-
Notifications
You must be signed in to change notification settings - Fork 0
/
Primes.hs
250 lines (209 loc) · 8.94 KB
/
Primes.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
-- |
-- Module : Data.Numbers.Primes
-- Copyright : Sebastian Fischer
-- License : BSD3
--
-- Maintainer : Sebastian Fischer ([email protected])
-- Stability : experimental
-- Portability : portable
--
-- This Haskell library provides an efficient lazy wheel sieve for
-- prime generation inspired by /Lazy wheel sieves and spirals of/
-- /primes/ by Colin Runciman
-- (<http://www.cs.york.ac.uk/ftpdir/pub/colin/jfp97lw.ps.gz>) and
-- /The Genuine Sieve of Eratosthenes/ by Melissa O'Neil
-- (<http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf>).
--
module Data.Numbers.Primes (
primes, wheelSieve,
isPrime, primeFactors
) where
-- |
-- This global constant is an infinite list of prime numbers. It is
-- generated by a lazy wheel sieve and shared across the whole program
-- run. If you are concerned about the memory requirements of sharing
-- many primes you can call the function @wheelSieve@ directly.
--
primes :: Integral int => [int]
primes = wheelSieve 6
{-# SPECIALISE primes :: [Int] #-}
{-# SPECIALISE primes :: [Integer] #-}
-- |
-- This function returns an infinite list of prime numbers by sieving
-- with a wheel that cancels the multiples of the first @n@ primes
-- where @n@ is the argument given to @wheelSieve@. Don't use too
-- large wheels. The number @6@ is a good value to pass to this
-- function. Larger wheels improve the run time at the cost of higher
-- memory requirements.
--
wheelSieve :: Integral int
=> Int -- ^ number of primes canceled by the wheel
-> [int] -- ^ infinite list of primes
wheelSieve k = reverse ps ++ map head (sieve p (cycle ns))
where (p:ps,ns) = wheel k
{-# SPECIALISE wheelSieve :: Int -> [Int] #-}
{-# SPECIALISE wheelSieve :: Int -> [Integer] #-}
-- |
-- Checks whether a given number is prime.
--
-- This function uses trial division to check for divisibility with
-- all primes below the square root of the given number. It is
-- impractical for numbers with a very large smallest prime factor.
--
isPrime :: Integral int => int -> Bool
isPrime n | n > 1 = primeFactors n == [n]
| otherwise = False
{-# SPECIALISE isPrime :: Int -> Bool #-}
{-# SPECIALISE isPrime :: Integer -> Bool #-}
-- |
-- Yields the sorted list of prime factors of the given positive
-- number.
--
-- This function uses trial division and is impractical for numbers
-- with very large prime factors.
--
primeFactors :: Integral int => int -> [int]
primeFactors n = factors n (wheelSieve 6)
where
factors 1 _ = []
factors m (p:ps) | m < p*p = [m]
| r == 0 = p : factors q (p:ps)
| otherwise = factors m ps
where (q,r) = quotRem m p
{-# SPECIALISE primeFactors :: Int -> [Int] #-}
{-# SPECIALISE primeFactors :: Integer -> [Integer] #-}
-- Auxiliary Definitions
------------------------------------------------------------------------------
-- Sieves prime candidates by computing composites from the result of
-- a recursive call with identical arguments. We could use sharing
-- instead of a recursive call with identical arguments but that would
-- lead to much higher memory requirements. The results of the
-- different calls are consumed at different speeds and we want to
-- avoid multiple far apart pointers into the result list to avoid
-- retaining everything in between.
--
-- Each list in the result starts with a prime. To obtain composites
-- that need to be cancelled, one can multiply all elements of the
-- list with its head.
--
sieve :: (Ord int, Num int) => int -> [int] -> [[int]]
sieve p ns@(m:ms) = spin p ns : sieveComps (p+m) ms (composites p ns)
{-# SPECIALISE sieve :: Int -> [Int] -> [[Int]] #-}
{-# SPECIALISE sieve :: Integer -> [Integer] -> [[Integer]] #-}
-- Composites are stored in increasing order in a priority queue. The
-- queue has an associated feeder which is used to avoid filling it
-- with entries that will only be used again much later.
--
type Composites int = (Queue int,[[int]])
-- The feeder is computed from the result of a call to 'sieve'.
--
composites :: (Ord int, Num int) => int -> [int] -> Composites int
composites p ns = (Empty, map comps (spin p ns : sieve p ns))
where comps xs@(x:_) = map (x*) xs
{-# SPECIALISE composites :: Int -> [Int] -> Composites Int #-}
{-# SPECIALISE composites :: Integer -> [Integer] -> Composites Integer #-}
-- We can split all composites into the next and remaining
-- composites. We use the feeder when appropriate and discard equal
-- entries to not return a composite twice.
--
splitComposites :: Ord int => Composites int -> (int,Composites int)
splitComposites (Empty, xs:xss) = splitComposites (Fork xs [], xss)
splitComposites (queue, xss@((x:xs):yss))
| x < z = (x, discard x (enqueue xs queue, yss))
| otherwise = (z, discard z (enqueue zs queue', xss))
where (z:zs,queue') = dequeue queue
{-# SPECIALISE splitComposites :: Composites Int -> (Int,Composites Int) #-}
{-# SPECIALISE
splitComposites :: Composites Integer -> (Integer,Composites Integer) #-}
-- Drops all occurrences of the given element.
