app3, tt3, pair, fst, snd, left, right, split, zero, suc, rec => tt3 _
pair3 : {g:_}->{a:_}->{b:_} -> Tm3 g a -> Tm3 g b -> Tm3 g (prod3 a b)
pair3 = \ t, u, tm, var3, lam3, app3, tt3, pair3, fst, snd, left, right, split, zero, suc, rec =>
pair3 _ _ _ (t tm var3 lam3 app3 tt3 pair3 fst snd left right split zero suc rec)
(u tm var3 lam3 app3 tt3 pair3 fst snd left right split zero suc rec)
fst3 : {g:_}->{a:_}->{b:_}-> Tm3 g (prod3 a b) -> Tm3 g a
fst3 = \ t, tm, var3, lam3, app3, tt3, pair3, fst3, snd, left, right, split, zero, suc, rec =>
fst3 _ _ _ (t tm var3 lam3 app3 tt3 pair3 fst3 snd left right split zero suc rec)
snd3 : {g:_}->{a:_}->{b:_} -> Tm3 g (prod3 a b) -> Tm3 g b
snd3 = \ t, tm, var3, lam3, app3, tt3, pair3, fst3, snd3, left, right, split, zero, suc, rec =>
snd3 _ _ _ (t tm var3 lam3 app3 tt3 pair3 fst3 snd3 left right split zero suc rec)
left3 : {g:_}->{a:_}->{b:_} -> Tm3 g a -> Tm3 g (sum3 a b)
left3 = \ t, tm, var3, lam3, app3, tt3, pair3, fst3, snd3, left3, right, split, zero, suc, rec =>
left3 _ _ _ (t tm var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right split zero suc rec)
right3 : {g:_}->{a:_}->{b:_} -> Tm3 g b -> Tm3 g (sum3 a b)
right3 = \ t, tm, var3, lam3, app3, tt3, pair3, fst3, snd3, left3, right3, split, zero, suc, rec =>
right3 _ _ _ (t tm var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 split zero suc rec)
split3 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm3 g (sum3 a b) -> Tm3 g (arr3 a c) -> Tm3 g (arr3 b c) -> Tm3 g c
split3 = \ t, u, v, tm, var3, lam3, app3, tt3, pair3, fst3, snd3, left3, right3, split3, zero, suc, rec =>
split3 _ _ _ _
(t tm var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 split3 zero suc rec)
(u tm var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 split3 zero suc rec)
(v tm var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 split3 zero suc rec)
zero3 : {g:_} -> Tm3 g Main.nat3
zero3 = \ tm, var3, lam3, app3, tt3, pair3, fst3, snd3, left3, right3, split3, zero3, suc, rec =>
zero3 _
suc3 : {g:_} -> Tm3 g Main.nat3 -> Tm3 g Main.nat3
suc3 = \ t, tm, var3, lam3, app3, tt3, pair3, fst3, snd3, left3, right3, split3, zero3, suc3, rec =>
suc3 _ (t tm var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 split3 zero3 suc3 rec)
rec3 : {g:_}->{a:_} -> Tm3 g Main.nat3 -> Tm3 g (arr3 Main.nat3 (arr3 a a)) -> Tm3 g a -> Tm3 g a
rec3 = \ t, u, v, tm, var3, lam3, app3, tt3, pair3, fst3, snd3, left3, right3, split3, zero3, suc3, rec3 =>
rec3 _ _
(t tm var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 split3 zero3 suc3 rec3)
(u tm var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 split3 zero3 suc3 rec3)
(v tm var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 split3 zero3 suc3 rec3)
v03 : {g:_}->{a:_} -> Tm3 (snoc3 g a) a
v03 = var3 vz3
v13 : {g:_}->{a:_}->{b:_} -> Tm3 (snoc3 (snoc3 g a) b) a
