-
Notifications
You must be signed in to change notification settings - Fork 618
/
Printing_Shortest_Common_Supersequence.java
162 lines (135 loc) · 4.15 KB
/
Printing_Shortest_Common_Supersequence.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// A dynamic programming based Java program print
// shortest supersequence of two strings
package Code.Java;
import java.io.*;
import java.util.*;
public class Printing_Shortest_Common_Supersequence {
static String printShortestSuperSeq(String X, String Y)
{
int m = X.length();
int n = Y.length();
// dp[i][j] contains length of shortest supersequence
int dp[][] = new int[m + 1][n + 1];
// Fill table in bottom up manner
for (int i = 0; i <= m; i++)
{
for (int j = 0; j <= n; j++)
{
// Below steps follow recurrence relation
if (i == 0)
{
dp[i][j] = j;
}
else if (j == 0)
{
dp[i][j] = i;
}
else if (X.charAt(i - 1) == Y.charAt(j - 1))
{
dp[i][j] = 1 + dp[i - 1][j - 1];
}
else
{
dp[i][j] = 1 + Math.min(dp[i - 1][j], dp[i][j - 1]);
}
}
}
// Following code is used to print shortest supersequence dp[m][n] s
int index = dp[m][n];
// string to store the shortest supersequence
String str = "";
// Start from the bottom right corner and one by one
// push characters in output string
int i = m, j = n;
while (i > 0 && j > 0)
{
// If current character in X and Y are same, then
// current character is part of shortest supersequence
if (X.charAt(i - 1) == Y.charAt(j - 1))
{
// Put current character in result
str += (X.charAt(i - 1));
// reduce values of i, j and index
i--;
j--;
index--;
}
// If current character in X and Y are different
else if (dp[i - 1][j] > dp[i][j - 1])
{
// Put current character of Y in result
str += (Y.charAt(j - 1));
// reduce values of j and index
j--;
index--;
}
else
{
// Put current character of X in result
str += (X.charAt(i - 1));
// reduce values of i and index
i--;
index--;
}
}
// If Y reaches its end, put remaining characters
// of X in the result string
while (i > 0)
{
str += (X.charAt(i - 1));
i--;
index--;
}
// If X reaches its end, put remaining characters
// of Y in the result string
while (j > 0)
{
str += (Y.charAt(j - 1));
j--;
index--;
}
// reverse the string and return it
str = reverse(str);
return str;
}
static String reverse(String input)
{
char[] temparray = input.toCharArray();
int left, right = 0;
right = temparray.length - 1;
for (left = 0; left < right; left++, right--)
{
// Swap values of left and right
char temp = temparray[left];
temparray[left] = temparray[right];
temparray[right] = temp;
}
return String.valueOf(temparray);
}
// Driver code
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter 2 words: ");
String X = sc.nextLine();
String Y = sc.nextLine();;
System.out.println("The Shortest Common Supersequence: " + printShortestSuperSeq(X, Y));
}
}
/*Time Complexity: O(n*n)
Space Complexity: O(n*n)
Example 1:
Input:
Enter 2 words:
AGGTAB
GXTXAYB
Output:
The Shortest Common Supersequence: AGXGTXAYB
Example 2:
Input:
Enter 2 words:
JHOJDO
SIHOHD
Output:
The Shortest Common Supersequence: SIJHOHJDO
*/