-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtylers_similarity_backup.m
41 lines (40 loc) · 1.61 KB
/
tylers_similarity_backup.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
function outString = tyler_similarity(fixMaps, removedAt, t)
% Initialization
outString = '';
fixMapsSize = size(fixMaps);
% For each participant...
for i=1:fixMapsSize(3)
% If it was one we skipped due to missing data, just write N/A.
if (ismember(i,removedAt))
outString = [outString 'N/A,'];
else
% Pre allocate just to be safe
summate = zeros(fixMapsSize(1),fixMapsSize(2));
% Add everything together
for j=1:fixMapsSize(3)
% Leave our subject out of the averaging if it's their turn
if i == j
continue;
end
summate = summate + fixMaps(:,:,j);
end
% Scale the summation to become the mean
meanMatrix = summate./(fixMapsSize(3) - 1);
% Reshape 2D data to 1D samples and meld together
% Done with magic matlab syntax
linearMeanMatrix = meanMatrix(:);
linearMeanMatrix = linearMeanMatrix';
% linearMeanMatrix = linearMeanMatrix'; % Just flipping again - trust me
linearIndivMatrix = fixMaps(:,:,i);
linearIndivMatrix = linearIndivMatrix(:);
linearIndivMatrix = linearIndivMatrix';
statsMatrix = cat(2,linearIndivMatrix',linearMeanMatrix');
% Do the stats!
cMat=corr(statsMatrix);
cMat=cMat(find(triu(ones(size(cMat)),1)));
r=tanh(nanmean(atanh(cMat)));
% Save to output string
outString = [outString num2str(r) ','];
end
end
end