-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtool_validate.cpp
186 lines (152 loc) · 5.38 KB
/
tool_validate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// ******************************************************
// vcfCTools (c) 2011 Alistair Ward
// Marth Lab, Department of Biology, Boston College
// All rights reserved.
// ------------------------------------------------------
// Last modified: 18 February 2011
// ------------------------------------------------------
// vcf file validation.
//
// Check for missing data, incomplete data, or data that
// is inconsistent with the information in the header.
// ******************************************************
#include "tool_validate.h"
using namespace std;
using namespace vcfCTools;
// validateTool imlementation.
validateTool::validateTool(void)
: AbstractTool()
{
currentReferenceSequence = "";
error = false;
}
// Destructor.
validateTool::~validateTool(void) {}
// Help
int validateTool::Help(void) {
cout << "Validation help" << endl;
cout << "Usage: ./vcfCTools validate [options]." << endl;
cout << endl;
cout << "Options:" << endl;
cout << " -h, --help" << endl;
cout << " display intersect help." << endl;
cout << " -i, --in" << endl;
cout << " input vcf file." << endl;
cout << " -o, --output" << endl;
cout << " output file." << endl;
return 0;
}
// Parse the command line and get all required and optional arguments.
int validateTool::parseCommandLine(int argc, char* argv[]) {
commandLine = argv[0];
for (int i = 2; i < argc; i++) {
commandLine += " ";
commandLine += argv[i];
}
int argument; // Counter for getopt.
// Define the long options.
static struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"in", required_argument, 0, 'i'},
{0, 0, 0, 0}
};
while (true) {
int option_index = 0;
argument = getopt_long(argc, argv, "hi:", long_options, &option_index);
if (argument == -1)
break;
switch (argument) {
// Input vcf file - required input.
case 'i':
vcfFile = optarg;
break;
// Help.
case 'h':
return Help();
//
case '?':
cerr << "Unknown option: " << argv[optind - 1] << endl;
exit(1);
// default
default:
abort ();
}
}
// Remaining arguments are unknown, so terminate with an error.
if (optind < argc - 1) {
cerr << "Unknown options." << endl;
exit(1);
}
// Check that a vcf file was specified.
if (vcfFile == "") {
cerr << "A vcf file must be specified (--in, -i)." << endl;
exit(1);
}
return 0;
}
// Run the tool.
int validateTool::Run(int argc, char* argv[]) {
int getOptions = validateTool::parseCommandLine(argc, argv);
// Create a vcf object.
vcf v; // Create a vcf object.
v.openVcf(vcfFile);
// Define a variant object.
variant var; // Define variant object.
var.determineVariantsToProcess(true, true, true, true, true, true, false, true, false);
// Define a header object and parse the header information.
vcfHeader header;
header.parseHeader(v.input);
// Check that all of the info descriptions in the header are in the correct form.
map<string, headerInfo>::iterator iter;
for (iter = header.infoFields.begin(); iter != header.infoFields.end(); iter++) {
if ( !(iter->second.success) ) {
cerr << "ERROR: Malformed info string in the header: " << iter->first << endl;
exit(1);
}
}
for (iter = header.formatFields.begin(); iter != header.formatFields.end(); iter++) {
if ( !(iter->second.success) ) {
cerr << "ERROR: Malformed format string in the header: " << iter->first << endl;
exit(1);
}
}
// Read through all the entries in the file.
v.success = v.getRecord();
while (v.success) {
// Build the variant structure for this reference sequence.
if (var.originalVariantsMap.size() == 0) {
currentReferenceSequence = v.variantRecord.referenceSequence;
v.success = var.buildVariantStructure(v);
}
// Loop over the variant structure until it is empty. While v.update is true,
// i.e. when the reference sequence is still the current reference sequence,
// keep adding variants to the structure.
while (var.originalVariantsMap.size() != 0) {
if (v.variantRecord.referenceSequence == currentReferenceSequence && v.success) {
var.addVariantToStructure(v.position, v.variantRecord);
v.success = v.getRecord();
}
var.ovmIter = var.originalVariantsMap.begin();
// Loop over all records at this locus.
var.ovIter = var.ovmIter->second.begin();
for (; var.ovIter != var.ovmIter->second.end(); var.ovIter++) {
// Check that alternate alleles are well formed.
validateAlternateAlleles(header, var); // symbolic_alternates.cpp
// Check the info string for inconsistencies.
variantInfo info(var.ovIter->info);
info.validateInfo(header, var.ovIter->referenceSequence, var.ovIter->position, var.ovIter->numberAlts, error);
// Check the genotypes for inconsistencies.
if (var.ovIter->hasGenotypes) {
genotypeInfo gen(var.ovIter->genotypeFormat, var.ovIter->genotypes);
gen.validateGenotypes(header, var.ovIter->referenceSequence, var.ovIter->position, var.ovIter->numberAlts, error);
}
}
var.originalVariantsMap.erase(var.ovmIter);
}
}
// Close the vcf files.
v.closeVcf();
// If no errors were found, indicate that this was the case.
if (!error) {cerr << "No errors found with vcf file." << endl;}
return 0;
}