We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
First of all, thank you for this excellent library.
Describe the bug
Building TDF matrix: 100%|███████████████████████████████████████████████| 13905/13905 [00:34<00:00, 408.07it/s] Building inverted index: 100%|███████████████████████████████████████| 148864/148864 [00:10<00:00, 14750.18it/s] Batch search: 0%| | 0/13905 [00:00<?, ?it/s] Segmentation fault (core dumped)
I am getting Segmentation fault (core dumped) when using bsearch in Sparse Retriever.
Segmentation fault (core dumped)
bsearch
CUDA: - GPU: - NVIDIA GeForce RTX 3090 - available: True - version: 12.1
Packages: - absl-py: 2.0.0 - accelerate: 0.24.1 - aiohttp: 3.8.6 - aiosignal: 1.3.1 - alembic: 1.12.1 - antlr4-python3-runtime: 4.9.3 - appdirs: 1.4.4 - async-timeout: 4.0.3 - attrs: 23.1.0 - autofaiss: 2.15.8 - beautifulsoup4: 4.12.2 - bleach: 6.1.0 - cachetools: 5.3.2 - cbor: 1.0.0 - cbor2: 5.5.1 - certifi: 2023.7.22 - charset-normalizer: 3.3.2 - click: 8.1.7 - colorlog: 6.7.0 - contourpy: 1.2.0 - cramjam: 2.7.0 - cycler: 0.12.1 - dill: 0.3.7 - docker-pycreds: 0.4.0 - embedding-reader: 1.5.1 - faiss-cpu: 1.7.4 - fastparquet: 2023.10.1 - filelock: 3.13.1 - fire: 0.4.0 - fonttools: 4.44.0 - frozenlist: 1.4.0 - fsspec: 2023.10.0 - gitdb: 4.0.11 - gitpython: 3.1.40 - google-auth: 2.23.4 - google-auth-oauthlib: 1.1.0 - greenlet: 3.0.1 - grpcio: 1.59.2 - huggingface-hub: 0.17.3 - hydra-core: 1.3.2 - idna: 3.4 - ijson: 3.2.3 - indxr: 0.1.5 - inscriptis: 2.3.2 - ir-datasets: 0.5.5 - jinja2: 3.1.2 - joblib: 1.3.2 - kaggle: 1.5.16 - keybert: 0.8.3 - kiwisolver: 1.4.5 - krovetzstemmer: 0.8 - lightning-utilities: 0.9.0 - llvmlite: 0.41.1 - lxml: 4.9.3 - lz4: 4.3.2 - mako: 1.3.0 - markdown: 3.5.1 - markdown-it-py: 3.0.0 - markupsafe: 2.1.3 - matplotlib: 3.8.1 - mdurl: 0.1.2 - mpmath: 1.3.0 - multidict: 6.0.4 - multipipe: 0.1.0 - multiprocess: 0.70.15 - networkx: 3.2.1 - nltk: 3.8.1 - nmslib: 2.1.1 - numba: 0.58.1 - numpy: 1.26.1 - nvidia-cublas-cu12: 12.1.3.1 - nvidia-cuda-cupti-cu12: 12.1.105 - nvidia-cuda-nvrtc-cu12: 12.1.105 - nvidia-cuda-runtime-cu12: 12.1.105 - nvidia-cudnn-cu12: 8.9.2.26 - nvidia-cufft-cu12: 11.0.2.54 - nvidia-curand-cu12: 10.3.2.106 - nvidia-cusolver-cu12: 11.4.5.107 - nvidia-cusparse-cu12: 12.1.0.106 - nvidia-nccl-cu12: 2.18.1 - nvidia-nvjitlink-cu12: 12.3.52 - nvidia-nvtx-cu12: 12.1.105 - oauthlib: 3.2.2 - omegaconf: 2.3.0 - oneliner-utils: 0.1.2 - optuna: 3.4.0 - orjson: 3.9.10 - packaging: 23.2 - pandas: 1.5.3 - pillow: 10.1.0 - pip: 23.3.1 - protobuf: 4.23.4 - psutil: 5.9.6 - pyarrow: 12.0.1 - pyasn1: 0.5.0 - pyasn1-modules: 0.3.0 - pyautocorpus: 0.1.12 - pybind11: 2.6.1 - pygments: 2.16.1 - pyparsing: 3.1.1 - pystemmer: 2.0.1 - python-dateutil: 2.8.2 - python-slugify: 8.0.1 - pytorch-lightning: 2.1.1 - pytorch-metric-learning: 2.3.0 - pytz: 2023.3.post1 - pyyaml: 6.0.1 - ranx: 0.3.18 - regex: 2023.10.3 - requests: 2.31.0 - requests-oauthlib: 1.3.1 - retriv: 0.2.3 - rich: 13.6.0 - rsa: 4.9 - safetensors: 0.4.0 - scikit-learn: 1.3.2 - scipy: 1.11.3 - seaborn: 0.13.0 - sentence-transformers: 2.2.2 - sentencepiece: 0.1.99 - sentry-sdk: 1.39.1 - setproctitle: 1.3.3 - setuptools: 68.2.2 - six: 1.16.0 - smmap: 5.0.1 - soupsieve: 2.5 - sqlalchemy: 2.0.23 - sympy: 1.12 - tabulate: 0.9.0 - tensorboard: 2.15.1 - tensorboard-data-server: 0.7.2 - termcolor: 2.3.0 - text-unidecode: 1.3 - threadpoolctl: 3.2.0 - tokenizers: 0.14.1 - torch: 2.1.0 - torchaudio: 2.1.0 - torchmetrics: 1.2.0 - torchvision: 0.16.0 - tqdm: 4.66.1 - transformers: 4.35.0 - trec-car-tools: 2.6 - triton: 2.1.0 - typing-extensions: 4.8.0 - unidecode: 1.3.7 - unlzw3: 0.2.2 - urllib3: 2.0.7 - wandb: 0.16.1 - warc3-wet: 0.2.3 - warc3-wet-clueweb09: 0.2.5 - webencodings: 0.5.1 - werkzeug: 3.0.1 - wheel: 0.41.2 - yarl: 1.9.2 - zlib-state: 0.1.6
System: - OS: Linux - architecture: - 64bit - ELF - processor: x86_64 - python: 3.10.13 - release: 5.15.0-88-generic - version: #98~20.04.1-Ubuntu SMP Mon Oct 9 16:43:45 UTC 2023
The text was updated successfully, but these errors were encountered:
I had this issue before, and the reason is the query was too long in my experiment
Sorry, something went wrong.
No branches or pull requests
First of all, thank you for this excellent library.
Describe the bug
I am getting
Segmentation fault (core dumped)
when usingbsearch
in Sparse Retriever.Current environment
CUDA:
- GPU:
- NVIDIA GeForce RTX 3090
- available: True
- version: 12.1
Packages:
- absl-py: 2.0.0
- accelerate: 0.24.1
- aiohttp: 3.8.6
- aiosignal: 1.3.1
- alembic: 1.12.1
- antlr4-python3-runtime: 4.9.3
- appdirs: 1.4.4
- async-timeout: 4.0.3
- attrs: 23.1.0
- autofaiss: 2.15.8
- beautifulsoup4: 4.12.2
- bleach: 6.1.0
- cachetools: 5.3.2
- cbor: 1.0.0
- cbor2: 5.5.1
- certifi: 2023.7.22
- charset-normalizer: 3.3.2
- click: 8.1.7
- colorlog: 6.7.0
- contourpy: 1.2.0
- cramjam: 2.7.0
- cycler: 0.12.1
- dill: 0.3.7
- docker-pycreds: 0.4.0
- embedding-reader: 1.5.1
- faiss-cpu: 1.7.4
- fastparquet: 2023.10.1
- filelock: 3.13.1
- fire: 0.4.0
- fonttools: 4.44.0
- frozenlist: 1.4.0
- fsspec: 2023.10.0
- gitdb: 4.0.11
- gitpython: 3.1.40
- google-auth: 2.23.4
- google-auth-oauthlib: 1.1.0
- greenlet: 3.0.1
- grpcio: 1.59.2
- huggingface-hub: 0.17.3
- hydra-core: 1.3.2