v13 = var3 (vs3 vz3)
v23 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm3 (snoc3 (snoc3 (snoc3 g a) b) c) a
v23 = var3 (vs3 (vs3 vz3))
v33 : {g:_}->{a:_}->{b:_}->{c:_}->{d:_} -> Tm3 (snoc3 (snoc3 (snoc3 (snoc3 g a) b) c) d) a
v33 = var3 (vs3 (vs3 (vs3 vz3)))
tbool3 : Ty3
tbool3 = sum3 top3 top3
ttrue3 : {g:_} -> Tm3 g Main.tbool3
ttrue3 = left3 tt3
tfalse3 : {g:_} -> Tm3 g Main.tbool3
tfalse3 = right3 tt3
ifthenelse3 : {g:_}->{a:_} -> Tm3 g (arr3 Main.tbool3 (arr3 a (arr3 a a)))
ifthenelse3 = lam3 (lam3 (lam3 (split3 v23 (lam3 v23) (lam3 v13))))
times43 : {g:_}->{a:_} -> Tm3 g (arr3 (arr3 a a) (arr3 a a))
times43 = lam3 (lam3 (app3 v13 (app3 v13 (app3 v13 (app3 v13 v03)))))
add3 : {g:_} -> Tm3 g (arr3 Main.nat3 (arr3 Main.nat3 Main.nat3))
add3 = lam3 (rec3 v03
(lam3 (lam3 (lam3 (suc3 (app3 v13 v03)))))
(lam3 v03))
mul3 : {g:_} -> Tm3 g (arr3 Main.nat3 (arr3 Main.nat3 Main.nat3))
mul3 = lam3 (rec3 v03
(lam3 (lam3 (lam3 (app3 (app3 add3 (app3 v13 v03)) v03))))
(lam3 zero3))
fact3 : {g:_} -> Tm3 g (arr3 Main.nat3 Main.nat3)
fact3 = lam3 (rec3 v03 (lam3 (lam3 (app3 (app3 mul3 (suc3 v13)) v03)))
(suc3 zero3))
Ty4 : Type
Ty4 = (Ty : Type)
-> (nat : Ty)
-> (top : Ty)
-> (bot : Ty)
-> (arr : Ty -> Ty -> Ty)
-> (prod : Ty -> Ty -> Ty)
-> (sum : Ty -> Ty -> Ty)
-> Ty
nat4 : Ty4
nat4 = \ _, nat4, _, _, _, _, _ => nat4
top4 : Ty4
top4 = \ _, _, top4, _, _, _, _ => top4
bot4 : Ty4
bot4 = \ _, _, _, bot4, _, _, _ => bot4
arr4 : Ty4-> Ty4-> Ty4
arr4 = \ a, b, ty, nat4, top4, bot4, arr4, prod, sum =>
arr4 (a ty nat4 top4 bot4 arr4 prod sum) (b ty nat4 top4 bot4 arr4 prod sum)
prod4 : Ty4-> Ty4-> Ty4
prod4 = \ a, b, ty, nat4, top4, bot4, arr4, prod4, sum =>
prod4 (a ty nat4 top4 bot4 arr4 prod4 sum) (b ty nat4 top4 bot4 arr4 prod4 sum)
sum4 : Ty4-> Ty4-> Ty4
sum4 = \ a, b, ty, nat4, top4, bot4, arr4, prod4, sum4 =>
sum4 (a ty nat4 top4 bot4 arr4 prod4 sum4) (b ty nat4 top4 bot4 arr4 prod4 sum4)
Con4 : Type
Con4 = (Con4 : Type)
-> (nil : Con4)
-> (snoc : Con4 -> Ty4-> Con4)
-> Con4
nil4 : Con4
nil4 = \ con, nil4, snoc => nil4
snoc4 : Con4 -> Ty4-> Con4
snoc4 = \ g, a, con, nil4, snoc4 => snoc4 (g con nil4 snoc4) a
Var4 : Con4 -> Ty4-> Type
Var4 = \ g, a =>
(Var4 : Con4 -> Ty4-> Type)
-> (vz : (g:_)->(a:_) -> Var4 (snoc4 g a) a)
-> (vs : (g:_)->(b:_)->(a:_) -> Var4 g a -> Var4 (snoc4 g b) a)
-> Var4 g a
vz4 : {g:_}->{a:_} -> Var4 (snoc4 g a) a
vz4 = \ var, vz4, vs => vz4 _ _
vs4 : {g:_}->{b:_}->{a:_} -> Var4 g a -> Var4 (snoc4 g b) a
vs4 = \ x, var, vz4, vs4 => vs4 _ _ _ (x var vz4 vs4)
Tm4 : Con4 -> Ty4-> Type
Tm4 = \ g, a =>
(Tm4 : Con4 -> Ty4-> Type)
-> (var : (g:_)->(a:_)-> Var4 g a -> Tm4 g a)
-> (lam : (g:_)->(a:_)->(b:_) -> Tm4 (snoc4 g a) b -> Tm4 g (arr4 a b))
-> (app : (g:_)->(a:_)->(b:_) -> Tm4 g (arr4 a b) -> Tm4 g a -> Tm4 g b)
-> (tt : (g:_)-> Tm4 g top4)
-> (pair : (g:_)->(a:_)->(b:_) -> Tm4 g a -> Tm4 g b -> Tm4 g (prod4 a b))