--
discard :: Ord int => int -> Composites int -> Composites int
discard n ns | n == m = discard n ms
| otherwise = ns
where (m,ms) = splitComposites ns
{-# SPECIALISE discard :: Int -> Composites Int -> Composites Int #-}
{-# SPECIALISE
discard :: Integer -> Composites Integer -> Composites Integer #-}
-- This is the actual sieve. It discards candidates that are
-- composites and yields lists which start with a prime and contain
-- all factors of the composites that need to be dropped.
--
sieveComps :: (Ord int, Num int) => int -> [int] -> Composites int -> [[int]]
sieveComps cand ns@(m:ms) xs
| cand == comp = sieveComps (cand+m) ms ys
| cand < comp = spin cand ns : sieveComps (cand+m) ms xs
| otherwise = sieveComps cand ns ys
where (comp,ys) = splitComposites xs
{-# SPECIALISE sieveComps :: Int -> [Int] -> Composites Int -> [[Int]] #-}
{-# SPECIALISE
sieveComps :: Integer -> [Integer] -> Composites Integer -> [[Integer]] #-}
-- This function computes factors of composites of primes by spinning
-- a wheel.
--
spin :: Num int => int -> [int] -> [int]
spin x (y:ys) = x : spin (x+y) ys
{-# SPECIALISE spin :: Int -> [Int] -> [Int] #-}
{-# SPECIALISE spin :: Integer -> [Integer] -> [Integer] #-}
-- A wheel consists of a list of primes whose multiples are canceled
-- and the actual wheel that is rolled for canceling.
--
type Wheel int = ([int],[int])
-- Computes a wheel that cancels the multiples of the given number
-- (plus 1) of primes.
--
-- For example:
--
-- wheel 0 = ([2],[1])
-- wheel 1 = ([3,2],[2])
-- wheel 2 = ([5,3,2],[2,4])
-- wheel 3 = ([7,5,3,2],[4,2,4,2,4,6,2,6])
--
wheel :: Integral int => Int -> Wheel int
wheel n = iterate next ([2],[1]) !! n
{-# SPECIALISE wheel :: Int -> Wheel Int #-}
{-# SPECIALISE wheel :: Int -> Wheel Integer #-}
next :: Integral int => Wheel int -> Wheel int
next (ps@(p:_),xs) = (py:ps,cancel (product ps) p py ys)
where (y:ys) = cycle xs
py = p + y
{-# SPECIALISE next :: Wheel Int -> Wheel Int #-}
{-# SPECIALISE next :: Wheel Integer -> Wheel Integer #-}
cancel :: Integral int => int -> int -> int -> [int] -> [int]
cancel 0 _ _ _ = []
cancel m p n (x:ys@(y:zs))
| nx `mod` p > 0 = x : cancel (m-x) p nx ys
| otherwise = cancel m p n (x+y:zs)
where nx = n + x
{-# SPECIALISE cancel :: Int -> Int -> Int -> [Int] -> [Int] #-}
{-# SPECIALISE
cancel :: Integer -> Integer -> Integer -> [Integer] -> [Integer] #-}
-- We use a special version of priority queues implemented as /pairing/
-- /heaps/ (see /Purely Functional Data Structures/ by Chris Okasaki).
--
-- The queue stores non-empty lists of composites; the first element
-- is used as priority.
--
data Queue int = Empty | Fork [int] [Queue int]
enqueue :: Ord int => [int] -> Queue int -> Queue int
enqueue ns = merge (Fork ns [])
{-# SPECIALISE enqueue :: [Int] -> Queue Int -> Queue Int #-}
{-# SPECIALISE enqueue :: [Integer] -> Queue Integer -> Queue Integer #-}
merge :: Ord int => Queue int -> Queue int -> Queue int
merge Empty y = y
merge x Empty = x
merge x y | prio x <= prio y = join x y
| otherwise = join y x
where prio (Fork (n:_) _) = n
join (Fork ns qs) q = Fork ns (q:qs)
{-# SPECIALISE merge :: Queue Int -> Queue Int -> Queue Int #-}
{-# SPECIALISE merge :: Queue Integer -> Queue Integer -> Queue Integer #-}
dequeue :: Ord int => Queue int -> ([int], Queue int)
dequeue (Fork ns qs) = (ns,mergeAll qs)
{-# SPECIALISE dequeue :: Queue Int -> ([Int], Queue Int) #-}
{-# SPECIALISE dequeue :: Queue Integer -> ([Integer], Queue Integer) #-}
mergeAll :: Ord int => [Queue int] -> Queue int
mergeAll [] = Empty
mergeAll [x] = x
mergeAll (x:y:qs) = merge (merge x y) (mergeAll qs)
{-# SPECIALISE mergeAll :: [Queue Int] -> Queue Int #-}
{-# SPECIALISE mergeAll :: [Queue Integer] -> Queue Integer #-}