- idna: 3.4
- ijson: 3.2.3
- indxr: 0.1.5
- inscriptis: 2.3.2
- ir-datasets: 0.5.5
- jinja2: 3.1.2
- joblib: 1.3.2
- kaggle: 1.5.16
- keybert: 0.8.3
- kiwisolver: 1.4.5
- krovetzstemmer: 0.8
- lightning-utilities: 0.9.0
- llvmlite: 0.41.1
- lxml: 4.9.3
- lz4: 4.3.2
- mako: 1.3.0
- markdown: 3.5.1
- markdown-it-py: 3.0.0
- markupsafe: 2.1.3
- matplotlib: 3.8.1
- mdurl: 0.1.2
- mpmath: 1.3.0
- multidict: 6.0.4
- multipipe: 0.1.0
- multiprocess: 0.70.15
- networkx: 3.2.1
- nltk: 3.8.1
- nmslib: 2.1.1
- numba: 0.58.1
- numpy: 1.26.1
- nvidia-cublas-cu12: 12.1.3.1
- nvidia-cuda-cupti-cu12: 12.1.105
- nvidia-cuda-nvrtc-cu12: 12.1.105
- nvidia-cuda-runtime-cu12: 12.1.105
- nvidia-cudnn-cu12: 8.9.2.26
- nvidia-cufft-cu12: 11.0.2.54
- nvidia-curand-cu12: 10.3.2.106
- nvidia-cusolver-cu12: 11.4.5.107
- nvidia-cusparse-cu12: 12.1.0.106
- nvidia-nccl-cu12: 2.18.1
- nvidia-nvjitlink-cu12: 12.3.52
- nvidia-nvtx-cu12: 12.1.105
- oauthlib: 3.2.2
- omegaconf: 2.3.0
- oneliner-utils: 0.1.2
- optuna: 3.4.0
- orjson: 3.9.10
- packaging: 23.2
- pandas: 1.5.3
- pillow: 10.1.0
- pip: 23.3.1
- protobuf: 4.23.4
- psutil: 5.9.6
- pyarrow: 12.0.1
- pyasn1: 0.5.0
- pyasn1-modules: 0.3.0
- pyautocorpus: 0.1.12
- pybind11: 2.6.1
- pygments: 2.16.1
- pyparsing: 3.1.1
- pystemmer: 2.0.1
- python-dateutil: 2.8.2
- python-slugify: 8.0.1
- pytorch-lightning: 2.1.1
- pytorch-metric-learning: 2.3.0
- pytz: 2023.3.post1
- pyyaml: 6.0.1
- ranx: 0.3.18
- regex: 2023.10.3
- requests: 2.31.0
- requests-oauthlib: 1.3.1
- retriv: 0.2.3
- rich: 13.6.0
- rsa: 4.9
- safetensors: 0.4.0
- scikit-learn: 1.3.2
- scipy: 1.11.3
- seaborn: 0.13.0
- sentence-transformers: 2.2.2
- sentencepiece: 0.1.99
- sentry-sdk: 1.39.1
- setproctitle: 1.3.3
- setuptools: 68.2.2
- six: 1.16.0
- smmap: 5.0.1
- soupsieve: 2.5
- sqlalchemy: 2.0.23
- sympy: 1.12
- tabulate: 0.9.0
- tensorboard: 2.15.1
- tensorboard-data-server: 0.7.2
- termcolor: 2.3.0
- text-unidecode: 1.3
- threadpoolctl: 3.2.0
- tokenizers: 0.14.1
- torch: 2.1.0
- torchaudio: 2.1.0
- torchmetrics: 1.2.0
- torchvision: 0.16.0
- tqdm: 4.66.1
- transformers: 4.35.0
- trec-car-tools: 2.6
- triton: 2.1.0
- typing-extensions: 4.8.0
- unidecode: 1.3.7
- unlzw3: 0.2.2
- urllib3: 2.0.7
- wandb: 0.16.1
- warc3-wet: 0.2.3
- warc3-wet-clueweb09: 0.2.5
- webencodings: 0.5.1
- werkzeug: 3.0.1
- wheel: 0.41.2
- yarl: 1.9.2
- zlib-state: 0.1.6
System:
- OS: Linux
- architecture:
- 64bit
- ELF
- processor: x86_64
- python: 3.10.13
- release: 5.15.0-88-generic
- version: #98~20.04.1-Ubuntu SMP Mon Oct 9 16:43:45 UTC 2023
The text was updated successfully, but these errors were encountered: