-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnpc_example.yml
38 lines (36 loc) · 2.04 KB
/
npc_example.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
data:
# Dataset-related setting
dataset:
name: 'LibriSpeech' # Specify dataset, must match to dataset/<corpus>.py
path: '/path/to/LibriSpeech' # Path to unzipped LibriSpeech dataset
train_split: ['train-clean-360'] # Splits to be used as training set
dev_split: ['dev-clean'] # Splits to be used as valid. set
batch_size: 32 # Batch sizes
audio_max_frames: 1500 # Max length of spectrogram to ensure batch size
# Attributes of audio feature
audio:
feat_type: 'fbank' # Feature type
feat_dim: 80 # Feature dimension
frame_length: 25 # Window size in ms
frame_shift: 10 # Hop size in ms
cmvn: True # Apply uttr.-wised CMVN on Mel spectrogram
model:
method: 'npc' # Accepts npc/apc/vqapc
paras:
kernel_size: 15 # Receptive field size (R) = kernel_size + 2*(n_blocks)
mask_size: 5 # Desired input mask size (M_in) as described in NPC paper
n_blocks: 4 # Number of ConvBlocks stacked in NPC model
hidden_size: 512 # Dimension of feature of all layers
dropout: 0.1 # Dropout in ConvBlock
residual: True # Residual connection in ConvBlock
batch_norm: True # Apply BatchNorm in ConvBlock
activate: 'relu' # Activation function of ConvBlock
disable_cross_layer: False # Apply Masked ConvBlock at last layer only
vq:
codebook_size: [64,64,64,64] # Codebook size of each group in VQ-layer
code_dim: [128,128,128,128] # Dim of each group summing up to hidden_size
gumbel_temperature: 1.0 # Temperature of Gumbel Softmax in VQ-layer
hparas:
optimizer: 'Adam'
lr: 0.001
epoch: 100