-> (fst : (g:_)->(a:_)->(b:_) -> Tm4 g (prod4 a b) -> Tm4 g a)
-> (snd : (g:_)->(a:_)->(b:_) -> Tm4 g (prod4 a b) -> Tm4 g b)
-> (left : (g:_)->(a:_)->(b:_) -> Tm4 g a -> Tm4 g (sum4 a b))
-> (right : (g:_)->(a:_)->(b:_) -> Tm4 g b -> Tm4 g (sum4 a b))
-> (split : (g:_)->(a:_)->(b:_)-> (c:_) -> Tm4 g (sum4 a b) -> Tm4 g (arr4 a c) -> Tm4 g (arr4 b c) -> Tm4 g c)
-> (zero : (g:_)-> Tm4 g nat4)
-> (suc : (g:_)-> Tm4 g nat4 -> Tm4 g nat4)
-> (rec : (g:_)->(a:_) -> Tm4 g nat4 -> Tm4 g (arr4 nat4 (arr4 a a)) -> Tm4 g a -> Tm4 g a)
-> Tm4 g a
var4 : {g:_}->{a:_} -> Var4 g a -> Tm4 g a
var4 = \ x, tm, var4, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec => var4 _ _ x
lam4 : {g:_}->{a:_}->{b:_}-> Tm4 (snoc4 g a) b -> Tm4 g (arr4 a b)
lam4 = \ t, tm, var4, lam4, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
lam4 _ _ _ (t tm var4 lam4 app tt pair fst snd left right split zero suc rec)
app4 : {g:_}->{a:_}->{b:_} -> Tm4 g (arr4 a b) -> Tm4 g a -> Tm4 g b
app4 = \ t, u, tm, var4, lam4, app4, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
app4 _ _ _ (t tm var4 lam4 app4 tt pair fst snd left right split zero suc rec)
(u tm var4 lam4 app4 tt pair fst snd left right split zero suc rec)
tt4 : {g:_} -> Tm4 g Main.top4
tt4 = \ tm, var4, lam4, app4, tt4, pair, fst, snd, left, right, split, zero, suc, rec => tt4 _
pair4 : {g:_}->{a:_}->{b:_} -> Tm4 g a -> Tm4 g b -> Tm4 g (prod4 a b)
pair4 = \ t, u, tm, var4, lam4, app4, tt4, pair4, fst, snd, left, right, split, zero, suc, rec =>
pair4 _ _ _ (t tm var4 lam4 app4 tt4 pair4 fst snd left right split zero suc rec)
(u tm var4 lam4 app4 tt4 pair4 fst snd left right split zero suc rec)
fst4 : {g:_}->{a:_}->{b:_}-> Tm4 g (prod4 a b) -> Tm4 g a
fst4 = \ t, tm, var4, lam4, app4, tt4, pair4, fst4, snd, left, right, split, zero, suc, rec =>
fst4 _ _ _ (t tm var4 lam4 app4 tt4 pair4 fst4 snd left right split zero suc rec)
snd4 : {g:_}->{a:_}->{b:_} -> Tm4 g (prod4 a b) -> Tm4 g b
snd4 = \ t, tm, var4, lam4, app4, tt4, pair4, fst4, snd4, left, right, split, zero, suc, rec =>
snd4 _ _ _ (t tm var4 lam4 app4 tt4 pair4 fst4 snd4 left right split zero suc rec)
left4 : {g:_}->{a:_}->{b:_} -> Tm4 g a -> Tm4 g (sum4 a b)
left4 = \ t, tm, var4, lam4, app4, tt4, pair4, fst4, snd4, left4, right, split, zero, suc, rec =>
left4 _ _ _ (t tm var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right split zero suc rec)
right4 : {g:_}->{a:_}->{b:_} -> Tm4 g b -> Tm4 g (sum4 a b)
right4 = \ t, tm, var4, lam4, app4, tt4, pair4, fst4, snd4, left4, right4, split, zero, suc, rec =>
right4 _ _ _ (t tm var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 split zero suc rec)
split4 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm4 g (sum4 a b) -> Tm4 g (arr4 a c) -> Tm4 g (arr4 b c) -> Tm4 g c
split4 = \ t, u, v, tm, var4, lam4, app4, tt4, pair4, fst4, snd4, left4, right4, split4, zero, suc, rec =>
