forked from king-yyf/CMeKG_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
medical_cws.py
158 lines (133 loc) · 6.03 KB
/
medical_cws.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding:utf-8
import codecs
import torch
from torch.autograd import Variable
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from utils import load_vocab
from cws_constant import *
from model_cws import BERT_LSTM_CRF
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
class medical_seg(object):
def __init__(self):
self.NEWPATH = '/Users/yangyf/workplace/model/medical_cws/pytorch_model.pkl'
if torch.cuda.is_available():
self.device = torch.device("cuda", 0)
self.use_cuda = True
else:
self.device = torch.device("cpu")
self.use_cuda = False
self.vocab = load_vocab('/Users/yangyf/workplace/model/medical_cws/vocab.txt')
self.vocab_reverse = {v: k for k, v in self.vocab.items()}
self.model = BERT_LSTM_CRF('/Users/yangyf/workplace/model/medical_cws', tagset_size, 768, 200, 2,
dropout_ratio=0.5, dropout1=0.5, use_cuda=use_cuda)
if use_cuda:
self.model.cuda()
def from_input(self, input_str):
# 单行的输入
raw_text = []
textid = []
textmask = []
textlength = []
text = ['[CLS]'] + [x for x in input_str] + ['[SEP]']
raw_text.append(text)
cur_len = len(text)
# raw_textid = [self.vocab[x] for x in text] + [0] * (max_length - cur_len)
raw_textid = [self.vocab[x] for x in text if self.vocab.__contains__(x)] + [0] * (max_length - cur_len)
textid.append(raw_textid)
raw_textmask = [1] * cur_len + [0] * (max_length - cur_len)
textmask.append(raw_textmask)
textlength.append([cur_len])
textid = torch.LongTensor(textid)
textmask = torch.LongTensor(textmask)
textlength = torch.LongTensor(textlength)
return raw_text, textid, textmask, textlength
def from_txt(self, input_path):
# 多行输入
raw_text = []
textid = []
textmask = []
textlength = []
with open(input_path, 'r', encoding='utf-8') as f:
for line in f.readlines():
if len(line) > 148:
line = line[:148]
temptext = ['[CLS]'] + [x for x in line[:-1]] + ['[SEP]']
cur_len = len(temptext)
raw_text.append(temptext)
tempid = [self.vocab[x] for x in temptext[:cur_len]] + [0] * (max_length - cur_len)
textid.append(tempid)
textmask.append([1] * cur_len + [0] * (max_length - cur_len))
textlength.append([cur_len])
textid = torch.LongTensor(textid)
textmask = torch.LongTensor(textmask)
textlength = torch.LongTensor(textlength)
return raw_text, textid, textmask, textlength
def recover_to_text(self, pred, raw_text):
# 输入[标签list]和[原文list],batch为1
pred = [i2l_dic[t.item()] for t in pred[0]]
pred = pred[:len(raw_text)]
pred = pred[1:-1]
raw_text = raw_text[1:-1]
raw = ""
res = ""
for tag, char in zip(pred, raw_text):
res += char
if tag in ["S", 'E']:
res += ' '
raw += char
return raw, res
def predict_sentence(self, sentence):
if sentence == '':
print("输入为空!请重新输入")
return
if len(sentence) > 148:
print("输入句子过长,请输入小于148的长度字符!")
sentence = sentence[:148]
raw_text, test_ids, test_masks, test_lengths = self.from_input(sentence)
test_dataset = TensorDataset(test_ids, test_masks, test_lengths)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=1)
# self.model.load_state_dict(torch.load(self.NEWPATH, map_location={'cuda:0': str(self.device)}))
self.model.load_state_dict(torch.load(self.NEWPATH,map_location=self.device))
self.model.eval()
for i, dev_batch in enumerate(test_loader):
sentence, masks, lengths = dev_batch
batch_raw_text = raw_text[i]
sentence, masks, lengths = Variable(sentence), Variable(masks), Variable(lengths)
if use_cuda:
sentence = sentence.cuda()
masks = masks.cuda()
predict_tags = self.model(sentence, masks)
predict_tags.tolist()
raw, res = self.recover_to_text(predict_tags, batch_raw_text)
#print("输入:", raw)
#print("结果:", res)
return res
def predict_file(self, input_file, output_file):
# raw_text, test_ids, test_masks, test_lengths = self.from_txt("./data/raw_text.txt")
raw_text, test_ids, test_masks, test_lengths = self.from_txt(input_file)
test_dataset = TensorDataset(test_ids, test_masks, test_lengths)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=1)
self.model.load_state_dict(torch.load(self.NEWPATH, map_location={'cuda:0': str(self.device)}))
self.model.eval()
op_file = codecs.open(output_file, 'w', 'utf-8')
for i, dev_batch in enumerate(test_loader):
sentence, masks, lengths = dev_batch
batch_raw_text = raw_text[i]
sentence, masks, lengths = Variable(sentence), Variable(masks), Variable(lengths)
if use_cuda:
sentence = sentence.cuda()
masks = masks.cuda()
predict_tags = self.model(sentence, masks)
predict_tags.tolist()
raw, res = self.recover_to_text(predict_tags, batch_raw_text)
op_file.write(res + '\n')
op_file.close()
print('处理完成!')
print("results have been stored in {}".format(output_file))
if __name__ == "__main__":
meg = medical_seg()
# meg.predict_file('./data/raw_text.txt', './data/out_raw.txt')
res = meg.predict_sentence("肾上腺由皮质和髓质两个功能不同的内分泌器官组成,皮质分泌肾上腺皮质激素,髓质分泌儿茶酚胺激素。")
print(res)