split4 _ _ _ _
(t tm var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 split4 zero suc rec)
(u tm var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 split4 zero suc rec)
(v tm var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 split4 zero suc rec)
zero4 : {g:_} -> Tm4 g Main.nat4
zero4 = \ tm, var4, lam4, app4, tt4, pair4, fst4, snd4, left4, right4, split4, zero4, suc, rec =>
zero4 _
suc4 : {g:_} -> Tm4 g Main.nat4 -> Tm4 g Main.nat4
suc4 = \ t, tm, var4, lam4, app4, tt4, pair4, fst4, snd4, left4, right4, split4, zero4, suc4, rec =>
suc4 _ (t tm var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 split4 zero4 suc4 rec)
rec4 : {g:_}->{a:_} -> Tm4 g Main.nat4 -> Tm4 g (arr4 Main.nat4 (arr4 a a)) -> Tm4 g a -> Tm4 g a
rec4 = \ t, u, v, tm, var4, lam4, app4, tt4, pair4, fst4, snd4, left4, right4, split4, zero4, suc4, rec4 =>
rec4 _ _
(t tm var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 split4 zero4 suc4 rec4)
(u tm var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 split4 zero4 suc4 rec4)
(v tm var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 split4 zero4 suc4 rec4)
v04 : {g:_}->{a:_} -> Tm4 (snoc4 g a) a
v04 = var4 vz4
v14 : {g:_}->{a:_}->{b:_} -> Tm4 (snoc4 (snoc4 g a) b) a
v14 = var4 (vs4 vz4)
v24 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm4 (snoc4 (snoc4 (snoc4 g a) b) c) a
v24 = var4 (vs4 (vs4 vz4))
v34 : {g:_}->{a:_}->{b:_}->{c:_}->{d:_} -> Tm4 (snoc4 (snoc4 (snoc4 (snoc4 g a) b) c) d) a
v34 = var4 (vs4 (vs4 (vs4 vz4)))
tbool4 : Ty4
tbool4 = sum4 top4 top4
ttrue4 : {g:_} -> Tm4 g Main.tbool4
ttrue4 = left4 tt4
tfalse4 : {g:_} -> Tm4 g Main.tbool4
tfalse4 = right4 tt4
ifthenelse4 : {g:_}->{a:_} -> Tm4 g (arr4 Main.tbool4 (arr4 a (arr4 a a)))
ifthenelse4 = lam4 (lam4 (lam4 (split4 v24 (lam4 v24) (lam4 v14))))
times44 : {g:_}->{a:_} -> Tm4 g (arr4 (arr4 a a) (arr4 a a))
times44 = lam4 (lam4 (app4 v14 (app4 v14 (app4 v14 (app4 v14 v04)))))
add4 : {g:_} -> Tm4 g (arr4 Main.nat4 (arr4 Main.nat4 Main.nat4))
add4 = lam4 (rec4 v04
(lam4 (lam4 (lam4 (suc4 (app4 v14 v04)))))
(lam4 v04))
mul4 : {g:_} -> Tm4 g (arr4 Main.nat4 (arr4 Main.nat4 Main.nat4))
mul4 = lam4 (rec4 v04
(lam4 (lam4 (lam4 (app4 (app4 add4 (app4 v14 v04)) v04))))
(lam4 zero4))
fact4 : {g:_} -> Tm4 g (arr4 Main.nat4 Main.nat4)
fact4 = lam4 (rec4 v04 (lam4 (lam4 (app4 (app4 mul4 (suc4 v14)) v04)))
(suc4 zero4))
Ty5 : Type
Ty5 = (Ty : Type)
-> (nat : Ty)
-> (top : Ty)
-> (bot : Ty)
-> (arr : Ty -> Ty -> Ty)
-> (prod : Ty -> Ty -> Ty)
-> (sum : Ty -> Ty -> Ty)
-> Ty
nat5 : Ty5
nat5 = \ _, nat5, _, _, _, _, _ => nat5
top5 : Ty5
top5 = \ _, _, top5, _, _, _, _ => top5
bot5 : Ty5
bot5 = \ _, _, _, bot5, _, _, _ => bot5
arr5 : Ty5-> Ty5-> Ty5
arr5 = \ a, b, ty, nat5, top5, bot5, arr5, prod, sum =>
arr5 (a ty nat5 top5 bot5 arr5 prod sum) (b ty nat5 top5 bot5 arr5 prod sum)
prod5 : Ty5-> Ty5-> Ty5
prod5 = \ a, b, ty, nat5, top5, bot5, arr5, prod5, sum =>
prod5 (a ty nat5 top5 bot5 arr5 prod5 sum) (b ty nat5 top5 bot5 arr5 prod5 sum)
sum5 : Ty5-> Ty5-> Ty5
sum5 = \ a, b, ty, nat5, top5, bot5, arr5, prod5, sum5 =>
sum5 (a ty nat5 top5 bot5 arr5 prod5 sum5) (b ty nat5 top5 bot5 arr5 prod5 sum5)
Con5 : Type
Con5 = (Con5 : Type)
-> (nil : Con5)
-> (snoc : Con5 -> Ty5-> Con5)
-> Con5
nil5 : Con5
nil5 = \ con, nil5, snoc => nil5
snoc5 : Con5 -> Ty5-> Con5
snoc5 = \ g, a, con, nil5, snoc5 => snoc5 (g con nil5 snoc5) a
Var5 : Con5 -> Ty5-> Type
Var5 = \ g, a =>
(Var5 : Con5 -> Ty5-> Type)
-> (vz : (g:_)->(a:_) -> Var5 (snoc5 g a) a)
-> (vs : (g:_)->(b:_)->(a:_) -> Var5 g a -> Var5 (snoc5 g b) a)
-> Var5 g a
vz5 : {g:_}->{a:_} -> Var5 (snoc5 g a) a
vz5 = \ var, vz5, vs => vz5 _ _
vs5 : {g:_}->{b:_}->{a:_} -> Var5 g a -> Var5 (snoc5 g b) a
vs5 = \ x, var, vz5, vs5 => vs5 _ _ _ (x var vz5 vs5)
Tm5 : Con5 -> Ty5-> Type
Tm5 = \ g, a =>
(Tm5 : Con5 -> Ty5-> Type)
-> (var : (g:_)->(a:_)-> Var5 g a -> Tm5 g a)
-> (lam : (g:_)->(a:_)->(b:_) -> Tm5 (snoc5 g a) b -> Tm5 g (arr5 a b))
-> (app : (g:_)->(a:_)->(b:_) -> Tm5 g (arr5 a b) -> Tm5 g a -> Tm5 g b)
-> (tt : (g:_)-> Tm5 g top5)
-> (pair : (g:_)->(a:_)->(b:_) -> Tm5 g a -> Tm5 g b -> Tm5 g (prod5 a b))
-> (fst : (g:_)->(a:_)->(b:_) -> Tm5 g (prod5 a b) -> Tm5 g a)
-> (snd : (g:_)->(a:_)->(b:_) -> Tm5 g (prod5 a b) -> Tm5 g b)
-> (left : (g:_)->(a:_)->(b:_) -> Tm5 g a -> Tm5 g (sum5 a b))
-> (right : (g:_)->(a:_)->(b:_) -> Tm5 g b -> Tm5 g (sum5 a b))
-> (split : (g:_)->(a:_)->(b:_)-> (c:_) -> Tm5 g (sum5 a b) -> Tm5 g (arr5 a c) -> Tm5 g (arr5 b c) -> Tm5 g c)
-> (zero : (g:_)-> Tm5 g nat5)
-> (suc : (g:_)-> Tm5 g nat5 -> Tm5 g nat5)
-> (rec : (g:_)->(a:_) -> Tm5 g nat5 -> Tm5 g (arr5 nat5 (arr5 a a)) -> Tm5 g a -> Tm5 g a)
-> Tm5 g a
var5 : {g:_}->{a:_} -> Var5 g a -> Tm5 g a
var5 = \ x, tm, var5, lam, app, tt, pair, fst, snd, left, right, split, zero, suc, rec => var5 _ _ x
lam5 : {g:_}->{a:_}->{b:_}-> Tm5 (snoc5 g a) b -> Tm5 g (arr5 a b)
lam5 = \ t, tm, var5, lam5, app, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
lam5 _ _ _ (t tm var5 lam5 app tt pair fst snd left right split zero suc rec)
app5 : {g:_}->{a:_}->{b:_} -> Tm5 g (arr5 a b) -> Tm5 g a -> Tm5 g b
app5 = \ t, u, tm, var5, lam5, app5, tt, pair, fst, snd, left, right, split, zero, suc, rec =>
app5 _ _ _ (t tm var5 lam5 app5 tt pair fst snd left right split zero suc rec)
(u tm var5 lam5 app5 tt pair fst snd left right split zero suc rec)
tt5 : {g:_} -> Tm5 g Main.top5
tt5 = \ tm, var5, lam5, app5, tt5, pair, fst, snd, left, right, split, zero, suc, rec => tt5 _
pair5 : {g:_}->{a:_}->{b:_} -> Tm5 g a -> Tm5 g b -> Tm5 g (prod5 a b)
pair5 = \ t, u, tm, var5, lam5, app5, tt5, pair5, fst, snd, left, right, split, zero, suc, rec =>
pair5 _ _ _ (t tm var5 lam5 app5 tt5 pair5 fst snd left right split zero suc rec)
(u tm var5 lam5 app5 tt5 pair5 fst snd left right split zero suc rec)
fst5 : {g:_}->{a:_}->{b:_}-> Tm5 g (prod5 a b) -> Tm5 g a
fst5 = \ t, tm, var5, lam5, app5, tt5, pair5, fst5, snd, left, right, split, zero, suc, rec =>
fst5 _ _ _ (t tm var5 lam5 app5 tt5 pair5 fst5 snd left right split zero suc rec)
snd5 : {g:_}->{a:_}->{b:_} -> Tm5 g (prod5 a b) -> Tm5 g b
snd5 = \ t, tm, var5, lam5, app5, tt5, pair5, fst5, snd5, left, right, split, zero, suc, rec =>
snd5 _ _ _ (t tm var5 lam5 app5 tt5 pair5 fst5 snd5 left right split zero suc rec)
left5 : {g:_}->{a:_}->{b:_} -> Tm5 g a -> Tm5 g (sum5 a b)
left5 = \ t, tm, var5, lam5, app5, tt5, pair5, fst5, snd5, left5, right, split, zero, suc, rec =>
left5 _ _ _ (t tm var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right split zero suc rec)
right5 : {g:_}->{a:_}->{b:_} -> Tm5 g b -> Tm5 g (sum5 a b)
right5 = \ t, tm, var5, lam5, app5, tt5, pair5, fst5, snd5, left5, right5, split, zero, suc, rec =>
right5 _ _ _ (t tm var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 split zero suc rec)
split5 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm5 g (sum5 a b) -> Tm5 g (arr5 a c) -> Tm5 g (arr5 b c) -> Tm5 g c
split5 = \ t, u, v, tm, var5, lam5, app5, tt5, pair5, fst5, snd5, left5, right5, split5, zero, suc, rec =>
split5 _ _ _ _
(t tm var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 split5 zero suc rec)
(u tm var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 split5 zero suc rec)
(v tm var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 split5 zero suc rec)
zero5 : {g:_} -> Tm5 g Main.nat5
zero5 = \ tm, var5, lam5, app5, tt5, pair5, fst5, snd5, left5, right5, split5, zero5, suc, rec =>
zero5 _
suc5 : {g:_} -> Tm5 g Main.nat5 -> Tm5 g Main.nat5
suc5 = \ t, tm, var5, lam5, app5, tt5, pair5, fst5, snd5, left5, right5, split5, zero5, suc5, rec =>
suc5 _ (t tm var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 split5 zero5 suc5 rec)
rec5 : {g:_}->{a:_} -> Tm5 g Main.nat5 -> Tm5 g (arr5 Main.nat5 (arr5 a a)) -> Tm5 g a -> Tm5 g a
rec5 = \ t, u, v, tm, var5, lam5, app5, tt5, pair5, fst5, snd5, left5, right5, split5, zero5, suc5, rec5 =>
rec5 _ _
(t tm var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 split5 zero5 suc5 rec5)
(u tm var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 split5 zero5 suc5 rec5)
(v tm var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 split5 zero5 suc5 rec5)
v05 : {g:_}->{a:_} -> Tm5 (snoc5 g a) a
v05 = var5 vz5
v15 : {g:_}->{a:_}->{b:_} -> Tm5 (snoc5 (snoc5 g a) b) a
v15 = var5 (vs5 vz5)
v25 : {g:_}->{a:_}->{b:_}->{c:_} -> Tm5 (snoc5 (snoc5 (snoc5 g a) b) c) a
v25 = var5 (vs5 (vs5 vz5))
v35 : {g:_}->{a:_}->{b:_}->{c:_}->{d:_} -> Tm5 (snoc5 (snoc5 (snoc5 (snoc5 g a) b) c) d) a
v35 = var5 (vs5 (vs5 (vs5 vz5)))
tbool5 : Ty5
tbool5 = sum5 top5 top5